xref: /linux/arch/arm64/include/asm/cpufeature.h (revision eb7cca1faf9883d7b4da792281147dbedc449238)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5 
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8 
9 #include <asm/alternative-macros.h>
10 #include <asm/cpucaps.h>
11 #include <asm/cputype.h>
12 #include <asm/hwcap.h>
13 #include <asm/sysreg.h>
14 
15 #define MAX_CPU_FEATURES	128
16 #define cpu_feature(x)		KERNEL_HWCAP_ ## x
17 
18 #define ARM64_SW_FEATURE_OVERRIDE_NOKASLR	0
19 #define ARM64_SW_FEATURE_OVERRIDE_HVHE		4
20 #define ARM64_SW_FEATURE_OVERRIDE_RODATA_OFF	8
21 
22 #ifndef __ASSEMBLY__
23 
24 #include <linux/bug.h>
25 #include <linux/jump_label.h>
26 #include <linux/kernel.h>
27 #include <linux/cpumask.h>
28 
29 /*
30  * CPU feature register tracking
31  *
32  * The safe value of a CPUID feature field is dependent on the implications
33  * of the values assigned to it by the architecture. Based on the relationship
34  * between the values, the features are classified into 3 types - LOWER_SAFE,
35  * HIGHER_SAFE and EXACT.
36  *
37  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
38  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
39  * a field when EXACT is specified, failing which, the safe value specified
40  * in the table is chosen.
41  */
42 
43 enum ftr_type {
44 	FTR_EXACT,			/* Use a predefined safe value */
45 	FTR_LOWER_SAFE,			/* Smaller value is safe */
46 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
47 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
48 };
49 
50 #define FTR_STRICT	true	/* SANITY check strict matching required */
51 #define FTR_NONSTRICT	false	/* SANITY check ignored */
52 
53 #define FTR_SIGNED	true	/* Value should be treated as signed */
54 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
55 
56 #define FTR_VISIBLE	true	/* Feature visible to the user space */
57 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
58 
59 #define FTR_VISIBLE_IF_IS_ENABLED(config)		\
60 	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
61 
62 struct arm64_ftr_bits {
63 	bool		sign;	/* Value is signed ? */
64 	bool		visible;
65 	bool		strict;	/* CPU Sanity check: strict matching required ? */
66 	enum ftr_type	type;
67 	u8		shift;
68 	u8		width;
69 	s64		safe_val; /* safe value for FTR_EXACT features */
70 };
71 
72 /*
73  * Describe the early feature override to the core override code:
74  *
75  * @val			Values that are to be merged into the final
76  *			sanitised value of the register. Only the bitfields
77  *			set to 1 in @mask are valid
78  * @mask		Mask of the features that are overridden by @val
79  *
80  * A @mask field set to full-1 indicates that the corresponding field
81  * in @val is a valid override.
82  *
83  * A @mask field set to full-0 with the corresponding @val field set
84  * to full-0 denotes that this field has no override
85  *
86  * A @mask field set to full-0 with the corresponding @val field set
87  * to full-1 denotes that this field has an invalid override.
88  */
89 struct arm64_ftr_override {
90 	u64		val;
91 	u64		mask;
92 };
93 
94 /*
95  * @arm64_ftr_reg - Feature register
96  * @strict_mask		Bits which should match across all CPUs for sanity.
97  * @sys_val		Safe value across the CPUs (system view)
98  */
99 struct arm64_ftr_reg {
100 	const char			*name;
101 	u64				strict_mask;
102 	u64				user_mask;
103 	u64				sys_val;
104 	u64				user_val;
105 	struct arm64_ftr_override	*override;
106 	const struct arm64_ftr_bits	*ftr_bits;
107 };
108 
109 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
110 
111 /*
112  * CPU capabilities:
113  *
114  * We use arm64_cpu_capabilities to represent system features, errata work
115  * arounds (both used internally by kernel and tracked in system_cpucaps) and
116  * ELF HWCAPs (which are exposed to user).
