1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_EFI_H 3 #define _ASM_EFI_H 4 5 #include <asm/boot.h> 6 #include <asm/cpufeature.h> 7 #include <asm/fpsimd.h> 8 #include <asm/io.h> 9 #include <asm/memory.h> 10 #include <asm/mmu_context.h> 11 #include <asm/neon.h> 12 #include <asm/ptrace.h> 13 #include <asm/tlbflush.h> 14 15 #ifdef CONFIG_EFI 16 extern void efi_init(void); 17 18 bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg); 19 #else 20 #define efi_init() 21 22 static inline 23 bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg) 24 { 25 return false; 26 } 27 #endif 28 29 int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md); 30 int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md, 31 bool has_bti); 32 33 #undef arch_efi_call_virt 34 #define arch_efi_call_virt(p, f, args...) \ 35 __efi_rt_asm_wrapper((p)->f, #f, args) 36 37 extern u64 *efi_rt_stack_top; 38 efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...); 39 40 void arch_efi_call_virt_setup(void); 41 void arch_efi_call_virt_teardown(void); 42 43 /* 44 * efi_rt_stack_top[-1] contains the value the stack pointer had before 45 * switching to the EFI runtime stack. 46 */ 47 #define current_in_efi() \ 48 (!preemptible() && efi_rt_stack_top != NULL && \ 49 on_task_stack(current, READ_ONCE(efi_rt_stack_top[-1]), 1)) 50 51 #define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT) 52 53 /* 54 * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not. 55 * And EFI shouldn't really play around with priority masking as it is not aware 56 * which priorities the OS has assigned to its interrupts. 57 */ 58 #define arch_efi_save_flags(state_flags) \ 59 ((void)((state_flags) = read_sysreg(daif))) 60 61 #define arch_efi_restore_flags(state_flags) write_sysreg(state_flags, daif) 62 63 64 /* arch specific definitions used by the stub code */ 65 66 /* 67 * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the 68 * kernel need greater alignment than we require the segments to be padded to. 69 */ 70 #define EFI_KIMG_ALIGN \ 71 (SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN) 72 73 /* 74 * On arm64, we have to ensure that the initrd ends up in the linear region, 75 * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is 76 * guaranteed to cover the kernel Image. 77 * 78 * Since the EFI stub is part of the kernel Image, we can relax the 79 * usual requirements in Documentation/arch/arm64/booting.rst, which still 80 * apply to other bootloaders, and are required for some kernel 81 * configurations. 82 */ 83 static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr) 84 { 85 return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1)); 86 } 87 88 static inline unsigned long efi_get_kimg_min_align(void) 89 { 90 extern bool efi_nokaslr; 91 92 /* 93 * Although relocatable kernels can fix up the misalignment with 94 * respect to MIN_KIMG_ALIGN, the resulting virtual text addresses are 95 * subtly out of sync with those recorded in the vmlinux when kaslr is 96 * disabled but the image required relocation anyway. Therefore retain 97 * 2M alignment if KASLR was explicitly disabled, even if it was not 98 * going to be activated to begin with. 99 */ 100 return efi_nokaslr ? MIN_KIMG_ALIGN : EFI_KIMG_ALIGN; 101 } 102 103 #define EFI_ALLOC_ALIGN SZ_64K 104 #define EFI_ALLOC_LIMIT ((1UL << 48) - 1) 105 106 extern unsigned long primary_entry_offset(void); 107 108 /* 109 * On ARM systems, virtually remapped UEFI runtime services are set up in two 110 * distinct stages: 111 * - The stub retrieves the final version of the memory map from UEFI, populates 112 * the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime 113 * service to communicate the new mapping to the firmware (Note that the new 114 * mapping is not live at this time) 115 * - During an early initcall(), the EFI system table is permanently remapped 116 * and the virtual remapping of the UEFI Runtime Services regions is loaded 117 * into a private set of page tables. If this all succeeds, the Runtime 118 * Services are enabled and the EFI_RUNTIME_SERVICES bit set. 119 */ 120 121 static inline void efi_set_pgd(struct mm_struct *mm) 122 { 123 __switch_mm(mm); 124 125 if (system_uses_ttbr0_pan()) { 126 if (mm != current->active_mm) { 127 /* 128 * Update the current thread's saved ttbr0 since it is 129 * restored as part of a return from exception. Enable 130 * access to the valid TTBR0_EL1 and invoke the errata 131 * workaround directly since there is no return from 132 * exception when invoking the EFI run-time services. 133 */ 134 update_saved_ttbr0(current, mm); 135 uaccess_ttbr0_enable(); 136 post_ttbr_update_workaround(); 137 } else { 138 /* 139 * Defer the switch to the current thread's TTBR0_EL1 140 * until uaccess_enable(). Restore the current 141 * thread's saved ttbr0 corresponding to its active_mm 142 */ 143 uaccess_ttbr0_disable(); 144 update_saved_ttbr0(current, current->active_mm); 145 } 146 } 147 } 148 149 void efi_virtmap_load(void); 150 void efi_virtmap_unload(void); 151 152 static inline void efi_capsule_flush_cache_range(void *addr, int size) 153 { 154 dcache_clean_inval_poc((unsigned long)addr, (unsigned long)addr + size); 155 } 156 157 efi_status_t efi_handle_corrupted_x18(efi_status_t s, const char *f); 158 159 void efi_icache_sync(unsigned long start, unsigned long end); 160 161 #endif /* _ASM_EFI_H */ 162