1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_ARM_H__ 8 #define __ARM64_KVM_ARM_H__ 9 10 #include <asm/esr.h> 11 #include <asm/memory.h> 12 #include <asm/sysreg.h> 13 #include <asm/types.h> 14 15 /* Hyp Configuration Register (HCR) bits */ 16 17 #define HCR_TID5 (UL(1) << 58) 18 #define HCR_DCT (UL(1) << 57) 19 #define HCR_ATA_SHIFT 56 20 #define HCR_ATA (UL(1) << HCR_ATA_SHIFT) 21 #define HCR_TTLBOS (UL(1) << 55) 22 #define HCR_TTLBIS (UL(1) << 54) 23 #define HCR_ENSCXT (UL(1) << 53) 24 #define HCR_TOCU (UL(1) << 52) 25 #define HCR_AMVOFFEN (UL(1) << 51) 26 #define HCR_TICAB (UL(1) << 50) 27 #define HCR_TID4 (UL(1) << 49) 28 #define HCR_FIEN (UL(1) << 47) 29 #define HCR_FWB (UL(1) << 46) 30 #define HCR_NV2 (UL(1) << 45) 31 #define HCR_AT (UL(1) << 44) 32 #define HCR_NV1 (UL(1) << 43) 33 #define HCR_NV (UL(1) << 42) 34 #define HCR_API (UL(1) << 41) 35 #define HCR_APK (UL(1) << 40) 36 #define HCR_TEA (UL(1) << 37) 37 #define HCR_TERR (UL(1) << 36) 38 #define HCR_TLOR (UL(1) << 35) 39 #define HCR_E2H (UL(1) << 34) 40 #define HCR_ID (UL(1) << 33) 41 #define HCR_CD (UL(1) << 32) 42 #define HCR_RW_SHIFT 31 43 #define HCR_RW (UL(1) << HCR_RW_SHIFT) 44 #define HCR_TRVM (UL(1) << 30) 45 #define HCR_HCD (UL(1) << 29) 46 #define HCR_TDZ (UL(1) << 28) 47 #define HCR_TGE (UL(1) << 27) 48 #define HCR_TVM (UL(1) << 26) 49 #define HCR_TTLB (UL(1) << 25) 50 #define HCR_TPU (UL(1) << 24) 51 #define HCR_TPC (UL(1) << 23) /* HCR_TPCP if FEAT_DPB */ 52 #define HCR_TSW (UL(1) << 22) 53 #define HCR_TACR (UL(1) << 21) 54 #define HCR_TIDCP (UL(1) << 20) 55 #define HCR_TSC (UL(1) << 19) 56 #define HCR_TID3 (UL(1) << 18) 57 #define HCR_TID2 (UL(1) << 17) 58 #define HCR_TID1 (UL(1) << 16) 59 #define HCR_TID0 (UL(1) << 15) 60 #define HCR_TWE (UL(1) << 14) 61 #define HCR_TWI (UL(1) << 13) 62 #define HCR_DC (UL(1) << 12) 63 #define HCR_BSU (3 << 10) 64 #define HCR_BSU_IS (UL(1) << 10) 65 #define HCR_FB (UL(1) << 9) 66 #define HCR_VSE (UL(1) << 8) 67 #define HCR_VI (UL(1) << 7) 68 #define HCR_VF (UL(1) << 6) 69 #define HCR_AMO (UL(1) << 5) 70 #define HCR_IMO (UL(1) << 4) 71 #define HCR_FMO (UL(1) << 3) 72 #define HCR_PTW (UL(1) << 2) 73 #define HCR_SWIO (UL(1) << 1) 74 #define HCR_VM (UL(1) << 0) 75 #define HCR_RES0 ((UL(1) << 48) | (UL(1) << 39)) 76 77 /* 78 * The bits we set in HCR: 79 * TLOR: Trap LORegion register accesses 80 * RW: 64bit by default, can be overridden for 32bit VMs 81 * TACR: Trap ACTLR 82 * TSC: Trap SMC 83 * TSW: Trap cache operations by set/way 84 * TWE: Trap WFE 85 * TWI: Trap WFI 86 * TIDCP: Trap L2CTLR/L2ECTLR 87 * BSU_IS: Upgrade barriers to the inner shareable domain 88 * FB: Force broadcast of all maintenance operations 89 * AMO: Override CPSR.A and enable signaling with VA 90 * IMO: Override CPSR.I and enable signaling with VI 91 * FMO: Override CPSR.F and enable signaling with VF 92 * SWIO: Turn set/way invalidates into set/way clean+invalidate 93 * PTW: Take a stage2 fault if a stage1 walk steps in device memory 94 * TID3: Trap EL1 reads of group 3 ID registers 95 * TID2: Trap CTR_EL0, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1 96 */ 97 