117  *
118  * To support systems with heterogeneous CPUs, we need to make sure that we
119  * detect the capabilities correctly on the system and take appropriate
120  * measures to ensure there are no incompatibilities.
121  *
122  * This comment tries to explain how we treat the capabilities.
123  * Each capability has the following list of attributes :
124  *
125  * 1) Scope of Detection : The system detects a given capability by
126  *    performing some checks at runtime. This could be, e.g, checking the
127  *    value of a field in CPU ID feature register or checking the cpu
128  *    model. The capability provides a call back ( @matches() ) to
129  *    perform the check. Scope defines how the checks should be performed.
130  *    There are three cases:
131  *
132  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
133  *        matches. This implies, we have to run the check on all the
134  *        booting CPUs, until the system decides that state of the
135  *        capability is finalised. (See section 2 below)
136  *		Or
137  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
138  *        matches. This implies, we run the check only once, when the
139  *        system decides to finalise the state of the capability. If the
140  *        capability relies on a field in one of the CPU ID feature
141  *        registers, we use the sanitised value of the register from the
142  *        CPU feature infrastructure to make the decision.
143  *		Or
144  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
145  *        feature. This category is for features that are "finalised"
146  *        (or used) by the kernel very early even before the SMP cpus
147  *        are brought up.
148  *
149  *    The process of detection is usually denoted by "update" capability
150  *    state in the code.
151  *
152  * 2) Finalise the state : The kernel should finalise the state of a
153  *    capability at some point during its execution and take necessary
154  *    actions if any. Usually, this is done, after all the boot-time
155  *    enabled CPUs are brought up by the kernel, so that it can make
156  *    better decision based on the available set of CPUs. However, there
157  *    are some special cases, where the action is taken during the early
158  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
159  *    Virtualisation Host Extensions). The kernel usually disallows any
160  *    changes to the state of a capability once it finalises the capability
161  *    and takes any action, as it may be impossible to execute the actions
162  *    safely. A CPU brought up after a capability is "finalised" is
163  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
164  *    CPUs are treated "late CPUs" for capabilities determined by the boot
165  *    CPU.
166  *
167  *    At the moment there are two passes of finalising the capabilities.
168  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
169  *         setup_boot_cpu_capabilities().
170  *      b) Everything except (a) - Run via setup_system_capabilities().
171  *
172  * 3) Verification: When a CPU is brought online (e.g, by user or by the
173  *    kernel), the kernel should make sure that it is safe to use the CPU,
174  *    by verifying that the CPU is compliant with the state of the
175  *    capabilities finalised already. This happens via :
176  *
177  *	secondary_start_kernel()-> check_local_cpu_capabilities()
178  *
179  *    As explained in (2) above, capabilities could be finalised at
180  *    different points in the execution. Each newly booted CPU is verified
181  *    against the capabilities that have been finalised by the time it
182  *    boots.
183  *
184  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
185  *	except for the primary boot CPU.
186  *
187  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
188  *	user after the kernel boot are verified against the capability.
189  *
190  *    If there is a conflict, the kernel takes an action, based on the
191  *    severity (e.g, a CPU could be prevented from booting or cause a
192  *    kernel panic). The CPU is allowed to "affect" the state of the
193  *    capability, if it has not been finalised already. See section 5
194  *    for more details on conflicts.
195  *
196  * 4) Action: As mentioned in (2), the kernel can take an action for each
197  *    detected capability, on all CPUs on the system. Appropriate actions
198  *    include, turning on an architectural feature, modifying the control
199  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
200  *    alternatives. The kernel patching is batched and performed at later
201  *    point. The actions are always initiated only after the capability
202  *    is finalised. This is usally denoted by "enabling" the capability.
203  *    The actions are initiated as follows :
204  *	a) Action is triggered on all online CPUs, after the capability is
205  *	finalised, invoked within the stop_machine() context from
206  *	enable_cpu_capabilitie().
