xref: /linux/arch/arm64/include/asm/fpsimd.h (revision bb9ae1a66c85eeb626864efd812c62026e126ec0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_FP_H
6 #define __ASM_FP_H
7 
8 #include <asm/errno.h>
9 #include <asm/ptrace.h>
10 #include <asm/processor.h>
11 #include <asm/sigcontext.h>
12 #include <asm/sysreg.h>
13 
14 #ifndef __ASSEMBLY__
15 
16 #include <linux/bitmap.h>
17 #include <linux/build_bug.h>
18 #include <linux/bug.h>
19 #include <linux/cache.h>
20 #include <linux/init.h>
21 #include <linux/stddef.h>
22 #include <linux/types.h>
23 
24 /* Masks for extracting the FPSR and FPCR from the FPSCR */
25 #define VFP_FPSCR_STAT_MASK	0xf800009f
26 #define VFP_FPSCR_CTRL_MASK	0x07f79f00
27 /*
28  * The VFP state has 32x64-bit registers and a single 32-bit
29  * control/status register.
30  */
31 #define VFP_STATE_SIZE		((32 * 8) + 4)
32 
33 static inline unsigned long cpacr_save_enable_kernel_sve(void)
34 {
35 	unsigned long old = read_sysreg(cpacr_el1);
36 	unsigned long set = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_ZEN_EL1EN;
37 
38 	write_sysreg(old | set, cpacr_el1);
39 	isb();
40 	return old;
41 }
42 
43 static inline unsigned long cpacr_save_enable_kernel_sme(void)
44 {
45 	unsigned long old = read_sysreg(cpacr_el1);
46 	unsigned long set = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_SMEN_EL1EN;
47 
48 	write_sysreg(old | set, cpacr_el1);
49 	isb();
50 	return old;
51 }
52 
53 static inline void cpacr_restore(unsigned long cpacr)
54 {
55 	write_sysreg(cpacr, cpacr_el1);
56 	isb();
57 }
58 
59 /*
60  * When we defined the maximum SVE vector length we defined the ABI so
61  * that the maximum vector length included all the reserved for future
62  * expansion bits in ZCR rather than those just currently defined by
63  * the architecture.  Using this length to allocate worst size buffers
64  * results in excessively large allocations, and this effect is even
65  * more pronounced for SME due to ZA.  Define more suitable VLs for
66  * these situations.
67  */
68 #define ARCH_SVE_VQ_MAX ((ZCR_ELx_LEN_MASK >> ZCR_ELx_LEN_SHIFT) + 1)
69 #define SME_VQ_MAX	((SMCR_ELx_LEN_MASK >> SMCR_ELx_LEN_SHIFT) + 1)
70 
71 struct task_struct;
72 
73 extern void fpsimd_save_state(struct user_fpsimd_state *state);
74 extern void fpsimd_load_state(struct user_fpsimd_state *state);
75 
76 extern void fpsimd_thread_switch(struct task_struct *next);
77 extern void fpsimd_flush_thread(void);
78 
79 extern void fpsimd_signal_preserve_current_state(void);
80 extern void fpsimd_preserve_current_state(void);
81 extern void fpsimd_restore_current_state(void);
82 extern void fpsimd_update_current_state(struct user_fpsimd_state const *state);
83 extern void fpsimd_kvm_prepare(void);
84 
85 struct cpu_fp_state {
86 	struct user_fpsimd_state *st;
87 	void *sve_state;
88 	void *sme_state;
89 	u64 *svcr;
90 	u64 *fpmr;
91 	unsigned int sve_vl;
92 	unsigned int sme_vl;
93 	enum fp_type *fp_type;
94 	enum fp_type to_save;
95 };
96 
97 extern void fpsimd_bind_state_to_cpu(struct cpu_fp_state *fp_state);
98 
99 extern void fpsimd_flush_task_state(struct task_struct *target);
100 extern void fpsimd_save_and_flush_cpu_state(void);
101 
102 static inline bool thread_sm_enabled(struct thread_struct *thread)
103 {
104 	return system_supports_sme() && (thread->svcr & SVCR_SM_MASK);
105 }
106 
107 static inline bool thread_za_enabled(struct thread_struct *thread)
108 {
109 	return system_supports_sme() && (thread->svcr & SVCR_ZA_MASK);
110 }
111 
112 /* Maximum VL that SVE/SME VL-agnostic software can transparently support */
113 #define VL_ARCH_MAX 0x100
114 
115 /* Offset of FFR in the SVE register dump */
116 static inline size_t sve_ffr_offset(int vl)
117 {
118 	return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
119 }
120 
121 static inline void *sve_pffr(struct thread_struct *thread)
