xref: /linux/arch/arm64/include/asm/kvm_arm.h (revision 5ceecb301e50e933c1e621fbeea5ec239fbff858)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_ARM_H__
8 #define __ARM64_KVM_ARM_H__
9 
10 #include <asm/esr.h>
11 #include <asm/memory.h>
12 #include <asm/sysreg.h>
13 #include <asm/types.h>
14 
15 /* Hyp Configuration Register (HCR) bits */
16 
17 #define HCR_TID5	(UL(1) << 58)
18 #define HCR_DCT		(UL(1) << 57)
19 #define HCR_ATA_SHIFT	56
20 #define HCR_ATA		(UL(1) << HCR_ATA_SHIFT)
21 #define HCR_TTLBOS	(UL(1) << 55)
22 #define HCR_TTLBIS	(UL(1) << 54)
23 #define HCR_ENSCXT	(UL(1) << 53)
24 #define HCR_TOCU	(UL(1) << 52)
25 #define HCR_AMVOFFEN	(UL(1) << 51)
26 #define HCR_TICAB	(UL(1) << 50)
27 #define HCR_TID4	(UL(1) << 49)
28 #define HCR_FIEN	(UL(1) << 47)
29 #define HCR_FWB		(UL(1) << 46)
30 #define HCR_NV2		(UL(1) << 45)
31 #define HCR_AT		(UL(1) << 44)
32 #define HCR_NV1		(UL(1) << 43)
33 #define HCR_NV		(UL(1) << 42)
34 #define HCR_API		(UL(1) << 41)
35 #define HCR_APK		(UL(1) << 40)
36 #define HCR_TEA		(UL(1) << 37)
37 #define HCR_TERR	(UL(1) << 36)
38 #define HCR_TLOR	(UL(1) << 35)
39 #define HCR_E2H		(UL(1) << 34)
40 #define HCR_ID		(UL(1) << 33)
41 #define HCR_CD		(UL(1) << 32)
42 #define HCR_RW_SHIFT	31
43 #define HCR_RW		(UL(1) << HCR_RW_SHIFT)
44 #define HCR_TRVM	(UL(1) << 30)
45 #define HCR_HCD		(UL(1) << 29)
46 #define HCR_TDZ		(UL(1) << 28)
47 #define HCR_TGE		(UL(1) << 27)
48 #define HCR_TVM		(UL(1) << 26)
49 #define HCR_TTLB	(UL(1) << 25)
50 #define HCR_TPU		(UL(1) << 24)
51 #define HCR_TPC		(UL(1) << 23) /* HCR_TPCP if FEAT_DPB */
52 #define HCR_TSW		(UL(1) << 22)
53 #define HCR_TACR	(UL(1) << 21)
54 #define HCR_TIDCP	(UL(1) << 20)
55 #define HCR_TSC		(UL(1) << 19)
56 #define HCR_TID3	(UL(1) << 18)
57 #define HCR_TID2	(UL(1) << 17)
58 #define HCR_TID1	(UL(1) << 16)
59 #define HCR_TID0	(UL(1) << 15)
60 #define HCR_TWE		(UL(1) << 14)
61 #define HCR_TWI		(UL(1) << 13)
62 #define HCR_DC		(UL(1) << 12)
63 #define HCR_BSU		(3 << 10)
64 #define HCR_BSU_IS	(UL(1) << 10)
65 #define HCR_FB		(UL(1) << 9)
66 #define HCR_VSE		(UL(1) << 8)
67 #define HCR_VI		(UL(1) << 7)
68 #define HCR_VF		(UL(1) << 6)
69 #define HCR_AMO		(UL(1) << 5)
70 #define HCR_IMO		(UL(1) << 4)
71 #define HCR_FMO		(UL(1) << 3)
72 #define HCR_PTW		(UL(1) << 2)
73 #define HCR_SWIO	(UL(1) << 1)
74 #define HCR_VM		(UL(1) << 0)
75 #define HCR_RES0	((UL(1) << 48) | (UL(1) << 39))
76 
77 /*
78  * The bits we set in HCR:
79  * TLOR:	Trap LORegion register accesses
80  * RW:		64bit by default, can be overridden for 32bit VMs
81  * TACR:	Trap ACTLR
82  * TSC:		Trap SMC
83  * TSW:		Trap cache operations by set/way
84  * TWE:		Trap WFE
85  * TWI:		Trap WFI
86  * TIDCP:	Trap L2CTLR/L2ECTLR
87  * BSU_IS:	Upgrade barriers to the inner shareable domain
88  * FB:		Force broadcast of all maintenance operations
89  * AMO:		Override CPSR.A and enable signaling with VA
90  * IMO:		Override CPSR.I and enable signaling with VI
91  * FMO:		Override CPSR.F and enable signaling with VF
92  * SWIO:	Turn set/way invalidates into set/way clean+invalidate
93  * PTW:		Take a stage2 fault if a stage1 walk steps in device memory
94  * TID3:	Trap EL1 reads of group 3 ID registers
95  * TID2:	Trap CTR_EL0, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1
96  */
97 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
98 			 HCR_BSU_IS | HCR_FB | HCR_TACR | \
99 			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
100 			 HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3)
101 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
102 #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
103 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
104 