207  *
208  *	b) Any late CPU, brought up after (1), the action is triggered via:
209  *
210  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
211  *
212  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
213  *    the system state, we could have the following combinations :
214  *
215  *		x-----------------------------x
216  *		| Type  | System   | Late CPU |
217  *		|-----------------------------|
218  *		|  a    |   y      |    n     |
219  *		|-----------------------------|
220  *		|  b    |   n      |    y     |
221  *		x-----------------------------x
222  *
223  *     Two separate flag bits are defined to indicate whether each kind of
224  *     conflict can be allowed:
225  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
226  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
227  *
228  *     Case (a) is not permitted for a capability that the system requires
229  *     all CPUs to have in order for the capability to be enabled. This is
230  *     typical for capabilities that represent enhanced functionality.
231  *
232  *     Case (b) is not permitted for a capability that must be enabled
233  *     during boot if any CPU in the system requires it in order to run
234  *     safely. This is typical for erratum work arounds that cannot be
235  *     enabled after the corresponding capability is finalised.
236  *
237  *     In some non-typical cases either both (a) and (b), or neither,
238  *     should be permitted. This can be described by including neither
239  *     or both flags in the capability's type field.
240  *
241  *     In case of a conflict, the CPU is prevented from booting. If the
242  *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
243  *     then a kernel panic is triggered.
244  */
245 
246 
247 /*
248  * Decide how the capability is detected.
249  * On any local CPU vs System wide vs the primary boot CPU
250  */
251 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
252 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
253 /*
254  * The capabilitiy is detected on the Boot CPU and is used by kernel
255  * during early boot. i.e, the capability should be "detected" and
256  * "enabled" as early as possibly on all booting CPUs.
257  */
258 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
259 #define ARM64_CPUCAP_SCOPE_MASK			\
260 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
261 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
262 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
263 
264 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
265 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
266 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
267 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
268 
269 /*
270  * Is it permitted for a late CPU to have this capability when system
271  * hasn't already enabled it ?
272  */
273 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
274 /* Is it safe for a late CPU to miss this capability when system has it */
275 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
276 /* Panic when a conflict is detected */
277 #define ARM64_CPUCAP_PANIC_ON_CONFLICT		((u16)BIT(6))
278 
279 /*
280  * CPU errata workarounds that need to be enabled at boot time if one or
281  * more CPUs in the system requires it. When one of these capabilities
282  * has been enabled, it is safe to allow any CPU to boot that doesn't
283  * require the workaround. However, it is not safe if a "late" CPU
284  * requires a workaround and the system hasn't enabled it already.
285  */
286 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
287 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
288 /*
289  * CPU feature detected at boot time based on system-wide value of a
290  * feature. It is safe for a late CPU to have this feature even though
291  * the system hasn't enabled it, although the feature will not be used
292  * by Linux in this case. If the system has enabled this feature already,
293  * then every late CPU must have it.
294  */
295 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
296 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
297 /*
298  * CPU feature detected at boot time based on feature of one or more CPUs.
299  * All possible conflicts for a late CPU are ignored.
300  * NOTE: this means that a late CPU with the feature will *not* cause the
301  * capability to be advertised by cpus_have_*cap()!
302  */
303 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
304 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
305 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
306 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
307 
308 /*
309  * CPU feature detected at boot time, on one or more CPUs. A late CPU
310  * is not allowed to have the capability when the system doesn't have it.
311  * It is Ok for a late CPU to miss the feature.
312  */
313 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
314 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
315 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
316 
317 /*
318  * CPU feature used early in the boot based on the boot CPU. All secondary
319  * CPUs must match the state of the capability as detected by the boot CPU. In
320  * case of a conflict, a kernel panic is triggered.
321  */
322 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE		\
323 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
324 
325 /*
326  * CPU feature used early in the boot based on the boot CPU. It is safe for a
327  * late CPU to have this feature even though the boot CPU hasn't enabled it,
328  * although the feature will not be used by Linux in this case. If the boot CPU
329  * has enabled this feature already, then every late CPU must have it.