122 {
123 	unsigned int vl;
124 
125 	if (system_supports_sme() && thread_sm_enabled(thread))
126 		vl = thread_get_sme_vl(thread);
127 	else
128 		vl = thread_get_sve_vl(thread);
129 
130 	return (char *)thread->sve_state + sve_ffr_offset(vl);
131 }
132 
133 static inline void *thread_zt_state(struct thread_struct *thread)
134 {
135 	/* The ZT register state is stored immediately after the ZA state */
136 	unsigned int sme_vq = sve_vq_from_vl(thread_get_sme_vl(thread));
137 	return thread->sme_state + ZA_SIG_REGS_SIZE(sme_vq);
138 }
139 
140 extern void sve_save_state(void *state, u32 *pfpsr, int save_ffr);
141 extern void sve_load_state(void const *state, u32 const *pfpsr,
142 			   int restore_ffr);
143 extern void sve_flush_live(bool flush_ffr, unsigned long vq_minus_1);
144 extern unsigned int sve_get_vl(void);
145 extern void sve_set_vq(unsigned long vq_minus_1);
146 extern void sme_set_vq(unsigned long vq_minus_1);
147 extern void sme_save_state(void *state, int zt);
148 extern void sme_load_state(void const *state, int zt);
149 
150 struct arm64_cpu_capabilities;
151 extern void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__unused);
152 extern void cpu_enable_sve(const struct arm64_cpu_capabilities *__unused);
153 extern void cpu_enable_sme(const struct arm64_cpu_capabilities *__unused);
154 extern void cpu_enable_sme2(const struct arm64_cpu_capabilities *__unused);
155 extern void cpu_enable_fa64(const struct arm64_cpu_capabilities *__unused);
156 extern void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__unused);
157 
158 /*
159  * Helpers to translate bit indices in sve_vq_map to VQ values (and
160  * vice versa).  This allows find_next_bit() to be used to find the
161  * _maximum_ VQ not exceeding a certain value.
162  */
163 static inline unsigned int __vq_to_bit(unsigned int vq)
164 {
165 	return SVE_VQ_MAX - vq;
166 }
167 
168 static inline unsigned int __bit_to_vq(unsigned int bit)
169 {
170 	return SVE_VQ_MAX - bit;
171 }
172 
173 
174 struct vl_info {
175 	enum vec_type type;
176 	const char *name;		/* For display purposes */
177 
178 	/* Minimum supported vector length across all CPUs */
179 	int min_vl;
180 
181 	/* Maximum supported vector length across all CPUs */
182 	int max_vl;
183 	int max_virtualisable_vl;
184 
185 	/*
186 	 * Set of available vector lengths,
187 	 * where length vq encoded as bit __vq_to_bit(vq):
188 	 */
189 	DECLARE_BITMAP(vq_map, SVE_VQ_MAX);
190 
191 	/* Set of vector lengths present on at least one cpu: */
192 	DECLARE_BITMAP(vq_partial_map, SVE_VQ_MAX);
193 };
194 
195 #ifdef CONFIG_ARM64_SVE
196 
197 extern void sve_alloc(struct task_struct *task, bool flush);
198 extern void fpsimd_release_task(struct task_struct *task);
199 extern void fpsimd_sync_to_sve(struct task_struct *task);
200 extern void fpsimd_force_sync_to_sve(struct task_struct *task);
201 extern void sve_sync_to_fpsimd(struct task_struct *task);
202 extern void sve_sync_from_fpsimd_zeropad(struct task_struct *task);
203 
204 extern int vec_set_vector_length(struct task_struct *task, enum vec_type type,
205 				 unsigned long vl, unsigned long flags);
206 
207 extern int sve_set_current_vl(unsigned long arg);
208 extern int sve_get_current_vl(void);
209 
210 static inline void sve_user_disable(void)
211 {
212 	sysreg_clear_set(cpacr_el1, CPACR_EL1_ZEN_EL0EN, 0);
213 }
214 
215 static inline void sve_user_enable(void)
216 {
217 	sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_ZEN_EL0EN);
218 }
219 
220 #define sve_cond_update_zcr_vq(val, reg)		\
221 	do {						\
222 		u64 __zcr = read_sysreg_s((reg));	\
223 		u64 __new = __zcr & ~ZCR_ELx_LEN_MASK;	\
224 		__new |= (val) & ZCR_ELx_LEN_MASK;	\
225 		if (__zcr != __new)			\
226 			write_sysreg_s(__new, (reg));	\
227 	} while (0)
228 
229 /*
230  * Probing and setup functions.