105 #define HCRX_HOST_FLAGS (HCRX_EL2_MSCEn | HCRX_EL2_TCR2En | HCRX_EL2_EnFPM)
106 
107 /* TCR_EL2 Registers bits */
108 #define TCR_EL2_DS		(1UL << 32)
109 #define TCR_EL2_RES1		((1U << 31) | (1 << 23))
110 #define TCR_EL2_HPD		(1 << 24)
111 #define TCR_EL2_TBI		(1 << 20)
112 #define TCR_EL2_PS_SHIFT	16
113 #define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
114 #define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
115 #define TCR_EL2_TG0_MASK	TCR_TG0_MASK
116 #define TCR_EL2_SH0_MASK	TCR_SH0_MASK
117 #define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
118 #define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
119 #define TCR_EL2_T0SZ_MASK	0x3f
120 #define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
121 			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
122 
123 /* VTCR_EL2 Registers bits */
124 #define VTCR_EL2_DS		TCR_EL2_DS
125 #define VTCR_EL2_RES1		(1U << 31)
126 #define VTCR_EL2_HD		(1 << 22)
127 #define VTCR_EL2_HA		(1 << 21)
128 #define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
129 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
130 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
131 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
132 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
133 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
134 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
135 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
136 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
137 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
138 #define VTCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
139 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
140 #define VTCR_EL2_SL0_SHIFT	6
141 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
142 #define VTCR_EL2_T0SZ_MASK	0x3f
143 #define VTCR_EL2_VS_SHIFT	19
144 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
145 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
146 
147 #define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
148 
149 /*
150  * We configure the Stage-2 page tables to always restrict the IPA space to be
151  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
152  * not known to exist and will break with this configuration.
153  *
154  * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
155  *
156  * Note that when using 4K pages, we concatenate two first level page tables
157  * together. With 16K pages, we concatenate 16 first level page tables.
158  *
159  */
160 
161 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
162 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
163 
164 /*
165  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
166  * Interestingly, it depends on the page size.
167  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
168  *
169  *	-----------------------------------------
170  *	| Entry level		|  4K  | 16K/64K |
171  *	------------------------------------------
172  *	| Level: 0		|  2   |   -     |
173  *	------------------------------------------
174  *	| Level: 1		|  1   |   2     |
175  *	------------------------------------------
176  *	| Level: 2		|  0   |   1     |
177  *	------------------------------------------
178  *	| Level: 3		|  -   |   0     |
179  *	------------------------------------------
180  *
181  * The table roughly translates to :
182  *
183  *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
184  *
185  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
186  * 	TGRAN_SL0_BASE(4K) = 2
187  *	TGRAN_SL0_BASE(16K) = 3
188  *	TGRAN_SL0_BASE(64K) = 3
189  * provided we take care of ruling out the unsupported cases and
190  * Entry_Level = 4 - Number_of_levels.
