xref: /linux/arch/arm64/include/asm/kvm_arm.h (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_ARM_H__
8 #define __ARM64_KVM_ARM_H__
9 
10 #include <asm/esr.h>
11 #include <asm/memory.h>
12 #include <asm/types.h>
13 
14 /* Hyp Configuration Register (HCR) bits */
15 #define HCR_ATA_SHIFT	56
16 #define HCR_ATA		(UL(1) << HCR_ATA_SHIFT)
17 #define HCR_FWB		(UL(1) << 46)
18 #define HCR_API		(UL(1) << 41)
19 #define HCR_APK		(UL(1) << 40)
20 #define HCR_TEA		(UL(1) << 37)
21 #define HCR_TERR	(UL(1) << 36)
22 #define HCR_TLOR	(UL(1) << 35)
23 #define HCR_E2H		(UL(1) << 34)
24 #define HCR_ID		(UL(1) << 33)
25 #define HCR_CD		(UL(1) << 32)
26 #define HCR_RW_SHIFT	31
27 #define HCR_RW		(UL(1) << HCR_RW_SHIFT)
28 #define HCR_TRVM	(UL(1) << 30)
29 #define HCR_HCD		(UL(1) << 29)
30 #define HCR_TDZ		(UL(1) << 28)
31 #define HCR_TGE		(UL(1) << 27)
32 #define HCR_TVM		(UL(1) << 26)
33 #define HCR_TTLB	(UL(1) << 25)
34 #define HCR_TPU		(UL(1) << 24)
35 #define HCR_TPC		(UL(1) << 23)
36 #define HCR_TSW		(UL(1) << 22)
37 #define HCR_TAC		(UL(1) << 21)
38 #define HCR_TIDCP	(UL(1) << 20)
39 #define HCR_TSC		(UL(1) << 19)
40 #define HCR_TID3	(UL(1) << 18)
41 #define HCR_TID2	(UL(1) << 17)
42 #define HCR_TID1	(UL(1) << 16)
43 #define HCR_TID0	(UL(1) << 15)
44 #define HCR_TWE		(UL(1) << 14)
45 #define HCR_TWI		(UL(1) << 13)
46 #define HCR_DC		(UL(1) << 12)
47 #define HCR_BSU		(3 << 10)
48 #define HCR_BSU_IS	(UL(1) << 10)
49 #define HCR_FB		(UL(1) << 9)
50 #define HCR_VSE		(UL(1) << 8)
51 #define HCR_VI		(UL(1) << 7)
52 #define HCR_VF		(UL(1) << 6)
53 #define HCR_AMO		(UL(1) << 5)
54 #define HCR_IMO		(UL(1) << 4)
55 #define HCR_FMO		(UL(1) << 3)
56 #define HCR_PTW		(UL(1) << 2)
57 #define HCR_SWIO	(UL(1) << 1)
58 #define HCR_VM		(UL(1) << 0)
59 
60 /*
61  * The bits we set in HCR:
62  * TLOR:	Trap LORegion register accesses
63  * RW:		64bit by default, can be overridden for 32bit VMs
64  * TAC:		Trap ACTLR
65  * TSC:		Trap SMC
66  * TSW:		Trap cache operations by set/way
67  * TWE:		Trap WFE
68  * TWI:		Trap WFI
69  * TIDCP:	Trap L2CTLR/L2ECTLR
70  * BSU_IS:	Upgrade barriers to the inner shareable domain
71  * FB:		Force broadcast of all maintenance operations
72  * AMO:		Override CPSR.A and enable signaling with VA
73  * IMO:		Override CPSR.I and enable signaling with VI
74  * FMO:		Override CPSR.F and enable signaling with VF
75  * SWIO:	Turn set/way invalidates into set/way clean+invalidate
76  * PTW:		Take a stage2 fault if a stage1 walk steps in device memory
77  */
78 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
79 			 HCR_BSU_IS | HCR_FB | HCR_TAC | \
80 			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
81 			 HCR_FMO | HCR_IMO | HCR_PTW )
82 #define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF)
83 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
84 #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
85 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
86 
87 /* TCR_EL2 Registers bits */
88 #define TCR_EL2_RES1		((1 << 31) | (1 << 23))
89 #define TCR_EL2_TBI		(1 << 20)
90 #define TCR_EL2_PS_SHIFT	16
91 #define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
92 #define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
93 #define TCR_EL2_TG0_MASK	TCR_TG0_MASK
94 #define TCR_EL2_SH0_MASK	TCR_SH0_MASK
95 #define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
96 #define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
97 #define TCR_EL2_T0SZ_MASK	0x3f
98 #define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
99 			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
100 
101 /* VTCR_EL2 Registers bits */
102 #define VTCR_EL2_RES1		(1U << 31)
103 #define VTCR_EL2_HD		(1 << 22)
104 #define VTCR_EL2_HA		(1 << 21)
105 #define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
106 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
107 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
108 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
109 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
110 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
111 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
112 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
113 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
114 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
115 #define VTCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
116 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
117 #define VTCR_EL2_SL0_SHIFT	6
118 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
119 #define VTCR_EL2_T0SZ_MASK	0x3f
120 #define VTCR_EL2_VS_SHIFT	19
121 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
122 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
123 
124 #define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
125 
126 /*
127  * We configure the Stage-2 page tables to always restrict the IPA space to be
128  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
129  * not known to exist and will break with this configuration.