231  * Calls to these functions must be serialised with one another.
232  */
233 enum vec_type;
234 
235 extern void __init vec_init_vq_map(enum vec_type type);
236 extern void vec_update_vq_map(enum vec_type type);
237 extern int vec_verify_vq_map(enum vec_type type);
238 extern void __init sve_setup(void);
239 
240 extern __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX];
241 
242 static inline void write_vl(enum vec_type type, u64 val)
243 {
244 	u64 tmp;
245 
246 	switch (type) {
247 #ifdef CONFIG_ARM64_SVE
248 	case ARM64_VEC_SVE:
249 		tmp = read_sysreg_s(SYS_ZCR_EL1) & ~ZCR_ELx_LEN_MASK;
250 		write_sysreg_s(tmp | val, SYS_ZCR_EL1);
251 		break;
252 #endif
253 #ifdef CONFIG_ARM64_SME
254 	case ARM64_VEC_SME:
255 		tmp = read_sysreg_s(SYS_SMCR_EL1) & ~SMCR_ELx_LEN_MASK;
256 		write_sysreg_s(tmp | val, SYS_SMCR_EL1);
257 		break;
258 #endif
259 	default:
260 		WARN_ON_ONCE(1);
261 		break;
262 	}
263 }
264 
265 static inline int vec_max_vl(enum vec_type type)
266 {
267 	return vl_info[type].max_vl;
268 }
269 
270 static inline int vec_max_virtualisable_vl(enum vec_type type)
271 {
272 	return vl_info[type].max_virtualisable_vl;
273 }
274 
275 static inline int sve_max_vl(void)
276 {
277 	return vec_max_vl(ARM64_VEC_SVE);
278 }
279 
280 static inline int sve_max_virtualisable_vl(void)
281 {
282 	return vec_max_virtualisable_vl(ARM64_VEC_SVE);
283 }
284 
285 /* Ensure vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX before calling this function */
286 static inline bool vq_available(enum vec_type type, unsigned int vq)
287 {
288 	return test_bit(__vq_to_bit(vq), vl_info[type].vq_map);
289 }
290 
291 static inline bool sve_vq_available(unsigned int vq)
292 {
293 	return vq_available(ARM64_VEC_SVE, vq);
294 }
295 
296 size_t sve_state_size(struct task_struct const *task);
297 
298 #else /* ! CONFIG_ARM64_SVE */
299 
300 static inline void sve_alloc(struct task_struct *task, bool flush) { }
301 static inline void fpsimd_release_task(struct task_struct *task) { }
302 static inline void sve_sync_to_fpsimd(struct task_struct *task) { }
303 static inline void sve_sync_from_fpsimd_zeropad(struct task_struct *task) { }
304 
305 static inline int sve_max_virtualisable_vl(void)
306 {
307 	return 0;
308 }
309 
310 static inline int sve_set_current_vl(unsigned long arg)
311 {
312 	return -EINVAL;
313 }
314 
315 static inline int sve_get_current_vl(void)
316 {
317 	return -EINVAL;
318 }
319 
320 static inline int sve_max_vl(void)
321 {
322 	return -EINVAL;
323 }
324 
325 static inline bool sve_vq_available(unsigned int vq) { return false; }
326 
327 static inline void sve_user_disable(void) { BUILD_BUG(); }
328 static inline void sve_user_enable(void) { BUILD_BUG(); }
329 
330 #define sve_cond_update_zcr_vq(val, reg) do { } while (0)
331 
332 static inline void vec_init_vq_map(enum vec_type t) { }
333 static inline void vec_update_vq_map(enum vec_type t) { }
334 static inline int vec_verify_vq_map(enum vec_type t) { return 0; }