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \ 98 HCR_BSU_IS | HCR_FB | HCR_TACR | \ 99 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \ 100 HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3) 101 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA) 102 #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC) 103 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H) 104 105 #define HCRX_HOST_FLAGS (HCRX_EL2_MSCEn | HCRX_EL2_TCR2En | HCRX_EL2_EnFPM) 106 #define MPAMHCR_HOST_FLAGS 0 107 108 /* TCR_EL2 Registers bits */ 109 #define TCR_EL2_DS (1UL << 32) 110 #define TCR_EL2_RES1 ((1U << 31) | (1 << 23)) 111 #define TCR_EL2_HPD (1 << 24) 112 #define TCR_EL2_TBI (1 << 20) 113 #define TCR_EL2_PS_SHIFT 16 114 #define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT) 115 #define TCR_EL2_PS_40B (2 << TCR_EL2_PS_SHIFT) 116 #define TCR_EL2_TG0_MASK TCR_TG0_MASK 117 #define TCR_EL2_SH0_MASK TCR_SH0_MASK 118 #define TCR_EL2_ORGN0_MASK TCR_ORGN0_MASK 119 #define TCR_EL2_IRGN0_MASK TCR_IRGN0_MASK 120 #define TCR_EL2_T0SZ_MASK 0x3f 121 #define TCR_EL2_MASK (TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \ 122 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK) 123 124 /* VTCR_EL2 Registers bits */ 125 #define VTCR_EL2_DS TCR_EL2_DS 126 #define VTCR_EL2_RES1 (1U << 31) 127 #define VTCR_EL2_HD (1 << 22) 128 #define VTCR_EL2_HA (1 << 21) 129 #define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT 130 #define VTCR_EL2_PS_MASK TCR_EL2_PS_MASK 131 #define VTCR_EL2_TG0_MASK TCR_TG0_MASK 132 #define VTCR_EL2_TG0_4K TCR_TG0_4K 133 #define VTCR_EL2_TG0_16K TCR_TG0_16K 134 #define VTCR_EL2_TG0_64K TCR_TG0_64K 135 #define VTCR_EL2_SH0_MASK TCR_SH0_MASK 136 #define VTCR_EL2_SH0_INNER TCR_SH0_INNER 137 #define VTCR_EL2_ORGN0_MASK TCR_ORGN0_MASK 138 #define VTCR_EL2_ORGN0_WBWA TCR_ORGN0_WBWA 139 #define VTCR_EL2_IRGN0_MASK TCR_IRGN0_MASK 140 #define VTCR_EL2_IRGN0_WBWA TCR_IRGN0_WBWA 141 #define VTCR_EL2_SL0_SHIFT 6 142 #define VTCR_EL2_SL0_MASK (3 << VTCR_EL2_SL0_SHIFT) 143 #define VTCR_EL2_T0SZ_MASK 0x3f 144 #define VTCR_EL2_VS_SHIFT 19 145 #define VTCR_EL2_VS_8BIT (0 << VTCR_EL2_VS_SHIFT) 146 #define VTCR_EL2_VS_16BIT (1 << VTCR_EL2_VS_SHIFT) 147 148 #define VTCR_EL2_T0SZ(x) TCR_T0SZ(x) 149 150 /* 151 * We configure the Stage-2 page tables to always restrict the IPA space to be 152 * 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are 153 * not known to exist and will break with this configuration. 154 * 155 * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu. 156 * 157 * Note that when using 4K pages, we concatenate two first level page tables 158 * together. With 16K pages, we concatenate 16 first level page tables. 159 * 160 */ 161 162 #define VTCR_EL2_COMMON_BITS (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \ 163 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1) 164 165 /* 166 * VTCR_EL2:SL0 indicates the entry level for Stage2 translation. 