130  *
131  * The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
132  *
133  * Note that when using 4K pages, we concatenate two first level page tables
134  * together. With 16K pages, we concatenate 16 first level page tables.
135  *
136  */
137 
138 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
139 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
140 
141 /*
142  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
143  * Interestingly, it depends on the page size.
144  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
145  *
146  *	-----------------------------------------
147  *	| Entry level		|  4K  | 16K/64K |
148  *	------------------------------------------
149  *	| Level: 0		|  2   |   -     |
150  *	------------------------------------------
151  *	| Level: 1		|  1   |   2     |
152  *	------------------------------------------
153  *	| Level: 2		|  0   |   1     |
154  *	------------------------------------------
155  *	| Level: 3		|  -   |   0     |
156  *	------------------------------------------
157  *
158  * The table roughly translates to :
159  *
160  *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
161  *
162  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
163  * 	TGRAN_SL0_BASE(4K) = 2
164  *	TGRAN_SL0_BASE(16K) = 3
165  *	TGRAN_SL0_BASE(64K) = 3
166  * provided we take care of ruling out the unsupported cases and
167  * Entry_Level = 4 - Number_of_levels.
168  *
169  */
170 #ifdef CONFIG_ARM64_64K_PAGES
171 
172 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
173 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
174 
175 #elif defined(CONFIG_ARM64_16K_PAGES)
176 
177 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
178 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
179 
180 #else	/* 4K */
181 
182 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
183 #define VTCR_EL2_TGRAN_SL0_BASE		2UL
184 
185 #endif
186 
187 #define VTCR_EL2_LVLS_TO_SL0(levels)	\
188 	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
189 #define VTCR_EL2_SL0_TO_LVLS(sl0)	\
190 	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
191 #define VTCR_EL2_LVLS(vtcr)		\
192 	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
193 
194 #define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
195 #define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
196 
197 /*
198  * ARM VMSAv8-64 defines an algorithm for finding the translation table
199  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
200  *
201  * The algorithm defines the expectations on the translation table
202  * addresses for each level, based on PAGE_SIZE, entry level
203  * and the translation table size (T0SZ). The variable "x" in the
204  * algorithm determines the alignment of a table base address at a given
205  * level and thus determines the alignment of VTTBR:BADDR for stage2
206  * page table entry level.
207  * Since the number of bits resolved at the entry level could vary
208  * depending on the T0SZ, the value of "x" is defined based on a
209  * Magic constant for a given PAGE_SIZE and Entry Level. The
210  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
211  * x = PAGE_SHIFT).
212  *
213  * The value of "x" for entry level is calculated as :
214  *    x = Magic_N - T0SZ
215  *
216  * where Magic_N is an integer depending on the page size and the entry
217  * level of the page table as below:
218  *
219  *	--------------------------------------------
220  *	| Entry level		|  4K    16K   64K |
221  *	--------------------------------------------
222  *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
223  *	--------------------------------------------
224  *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
225  *	--------------------------------------------
226  *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
227  *	--------------------------------------------
228  *	| Level: 3 (1 level)	| -    | 53  | 51  |
229  *	--------------------------------------------
230  *
231  * We have a magic formula for the Magic_N below:
232  *
233  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
234  *
235  * where Number_of_levels = (4 - Level). We are only interested in the
236  * value for Entry_Level for the stage2 page table.
