xref: /linux/arch/arm64/include/asm/kvm_emulate.h (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/kvm_emulate.h
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_EMULATE_H__
12 #define __ARM64_KVM_EMULATE_H__
13 
14 #include <linux/kvm_host.h>
15 
16 #include <asm/debug-monitors.h>
17 #include <asm/esr.h>
18 #include <asm/kvm_arm.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/kvm_nested.h>
21 #include <asm/ptrace.h>
22 #include <asm/cputype.h>
23 #include <asm/virt.h>
24 
25 #define CURRENT_EL_SP_EL0_VECTOR	0x0
26 #define CURRENT_EL_SP_ELx_VECTOR	0x200
27 #define LOWER_EL_AArch64_VECTOR		0x400
28 #define LOWER_EL_AArch32_VECTOR		0x600
29 
30 enum exception_type {
31 	except_type_sync	= 0,
32 	except_type_irq		= 0x80,
33 	except_type_fiq		= 0x100,
34 	except_type_serror	= 0x180,
35 };
36 
37 #define kvm_exception_type_names		\
38 	{ except_type_sync,	"SYNC"   },	\
39 	{ except_type_irq,	"IRQ"    },	\
40 	{ except_type_fiq,	"FIQ"    },	\
41 	{ except_type_serror,	"SERROR" }
42 
43 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu);
44 void kvm_skip_instr32(struct kvm_vcpu *vcpu);
45 
46 void kvm_inject_undefined(struct kvm_vcpu *vcpu);
47 void kvm_inject_vabt(struct kvm_vcpu *vcpu);
48 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
49 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
50 void kvm_inject_size_fault(struct kvm_vcpu *vcpu);
51 
52 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu);
53 
54 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu);
55 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2);
56 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu);
57 
58 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__)
59 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
60 {
61 	return !(vcpu->arch.hcr_el2 & HCR_RW);
62 }
63 #else
64 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
65 {
66 	return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
67 }
68 #endif
69 
70 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
71 {
72 	vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
73 	if (has_vhe() || has_hvhe())
74 		vcpu->arch.hcr_el2 |= HCR_E2H;
75 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
76 		/* route synchronous external abort exceptions to EL2 */
77 		vcpu->arch.hcr_el2 |= HCR_TEA;
78 		/* trap error record accesses */
79 		vcpu->arch.hcr_el2 |= HCR_TERR;
80 	}
81 
82 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) {
83 		vcpu->arch.hcr_el2 |= HCR_FWB;
84 	} else {
85 		/*
86 		 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C
87 		 * get set in SCTLR_EL1 such that we can detect when the guest
88 		 * MMU gets turned on and do the necessary cache maintenance
89 		 * then.
90 		 */
91 		vcpu->arch.hcr_el2 |= HCR_TVM;
92 	}
93 
94 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
95 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE))
96 		vcpu->arch.hcr_el2 |= HCR_TID4;
97 	else
98 		vcpu->arch.hcr_el2 |= HCR_TID2;
99 
100 	if (vcpu_el1_is_32bit(vcpu))
101 		vcpu->arch.hcr_el2 &= ~HCR_RW;
102 
103 	if (kvm_has_mte(vcpu->kvm))
104 		vcpu->arch.hcr_el2 |= HCR_ATA;
105 }
106 
107 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu)
108 {
109 	return (unsigned long *)&vcpu->arch.hcr_el2;
110 }
111 
112 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu)
113 {
114 	vcpu->arch.hcr_el2 &= ~HCR_TWE;
115 	if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
116 	    vcpu->kvm->arch.vgic.nassgireq)
117 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
118 	else
119 		vcpu->arch.hcr_el2 |= HCR_TWI;
120 }
121 
122 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu)
123 {
124 	vcpu->arch.hcr_el2 |= HCR_TWE;
125 	vcpu->arch.hcr_el2 |= HCR_TWI;
126 }
127 
128 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu)
129 {
130 	return vcpu->arch.vsesr_el2;
131 }
132 
133 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
134 {
135 	vcpu->arch.vsesr_el2 = vsesr;
136 }
137 
138 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
139 {
140 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
141 }
142 
143 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
144 {
145 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
146 }
147 
148 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
149 {
150 	return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT);
151 }
152 
153 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu)
154 {
155 	if (vcpu_mode_is_32bit(vcpu))
156 		return kvm_condition_valid32(vcpu);
157 
158 	return true;
159 }
160 
161 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
162 {
163 	*vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT;
164 }
165 
166 /*
167  * vcpu_get_reg and vcpu_set_reg should always be passed a register number
168  * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on
169  * AArch32 with banked registers.