191  *
192  */
193 #ifdef CONFIG_ARM64_64K_PAGES
194 
195 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
196 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
197 
198 #elif defined(CONFIG_ARM64_16K_PAGES)
199 
200 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
201 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
202 
203 #else	/* 4K */
204 
205 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
206 #define VTCR_EL2_TGRAN_SL0_BASE		2UL
207 
208 #endif
209 
210 #define VTCR_EL2_LVLS_TO_SL0(levels)	\
211 	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
212 #define VTCR_EL2_SL0_TO_LVLS(sl0)	\
213 	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
214 #define VTCR_EL2_LVLS(vtcr)		\
215 	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
216 
217 #define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
218 #define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
219 
220 /*
221  * ARM VMSAv8-64 defines an algorithm for finding the translation table
222  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
223  *
224  * The algorithm defines the expectations on the translation table
225  * addresses for each level, based on PAGE_SIZE, entry level
226  * and the translation table size (T0SZ). The variable "x" in the
227  * algorithm determines the alignment of a table base address at a given
228  * level and thus determines the alignment of VTTBR:BADDR for stage2
229  * page table entry level.
230  * Since the number of bits resolved at the entry level could vary
231  * depending on the T0SZ, the value of "x" is defined based on a
232  * Magic constant for a given PAGE_SIZE and Entry Level. The
233  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
234  * x = PAGE_SHIFT).
235  *
236  * The value of "x" for entry level is calculated as :
237  *    x = Magic_N - T0SZ
238  *
239  * where Magic_N is an integer depending on the page size and the entry
240  * level of the page table as below:
241  *
242  *	--------------------------------------------
243  *	| Entry level		|  4K    16K   64K |
244  *	--------------------------------------------
245  *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
246  *	--------------------------------------------
247  *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
248  *	--------------------------------------------
249  *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
250  *	--------------------------------------------
251  *	| Level: 3 (1 level)	| -    | 53  | 51  |
252  *	--------------------------------------------
253  *
254  * We have a magic formula for the Magic_N below:
255  *
256  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
257  *
258  * where Number_of_levels = (4 - Level). We are only interested in the
259  * value for Entry_Level for the stage2 page table.
260  *
261  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
262  *
263  *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
264  *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
265  *
266  * Here is one way to explain the Magic Formula:
267  *
268  *  x = log2(Size_of_Entry_Level_Table)
269  *
270  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
271  * PAGE_SHIFT bits in the PTE, we have :
272  *
273  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