335 static inline void sve_setup(void) { }
336 
337 static inline size_t sve_state_size(struct task_struct const *task)
338 {
339 	return 0;
340 }
341 
342 #endif /* ! CONFIG_ARM64_SVE */
343 
344 #ifdef CONFIG_ARM64_SME
345 
346 static inline void sme_user_disable(void)
347 {
348 	sysreg_clear_set(cpacr_el1, CPACR_EL1_SMEN_EL0EN, 0);
349 }
350 
351 static inline void sme_user_enable(void)
352 {
353 	sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_SMEN_EL0EN);
354 }
355 
356 static inline void sme_smstart_sm(void)
357 {
358 	asm volatile(__msr_s(SYS_SVCR_SMSTART_SM_EL0, "xzr"));
359 }
360 
361 static inline void sme_smstop_sm(void)
362 {
363 	asm volatile(__msr_s(SYS_SVCR_SMSTOP_SM_EL0, "xzr"));
364 }
365 
366 static inline void sme_smstop(void)
367 {
368 	asm volatile(__msr_s(SYS_SVCR_SMSTOP_SMZA_EL0, "xzr"));
369 }
370 
371 extern void __init sme_setup(void);
372 
373 static inline int sme_max_vl(void)
374 {
375 	return vec_max_vl(ARM64_VEC_SME);
376 }
377 
378 static inline int sme_max_virtualisable_vl(void)
379 {
380 	return vec_max_virtualisable_vl(ARM64_VEC_SME);
381 }
382 
383 extern void sme_alloc(struct task_struct *task, bool flush);
384 extern unsigned int sme_get_vl(void);
385 extern int sme_set_current_vl(unsigned long arg);
386 extern int sme_get_current_vl(void);
387 extern void sme_suspend_exit(void);
388 
389 /*
390  * Return how many bytes of memory are required to store the full SME
391  * specific state for task, given task's currently configured vector
392  * length.
393  */
394 static inline size_t sme_state_size(struct task_struct const *task)
395 {
396 	unsigned int vl = task_get_sme_vl(task);
397 	size_t size;
398 
399 	size = ZA_SIG_REGS_SIZE(sve_vq_from_vl(vl));
400 
401 	if (system_supports_sme2())
402 		size += ZT_SIG_REG_SIZE;
403 
404 	return size;
405 }
406 
407 #else
408 
409 static inline void sme_user_disable(void) { BUILD_BUG(); }
410 static inline void sme_user_enable(void) { BUILD_BUG(); }
411 
412 static inline void sme_smstart_sm(void) { }
413 static inline void sme_smstop_sm(void) { }
414 static inline void sme_smstop(void) { }
415 
416 static inline void sme_alloc(struct task_struct *task, bool flush) { }
417 static inline void sme_setup(void) { }
418 static inline unsigned int sme_get_vl(void) { return 0; }
419 static inline int sme_max_vl(void) { return 0; }
420 static inline int sme_max_virtualisable_vl(void) { return 0; }
421 static inline int sme_set_current_vl(unsigned long arg) { return -EINVAL; }
422 static inline int sme_get_current_vl(void) { return -EINVAL; }
423 static inline void sme_suspend_exit(void) { }
424 
425 static inline size_t sme_state_size(struct task_struct const *task)
426 {
427 	return 0;
428 }
429 
430 #endif /* ! CONFIG_ARM64_SME */
431 
432 /* For use by EFI runtime services calls only */
433 extern void __efi_fpsimd_begin(void);
434 extern void __efi_fpsimd_end(void);
435 
436 #endif
437 
438 #endif
439