170  */
171 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
172 					 u8 reg_num)
173 {
174 	return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
175 }
176 
177 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
178 				unsigned long val)
179 {
180 	if (reg_num != 31)
181 		vcpu_gp_regs(vcpu)->regs[reg_num] = val;
182 }
183 
184 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt)
185 {
186 	switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) {
187 	case PSR_MODE_EL2h:
188 	case PSR_MODE_EL2t:
189 		return true;
190 	default:
191 		return false;
192 	}
193 }
194 
195 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu)
196 {
197 	return vcpu_is_el2_ctxt(&vcpu->arch.ctxt);
198 }
199 
200 static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt)
201 {
202 	return (!cpus_have_final_cap(ARM64_HAS_HCR_NV1) ||
203 		(ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H));
204 }
205 
206 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu)
207 {
208 	return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt);
209 }
210 
211 static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt)
212 {
213 	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE;
214 }
215 
216 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu)
217 {
218 	return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt);
219 }
220 
221 static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt)
222 {
223 	/*
224 	 * We are in a hypervisor context if the vcpu mode is EL2 or
225 	 * E2H and TGE bits are set. The latter means we are in the user space
226 	 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost'
227 	 *
228 	 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the
229 	 * rest of the KVM code, and will result in a misbehaving guest.
230 	 */
231 	return vcpu_is_el2_ctxt(ctxt) ||
232 		(__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) ||
233 		__vcpu_el2_tge_is_set(ctxt);
234 }
235 
236 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu)
237 {
238 	return vcpu_has_nv(vcpu) && __is_hyp_ctxt(&vcpu->arch.ctxt);
239 }
240 
241 /*
242  * The layout of SPSR for an AArch32 state is different when observed from an
243  * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32
244  * view given an AArch64 view.
245  *
246  * In ARM DDI 0487E.a see:
247  *
248  * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426
249  * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256
250  * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280
251  *
252  * Which show the following differences:
253  *
254  * | Bit | AA64 | AA32 | Notes                       |
255  * +-----+------+------+-----------------------------|
256  * | 24  | DIT  | J    | J is RES0 in ARMv8          |
257  * | 21  | SS   | DIT  | SS doesn't exist in AArch32 |
258  *
259  * ... and all other bits are (currently) common.