167 * Interestingly, it depends on the page size. 168 * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a 169 * 170 * ----------------------------------------- 171 * | Entry level | 4K | 16K/64K | 172 * ------------------------------------------ 173 * | Level: 0 | 2 | - | 174 * ------------------------------------------ 175 * | Level: 1 | 1 | 2 | 176 * ------------------------------------------ 177 * | Level: 2 | 0 | 1 | 178 * ------------------------------------------ 179 * | Level: 3 | - | 0 | 180 * ------------------------------------------ 181 * 182 * The table roughly translates to : 183 * 184 * SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level 185 * 186 * Where TGRAN_SL0_BASE is a magic number depending on the page size: 187 * TGRAN_SL0_BASE(4K) = 2 188 * TGRAN_SL0_BASE(16K) = 3 189 * TGRAN_SL0_BASE(64K) = 3 190 * provided we take care of ruling out the unsupported cases and 191 * Entry_Level = 4 - Number_of_levels. 192 * 193 */ 194 #ifdef CONFIG_ARM64_64K_PAGES 195 196 #define VTCR_EL2_TGRAN VTCR_EL2_TG0_64K 197 #define VTCR_EL2_TGRAN_SL0_BASE 3UL 198 199 #elif defined(CONFIG_ARM64_16K_PAGES) 200 201 #define VTCR_EL2_TGRAN VTCR_EL2_TG0_16K 202 #define VTCR_EL2_TGRAN_SL0_BASE 3UL 203 204 #else /* 4K */ 205 206 #define VTCR_EL2_TGRAN VTCR_EL2_TG0_4K 207 #define VTCR_EL2_TGRAN_SL0_BASE 2UL 208 209 #endif 210 211 #define VTCR_EL2_LVLS_TO_SL0(levels) \ 212 ((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT) 213 #define VTCR_EL2_SL0_TO_LVLS(sl0) \ 214 ((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE) 215 #define VTCR_EL2_LVLS(vtcr) \ 216 VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT) 217 218 #define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN) 219 #define VTCR_EL2_IPA(vtcr) (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK)) 220 221 /* 222 * ARM VMSAv8-64 defines an algorithm for finding the translation table 223 * descriptors in section D4.2.8 in ARM DDI 0487C.a. 224 * 225 * The algorithm defines the expectations on the translation table 226 * addresses for each level, based on PAGE_SIZE, entry level 227 * and the translation table size (T0SZ). The variable "x" in the 228 * algorithm determines the alignment of a table base address at a given 229 * level and thus determines the alignment of VTTBR:BADDR for stage2 230 * page table entry level. 231 * Since the number of bits resolved at the entry level could vary 232 * depending on the T0SZ, the value of "x" is defined based on a 233 * Magic constant for a given PAGE_SIZE and Entry Level. The 234 * intermediate levels must be always aligned to the PAGE_SIZE (i.e, 235 * x = PAGE_SHIFT). 236 * 237 * The value of "x" for entry level is calculated as : 238 * x = Magic_N - T0SZ 239 * 240 * where Magic_N is an integer depending on the page size and the entry 241 * level of the page table as below: 242 * 243 * -------------------------------------------- 244 * | Entry level | 4K 16K 64K | 245 * -------------------------------------------- 246 * | Level: 0 (4 levels) | 28 | - | - | 247 * -------------------------------------------- 248 * | Level: 1 (3 levels) | 37 | 31 | 25 | 249 * -------------------------------------------- 250 * | Level: 2 (2 levels) | 46 | 42 | 38 | 251 * -------------------------------------------- 252 * | Level: 3 (1 level) | - | 53 | 51 | 253 * -------------------------------------------- 254 * 255 * We have a magic formula for the Magic_N below: 256 * 257 * Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels) 258 * 259 * where Number_of_levels = (4 - Level). We are only interested in the 260 * value for Entry_Level for the stage2 page table. 