274  *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
275  *  where n = number of levels, and since each pointer is 8bytes, we have:
276  *
277  *  x = Bits_Entry_Level + 3
278  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
279  *
280  * The only constraint here is that, we have to find the number of page table
281  * levels for a given IPA size (which we do, see stage2_pt_levels())
282  */
283 #define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
284 
285 #define VTTBR_CNP_BIT     (UL(1))
286 #define VTTBR_VMID_SHIFT  (UL(48))
287 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
288 
289 /* Hyp System Trap Register */
290 #define HSTR_EL2_T(x)	(1 << x)
291 
292 /* Hyp Coprocessor Trap Register Shifts */
293 #define CPTR_EL2_TFP_SHIFT 10
294 
295 /* Hyp Coprocessor Trap Register */
296 #define CPTR_EL2_TCPAC	(1U << 31)
297 #define CPTR_EL2_TAM	(1 << 30)
298 #define CPTR_EL2_TTA	(1 << 20)
299 #define CPTR_EL2_TSM	(1 << 12)
300 #define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
301 #define CPTR_EL2_TZ	(1 << 8)
302 #define CPTR_NVHE_EL2_RES1	0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */
303 #define CPTR_NVHE_EL2_RES0	(GENMASK(63, 32) |	\
304 				 GENMASK(29, 21) |	\
305 				 GENMASK(19, 14) |	\
306 				 BIT(11))
307 
308 #define CPTR_VHE_EL2_RES0	(GENMASK(63, 32) |	\
309 				 GENMASK(27, 26) |	\
310 				 GENMASK(23, 22) |	\
311 				 GENMASK(19, 18) |	\
312 				 GENMASK(15, 0))
313 
314 /* Hyp Debug Configuration Register bits */
315 #define MDCR_EL2_E2TB_MASK	(UL(0x3))
316 #define MDCR_EL2_E2TB_SHIFT	(UL(24))
317 #define MDCR_EL2_HPMFZS		(UL(1) << 36)
318 #define MDCR_EL2_HPMFZO		(UL(1) << 29)
319 #define MDCR_EL2_MTPME		(UL(1) << 28)
320 #define MDCR_EL2_TDCC		(UL(1) << 27)
321 #define MDCR_EL2_HLP		(UL(1) << 26)
322 #define MDCR_EL2_HCCD		(UL(1) << 23)
323 #define MDCR_EL2_TTRF		(UL(1) << 19)
324 #define MDCR_EL2_HPMD		(UL(1) << 17)
325 #define MDCR_EL2_TPMS		(UL(1) << 14)
326 #define MDCR_EL2_E2PB_MASK	(UL(0x3))
327 #define MDCR_EL2_E2PB_SHIFT	(UL(12))
328 #define MDCR_EL2_TDRA		(UL(1) << 11)
329 #define MDCR_EL2_TDOSA		(UL(1) << 10)
330 #define MDCR_EL2_TDA		(UL(1) << 9)
331 #define MDCR_EL2_TDE		(UL(1) << 8)
332 #define MDCR_EL2_HPME		(UL(1) << 7)
333 #define MDCR_EL2_TPM		(UL(1) << 6)
334 #define MDCR_EL2_TPMCR		(UL(1) << 5)
335 #define MDCR_EL2_HPMN_MASK	(UL(0x1F))
336 #define MDCR_EL2_RES0		(GENMASK(63, 37) |	\
337 				 GENMASK(35, 30) |	\
338 				 GENMASK(25, 24) |	\
339 				 GENMASK(22, 20) |	\
340 				 BIT(18) |		\
341 				 GENMASK(16, 15))
342 
343 /*
344  * FGT register definitions
345  *
346  * RES0 and polarity masks as of DDI0487J.a, to be updated as needed.
347  * We're not using the generated masks as they are usually ahead of
348  * the published ARM ARM, which we use as a reference.
349  *
350  * Once we get to a point where the two describe the same thing, we'll
351  * merge the definitions. One day.
352  */
353 #define __HFGRTR_EL2_RES0	HFGxTR_EL2_RES0
354 #define __HFGRTR_EL2_MASK	GENMASK(49, 0)
355 #define __HFGRTR_EL2_nMASK	~(__HFGRTR_EL2_RES0 | __HFGRTR_EL2_MASK)
356 
357 /*
358  * The HFGWTR bits are a subset of HFGRTR bits. To ensure we don't miss any
359  * future additions, define __HFGWTR* macros relative to __HFGRTR* ones.