260  */
261 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr)
262 {
263 	const unsigned long overlap = BIT(24) | BIT(21);
264 	unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT);
265 
266 	spsr &= ~overlap;
267 
268 	spsr |= dit << 21;
269 
270 	return spsr;
271 }
272 
273 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
274 {
275 	u32 mode;
276 
277 	if (vcpu_mode_is_32bit(vcpu)) {
278 		mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
279 		return mode > PSR_AA32_MODE_USR;
280 	}
281 
282 	mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK;
283 
284 	return mode != PSR_MODE_EL0t;
285 }
286 
287 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
288 {
289 	return vcpu->arch.fault.esr_el2;
290 }
291 
292 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
293 {
294 	u64 esr = kvm_vcpu_get_esr(vcpu);
295 
296 	if (esr & ESR_ELx_CV)
297 		return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
298 
299 	return -1;
300 }
301 
302 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu)
303 {
304 	return vcpu->arch.fault.far_el2;
305 }
306 
307 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
308 {
309 	return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
310 }
311 
312 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu)
313 {
314 	return vcpu->arch.fault.disr_el1;
315 }
316 
317 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
318 {
319 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK;
320 }
321 
322 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
323 {
324 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV);
325 }
326 
327 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu)
328 {
329 	return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
330 }
331 
332 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu)
333 {
334 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE);
335 }
336 
337 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu)
338 {
339 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF);
340 }
341 
342 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu)
343 {
344 	return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
345 }
346 
347 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu)
348 {
349 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW);
350 }
351 
352 /* Always check for S1PTW *before* using this. */
353 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu)
354 {
355 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR;
356 }
357 
358 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu)
359 {
360 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM);
361 }
362 
363 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu)
364 {
365 	return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
366 }
367 
368 /* This one is not specific to Data Abort */
369 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu)
370 {
371 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL);
372 }
373 
374 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu)
375 {
376 	return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
377 }
378 
379 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
380 {
381 	return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW;
382 }
383 
384 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu)
385 {
386 	return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu);
387 }
388 
389 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
390 {
391 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC;
392 }
393 
394 static inline
395 bool kvm_vcpu_trap_is_permission_fault(const struct kvm_vcpu *vcpu)
396 {
397 	return esr_fsc_is_permission_fault(kvm_vcpu_get_esr(vcpu));
398 }
399 
400 static inline
401 bool kvm_vcpu_trap_is_translation_fault(const struct kvm_vcpu *vcpu)
402 {
403 	return esr_fsc_is_translation_fault(kvm_vcpu_get_esr(vcpu));
404 }
405 
406 static inline
407 u64 kvm_vcpu_trap_get_perm_fault_granule(const struct kvm_vcpu *vcpu)
408 {
409 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
410 
411 	BUG_ON(!esr_fsc_is_permission_fault(esr));
412 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(esr & ESR_ELx_FSC_LEVEL));
413 }
414 
415 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
416 {
417 	switch (kvm_vcpu_trap_get_fault(vcpu)) {
418 	case ESR_ELx_FSC_EXTABT:
419 	case ESR_ELx_FSC_SEA_TTW(-1) ... ESR_ELx_FSC_SEA_TTW(3):
420 	case ESR_ELx_FSC_SECC:
421 	case ESR_ELx_FSC_SECC_TTW(-1) ... ESR_ELx_FSC_SECC_TTW(3):
422 		return true;
423 	default:
424 		return false;
425 	}
426 }
427 
428 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
429 {
430 	u64 esr = kvm_vcpu_get_esr(vcpu);
431 	return ESR_ELx_SYS64_ISS_RT(esr);
432 }
433 
434 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
435 {
436 	if (kvm_vcpu_abt_iss1tw(vcpu)) {
437 		/*
438 		 * Only a permission fault on a S1PTW should be
439 		 * considered as a write. Otherwise, page tables baked
440 		 * in a read-only memslot will result in an exception
441 		 * being delivered in the guest.
442 		 *
443 		 * The drawback is that we end-up faulting twice if the
444 		 * guest is using any of HW AF/DB: a translation fault
445 		 * to map the page containing the PT (read only at
446 		 * first), then a permission fault to allow the flags
447 		 * to be set.