237  *
238  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
239  *
240  *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
241  *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
242  *
243  * Here is one way to explain the Magic Formula:
244  *
245  *  x = log2(Size_of_Entry_Level_Table)
246  *
247  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
248  * PAGE_SHIFT bits in the PTE, we have :
249  *
250  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
251  *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
252  *  where n = number of levels, and since each pointer is 8bytes, we have:
253  *
254  *  x = Bits_Entry_Level + 3
255  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
256  *
257  * The only constraint here is that, we have to find the number of page table
258  * levels for a given IPA size (which we do, see stage2_pt_levels())
259  */
260 #define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
261 
262 #define VTTBR_CNP_BIT     (UL(1))
263 #define VTTBR_VMID_SHIFT  (UL(48))
264 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
265 
266 /* Hyp System Trap Register */
267 #define HSTR_EL2_T(x)	(1 << x)
268 
269 /* Hyp Coprocessor Trap Register Shifts */
270 #define CPTR_EL2_TFP_SHIFT 10
271 
272 /* Hyp Coprocessor Trap Register */
273 #define CPTR_EL2_TCPAC	(1 << 31)
274 #define CPTR_EL2_TAM	(1 << 30)
275 #define CPTR_EL2_TTA	(1 << 20)
276 #define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
277 #define CPTR_EL2_TZ	(1 << 8)
278 #define CPTR_EL2_RES1	0x000032ff /* known RES1 bits in CPTR_EL2 */
279 #define CPTR_EL2_DEFAULT	CPTR_EL2_RES1
280 
281 /* Hyp Debug Configuration Register bits */
282 #define MDCR_EL2_E2TB_MASK	(UL(0x3))
283 #define MDCR_EL2_E2TB_SHIFT	(UL(24))
284 #define MDCR_EL2_TTRF		(1 << 19)
285 #define MDCR_EL2_TPMS		(1 << 14)
286 #define MDCR_EL2_E2PB_MASK	(UL(0x3))
287 #define MDCR_EL2_E2PB_SHIFT	(UL(12))
288 #define MDCR_EL2_TDRA		(1 << 11)
289 #define MDCR_EL2_TDOSA		(1 << 10)
290 #define MDCR_EL2_TDA		(1 << 9)
291 #define MDCR_EL2_TDE		(1 << 8)
292 #define MDCR_EL2_HPME		(1 << 7)
293 #define MDCR_EL2_TPM		(1 << 6)
294 #define MDCR_EL2_TPMCR		(1 << 5)
295 #define MDCR_EL2_HPMN_MASK	(0x1F)
296 
297 /* For compatibility with fault code shared with 32-bit */
298 #define FSC_FAULT	ESR_ELx_FSC_FAULT
299 #define FSC_ACCESS	ESR_ELx_FSC_ACCESS
300 #define FSC_PERM	ESR_ELx_FSC_PERM
301 #define FSC_SEA		ESR_ELx_FSC_EXTABT
302 #define FSC_SEA_TTW0	(0x14)
303 #define FSC_SEA_TTW1	(0x15)
304 #define FSC_SEA_TTW2	(0x16)
305 #define FSC_SEA_TTW3	(0x17)
306 #define FSC_SECC	(0x18)
307 #define FSC_SECC_TTW0	(0x1c)
308 #define FSC_SECC_TTW1	(0x1d)
309 #define FSC_SECC_TTW2	(0x1e)
310 #define FSC_SECC_TTW3	(0x1f)
311 
312 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
313 #define HPFAR_MASK	(~UL(0xf))
314 /*
315  * We have
316  *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
317  *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
318  */
319 #define PAR_TO_HPFAR(par)		\
320 	(((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
321 
322 #define ECN(x) { ESR_ELx_EC_##x, #x }
323 
324 #define kvm_arm_exception_class \
325 	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
326 	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
327 	ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
328 	ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
329 	ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
330 	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
331 	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
332 	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
333 	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64)
334 
335 #define CPACR_EL1_FPEN		(3 << 20)
336 #define CPACR_EL1_TTA		(1 << 28)
337 #define CPACR_EL1_DEFAULT	(CPACR_EL1_FPEN | CPACR_EL1_ZEN_EL1EN)
338 
339 #endif /* __ARM64_KVM_ARM_H__ */
340