261 * 262 * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows: 263 * 264 * x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT) 265 * = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels) 266 * 267 * Here is one way to explain the Magic Formula: 268 * 269 * x = log2(Size_of_Entry_Level_Table) 270 * 271 * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another 272 * PAGE_SHIFT bits in the PTE, we have : 273 * 274 * Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT) 275 * = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3 276 * where n = number of levels, and since each pointer is 8bytes, we have: 277 * 278 * x = Bits_Entry_Level + 3 279 * = IPA_SHIFT - (PAGE_SHIFT - 3) * n 280 * 281 * The only constraint here is that, we have to find the number of page table 282 * levels for a given IPA size (which we do, see stage2_pt_levels()) 283 */ 284 #define ARM64_VTTBR_X(ipa, levels) ((ipa) - ((levels) * (PAGE_SHIFT - 3))) 285 286 #define VTTBR_CNP_BIT (UL(1)) 287 #define VTTBR_VMID_SHIFT (UL(48)) 288 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT) 289 290 /* Hyp System Trap Register */ 291 #define HSTR_EL2_T(x) (1 << x) 292 293 /* Hyp Coprocessor Trap Register Shifts */ 294 #define CPTR_EL2_TFP_SHIFT 10 295 296 /* Hyp Coprocessor Trap Register */ 297 #define CPTR_EL2_TCPAC (1U << 31) 298 #define CPTR_EL2_TAM (1 << 30) 299 #define CPTR_EL2_TTA (1 << 20) 300 #define CPTR_EL2_TSM (1 << 12) 301 #define CPTR_EL2_TFP (1 << CPTR_EL2_TFP_SHIFT) 302 #define CPTR_EL2_TZ (1 << 8) 303 #define CPTR_NVHE_EL2_RES1 0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */ 304 #define CPTR_NVHE_EL2_RES0 (GENMASK(63, 32) | \ 305 GENMASK(29, 21) | \ 306 GENMASK(19, 14) | \ 307 BIT(11)) 308 309 #define CPTR_VHE_EL2_RES0 (GENMASK(63, 32) | \ 310 GENMASK(27, 26) | \ 311 GENMASK(23, 22) | \ 312 GENMASK(19, 18) | \ 313 GENMASK(15, 0)) 314 315 /* 316 * FGT register definitions 317 * 318 * RES0 and polarity masks as of DDI0487J.a, to be updated as needed. 319 * We're not using the generated masks as they are usually ahead of 320 * the published ARM ARM, which we use as a reference. 321 * 322 * Once we get to a point where the two describe the same thing, we'll 323 * merge the definitions. One day. 324 */ 325 #define __HFGRTR_EL2_RES0 HFGxTR_EL2_RES0 326 #define __HFGRTR_EL2_MASK GENMASK(49, 0) 327 #define __HFGRTR_EL2_nMASK ~(__HFGRTR_EL2_RES0 | __HFGRTR_EL2_MASK) 328 329 /* 330 * The HFGWTR bits are a subset of HFGRTR bits. To ensure we don't miss any 331 * future additions, define __HFGWTR* macros relative to __HFGRTR* ones. 332 */ 333 #define __HFGRTR_ONLY_MASK (BIT(46) | BIT(42) | BIT(40) | BIT(28) | \ 334 GENMASK(26, 25) | BIT(21) | BIT(18) | \ 335 GENMASK(15, 14) | GENMASK(10, 9) | BIT(2)) 336 #define __HFGWTR_EL2_RES0 (__HFGRTR_EL2_RES0 | __HFGRTR_ONLY_MASK) 337 #define __HFGWTR_EL2_MASK (__HFGRTR_EL2_MASK & ~__HFGRTR_ONLY_MASK) 338 #define __HFGWTR_EL2_nMASK ~(__HFGWTR_EL2_RES0 | __HFGWTR_EL2_MASK) 339 340 #define __HFGITR_EL2_RES0 HFGITR_EL2_RES0 341 #define __HFGITR_EL2_MASK (BIT(62) | BIT(60) | GENMASK(54, 0)) 342 #define __HFGITR_EL2_nMASK ~(__HFGITR_EL2_RES0 | __HFGITR_EL2_MASK) 343 344 #define __HDFGRTR_EL2_RES0 HDFGRTR_EL2_RES0 345 #define __HDFGRTR_EL2_MASK (BIT(63) | GENMASK(58, 50) | GENMASK(48, 43) | \ 346 GENMASK(41, 40) | GENMASK(37, 22) | \ 347 GENMASK(19, 9) | GENMASK(7, 0)) 348 #define __HDFGRTR_EL2_nMASK ~(__HDFGRTR_EL2_RES0 | __HDFGRTR_EL2_MASK) 349 350 #define __HDFGWTR_EL2_RES0 HDFGWTR_EL2_RES0 351 #define __HDFGWTR_EL2_MASK (GENMASK(57, 52) | GENMASK(50, 48) | \ 352 GENMASK(46, 44) | GENMASK(42, 41) | \ 353 GENMASK(37, 35) | GENMASK(33, 31) | \ 354 GENMASK(29, 23) | GENMASK(21, 10) | \ 355 GENMASK(8, 7) | GENMASK(5, 0)) 356 #define __HDFGWTR_EL2_nMASK ~(__HDFGWTR_EL2_RES0 | __HDFGWTR_EL2_MASK) 357 358 #define __HAFGRTR_EL2_RES0 HAFGRTR_EL2_RES0 359 #define __HAFGRTR_EL2_MASK (GENMASK(49, 17) | GENMASK(4, 0)) 360 #define __HAFGRTR_EL2_nMASK ~(__HAFGRTR_EL2_RES0 | __HAFGRTR_EL2_MASK) 361 362 /* Similar definitions for HCRX_EL2 */ 363 #define __HCRX_EL2_RES0 HCRX_EL2_RES0 364 #define __HCRX_EL2_MASK (BIT(6)) 365 #define __HCRX_EL2_nMASK ~(__HCRX_EL2_RES0 | __HCRX_EL2_MASK) 366 367 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */ 368 #define HPFAR_MASK (~UL(0xf)) 369 /* 370 * We have 371 * PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12] 372 * HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12] 373 * 374 * Always assume 52 bit PA since at this point, we don't know how many PA bits 375 * the page table has been set up for. This should be safe since unused address 376 * bits in PAR are res0. 377 */ 378 #define PAR_TO_HPFAR(par) \ 379 (((par) & GENMASK_ULL(52 - 1, 12)) >> 8) 380 381 #define ECN(x) { ESR_ELx_EC_##x, #x } 382 383 #define kvm_arm_exception_class \ 384 ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \ 385 ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \ 386 ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \ 387 ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \ 388 ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \ 389 ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \ 390 ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \ 391 ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \ 392 ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET) 393 394 #define CPACR_EL1_TTA (1 << 28) 395 396 #define kvm_mode_names \ 397 { PSR_MODE_EL0t, "EL0t" }, \ 398 { PSR_MODE_EL1t, "EL1t" }, \ 399 { PSR_MODE_EL1h, "EL1h" }, \ 400 { PSR_MODE_EL2t, "EL2t" }, \ 401 { PSR_MODE_EL2h, "EL2h" }, \ 402 { PSR_MODE_EL3t, "EL3t" }, \ 403 { PSR_MODE_EL3h, "EL3h" }, \ 404 { PSR_AA32_MODE_USR, "32-bit USR" }, \ 405 { PSR_AA32_MODE_FIQ, "32-bit FIQ" }, \ 406 { PSR_AA32_MODE_IRQ, "32-bit IRQ" }, \ 407 { PSR_AA32_MODE_SVC, "32-bit SVC" }, \ 408 { PSR_AA32_MODE_ABT, "32-bit ABT" }, \ 409 { PSR_AA32_MODE_HYP, "32-bit HYP" }, \ 410 { PSR_AA32_MODE_UND, "32-bit UND" }, \ 411 { PSR_AA32_MODE_SYS, "32-bit SYS" } 412 413 #endif /* __ARM64_KVM_ARM_H__ */ 414