448 		 */
449 		return kvm_vcpu_trap_is_permission_fault(vcpu);
450 	}
451 
452 	if (kvm_vcpu_trap_is_iabt(vcpu))
453 		return false;
454 
455 	return kvm_vcpu_dabt_iswrite(vcpu);
456 }
457 
458 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
459 {
460 	return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
461 }
462 
463 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
464 {
465 	if (vcpu_mode_is_32bit(vcpu)) {
466 		*vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT;
467 	} else {
468 		u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
469 		sctlr |= SCTLR_ELx_EE;
470 		vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1);
471 	}
472 }
473 
474 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu)
475 {
476 	if (vcpu_mode_is_32bit(vcpu))
477 		return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT);
478 
479 	if (vcpu_mode_priv(vcpu))
480 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE);
481 	else
482 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E);
483 }
484 
485 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu,
486 						    unsigned long data,
487 						    unsigned int len)
488 {
489 	if (kvm_vcpu_is_be(vcpu)) {
490 		switch (len) {
491 		case 1:
492 			return data & 0xff;
493 		case 2:
494 			return be16_to_cpu(data & 0xffff);
495 		case 4:
496 			return be32_to_cpu(data & 0xffffffff);
497 		default:
498 			return be64_to_cpu(data);
499 		}
500 	} else {
501 		switch (len) {
502 		case 1:
503 			return data & 0xff;
504 		case 2:
505 			return le16_to_cpu(data & 0xffff);
506 		case 4:
507 			return le32_to_cpu(data & 0xffffffff);
508 		default:
509 			return le64_to_cpu(data);
510 		}
511 	}
512 
513 	return data;		/* Leave LE untouched */
514 }
515 
516 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu,
517 						    unsigned long data,
518 						    unsigned int len)
519 {
520 	if (kvm_vcpu_is_be(vcpu)) {
521 		switch (len) {
522 		case 1:
523 			return data & 0xff;
524 		case 2:
525 			return cpu_to_be16(data & 0xffff);
526 		case 4:
527 			return cpu_to_be32(data & 0xffffffff);
528 		default:
529 			return cpu_to_be64(data);
530 		}
531 	} else {
532 		switch (len) {
533 		case 1:
534 			return data & 0xff;
535 		case 2:
536 			return cpu_to_le16(data & 0xffff);
537 		case 4:
538 			return cpu_to_le32(data & 0xffffffff);
539 		default:
540 			return cpu_to_le64(data);
541 		}
542 	}
543 
544 	return data;		/* Leave LE untouched */
545 }
546 
547 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu)
548 {
549 	WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION));
550 	vcpu_set_flag(vcpu, INCREMENT_PC);
551 }
552 
553 #define kvm_pend_exception(v, e)					\
554 	do {								\
555 		WARN_ON(vcpu_get_flag((v), INCREMENT_PC));		\
556 		vcpu_set_flag((v), PENDING_EXCEPTION);			\
557 		vcpu_set_flag((v), e);					\
558 	} while (0)
559 
560 static __always_inline void kvm_write_cptr_el2(u64 val)
561 {
562 	if (has_vhe() || has_hvhe())
563 		write_sysreg(val, cpacr_el1);
564 	else
565 		write_sysreg(val, cptr_el2);
566 }
567 
568 static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu)
569 {
570 	u64 val;
571 
572 	if (has_vhe()) {
573 		val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
574 		       CPACR_EL1_ZEN_EL1EN);
575 		if (cpus_have_final_cap(ARM64_SME))
576 			val |= CPACR_EL1_SMEN_EL1EN;
577 	} else if (has_hvhe()) {
578 		val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN);
579 
580 		if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs())
581 			val |= CPACR_EL1_ZEN_EL1EN | CPACR_EL1_ZEN_EL0EN;
582 		if (cpus_have_final_cap(ARM64_SME))
583 			val |= CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN;
584 	} else {
585 		val = CPTR_NVHE_EL2_RES1;
586 
587 		if (vcpu_has_sve(vcpu) && guest_owns_fp_regs())
588 			val |= CPTR_EL2_TZ;
589 		if (cpus_have_final_cap(ARM64_SME))
590 			val &= ~CPTR_EL2_TSM;
591 	}
592 
593 	return val;
594 }
595 
596 static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu)
597 {
598 	u64 val = kvm_get_reset_cptr_el2(vcpu);
599 
600 	kvm_write_cptr_el2(val);
601 }
602 #endif /* __ARM64_KVM_EMULATE_H__ */
603