360  */
361 #define __HFGRTR_ONLY_MASK	(BIT(46) | BIT(42) | BIT(40) | BIT(28) | \
362 				 GENMASK(26, 25) | BIT(21) | BIT(18) | \
363 				 GENMASK(15, 14) | GENMASK(10, 9) | BIT(2))
364 #define __HFGWTR_EL2_RES0	(__HFGRTR_EL2_RES0 | __HFGRTR_ONLY_MASK)
365 #define __HFGWTR_EL2_MASK	(__HFGRTR_EL2_MASK & ~__HFGRTR_ONLY_MASK)
366 #define __HFGWTR_EL2_nMASK	~(__HFGWTR_EL2_RES0 | __HFGWTR_EL2_MASK)
367 
368 #define __HFGITR_EL2_RES0	HFGITR_EL2_RES0
369 #define __HFGITR_EL2_MASK	(BIT(62) | BIT(60) | GENMASK(54, 0))
370 #define __HFGITR_EL2_nMASK	~(__HFGITR_EL2_RES0 | __HFGITR_EL2_MASK)
371 
372 #define __HDFGRTR_EL2_RES0	HDFGRTR_EL2_RES0
373 #define __HDFGRTR_EL2_MASK	(BIT(63) | GENMASK(58, 50) | GENMASK(48, 43) | \
374 				 GENMASK(41, 40) | GENMASK(37, 22) | \
375 				 GENMASK(19, 9) | GENMASK(7, 0))
376 #define __HDFGRTR_EL2_nMASK	~(__HDFGRTR_EL2_RES0 | __HDFGRTR_EL2_MASK)
377 
378 #define __HDFGWTR_EL2_RES0	HDFGWTR_EL2_RES0
379 #define __HDFGWTR_EL2_MASK	(GENMASK(57, 52) | GENMASK(50, 48) | \
380 				 GENMASK(46, 44) | GENMASK(42, 41) | \
381 				 GENMASK(37, 35) | GENMASK(33, 31) | \
382 				 GENMASK(29, 23) | GENMASK(21, 10) | \
383 				 GENMASK(8, 7) | GENMASK(5, 0))
384 #define __HDFGWTR_EL2_nMASK	~(__HDFGWTR_EL2_RES0 | __HDFGWTR_EL2_MASK)
385 
386 #define __HAFGRTR_EL2_RES0	HAFGRTR_EL2_RES0
387 #define __HAFGRTR_EL2_MASK	(GENMASK(49, 17) | GENMASK(4, 0))
388 #define __HAFGRTR_EL2_nMASK	~(__HAFGRTR_EL2_RES0 | __HAFGRTR_EL2_MASK)
389 
390 /* Similar definitions for HCRX_EL2 */
391 #define __HCRX_EL2_RES0         HCRX_EL2_RES0
392 #define __HCRX_EL2_MASK		(BIT(6))
393 #define __HCRX_EL2_nMASK	~(__HCRX_EL2_RES0 | __HCRX_EL2_MASK)
394 
395 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
396 #define HPFAR_MASK	(~UL(0xf))
397 /*
398  * We have
399  *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
400  *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
401  *
402  * Always assume 52 bit PA since at this point, we don't know how many PA bits
403  * the page table has been set up for. This should be safe since unused address
404  * bits in PAR are res0.
405  */
406 #define PAR_TO_HPFAR(par)		\
407 	(((par) & GENMASK_ULL(52 - 1, 12)) >> 8)
408 
409 #define ECN(x) { ESR_ELx_EC_##x, #x }
410 
411 #define kvm_arm_exception_class \
412 	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
413 	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
414 	ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
415 	ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
416 	ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
417 	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
418 	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
419 	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
420 	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET)
421 
422 #define CPACR_EL1_TTA		(1 << 28)
423 
424 #define kvm_mode_names				\
425 	{ PSR_MODE_EL0t,	"EL0t" },	\
426 	{ PSR_MODE_EL1t,	"EL1t" },	\
427 	{ PSR_MODE_EL1h,	"EL1h" },	\
428 	{ PSR_MODE_EL2t,	"EL2t" },	\
429 	{ PSR_MODE_EL2h,	"EL2h" },	\
430 	{ PSR_MODE_EL3t,	"EL3t" },	\
431 	{ PSR_MODE_EL3h,	"EL3h" },	\
432 	{ PSR_AA32_MODE_USR,	"32-bit USR" },	\
433 	{ PSR_AA32_MODE_FIQ,	"32-bit FIQ" },	\
434 	{ PSR_AA32_MODE_IRQ,	"32-bit IRQ" },	\
435 	{ PSR_AA32_MODE_SVC,	"32-bit SVC" },	\
436 	{ PSR_AA32_MODE_ABT,	"32-bit ABT" },	\
437 	{ PSR_AA32_MODE_HYP,	"32-bit HYP" },	\
438 	{ PSR_AA32_MODE_UND,	"32-bit UND" },	\
439 	{ PSR_AA32_MODE_SYS,	"32-bit SYS" }
440 
441 #endif /* __ARM64_KVM_ARM_H__ */
442