330  */
331 #define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
332 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
333 
334 struct arm64_cpu_capabilities {
335 	const char *desc;
336 	u16 capability;
337 	u16 type;
338 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
339 	/*
340 	 * Take the appropriate actions to configure this capability
341 	 * for this CPU. If the capability is detected by the kernel
342 	 * this will be called on all the CPUs in the system,
343 	 * including the hotplugged CPUs, regardless of whether the
344 	 * capability is available on that specific CPU. This is
345 	 * useful for some capabilities (e.g, working around CPU
346 	 * errata), where all the CPUs must take some action (e.g,
347 	 * changing system control/configuration). Thus, if an action
348 	 * is required only if the CPU has the capability, then the
349 	 * routine must check it before taking any action.
350 	 */
351 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
352 	union {
353 		struct {	/* To be used for erratum handling only */
354 			struct midr_range midr_range;
355 			const struct arm64_midr_revidr {
356 				u32 midr_rv;		/* revision/variant */
357 				u32 revidr_mask;
358 			} * const fixed_revs;
359 		};
360 
361 		const struct midr_range *midr_range_list;
362 		struct {	/* Feature register checking */
363 			u32 sys_reg;
364 			u8 field_pos;
365 			u8 field_width;
366 			u8 min_field_value;
367 			u8 hwcap_type;
368 			bool sign;
369 			unsigned long hwcap;
370 		};
371 	};
372 
373 	/*
374 	 * An optional list of "matches/cpu_enable" pair for the same
375 	 * "capability" of the same "type" as described by the parent.
376 	 * Only matches(), cpu_enable() and fields relevant to these
377 	 * methods are significant in the list. The cpu_enable is
378 	 * invoked only if the corresponding entry "matches()".
379 	 * However, if a cpu_enable() method is associated
380 	 * with multiple matches(), care should be taken that either
381 	 * the match criteria are mutually exclusive, or that the
382 	 * method is robust against being called multiple times.
383 	 */
384 	const struct arm64_cpu_capabilities *match_list;
385 	const struct cpumask *cpus;
386 };
387 
388 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
389 {
390 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
391 }
392 
393 /*
394  * Generic helper for handling capabilities with multiple (match,enable) pairs
395  * of call backs, sharing the same capability bit.
396  * Iterate over each entry to see if at least one matches.
397  */
398 static inline bool
399 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
400 			       int scope)
401 {
402 	const struct arm64_cpu_capabilities *caps;
403 
404 	for (caps = entry->match_list; caps->matches; caps++)
405 		if (caps->matches(caps, scope))
406 			return true;
407 
408 	return false;
409 }
410 
411 static __always_inline bool is_vhe_hyp_code(void)
412 {
413 	/* Only defined for code run in VHE hyp context */
414 	return __is_defined(__KVM_VHE_HYPERVISOR__);
415 }
416 
417 static __always_inline bool is_nvhe_hyp_code(void)
418 {
419 	/* Only defined for code run in NVHE hyp context */
420 	return __is_defined(__KVM_NVHE_HYPERVISOR__);
421 }
422 
423 static __always_inline bool is_hyp_code(void)
424 {
425 	return is_vhe_hyp_code() || is_nvhe_hyp_code();
426 }
427 
428 extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
429 
430 extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
431 
432 #define for_each_available_cap(cap)		\
433 	for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS)
434 
435 bool this_cpu_has_cap(unsigned int cap);
436 void cpu_set_feature(unsigned int num);
437 bool cpu_have_feature(unsigned int num);
438 unsigned long cpu_get_elf_hwcap(void);
439 unsigned long cpu_get_elf_hwcap2(void);
440 
441 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
442 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
443 
444 static __always_inline bool boot_capabilities_finalized(void)
445 {
446 	return alternative_has_cap_likely(ARM64_ALWAYS_BOOT);
447 }
448 
449 static __always_inline bool system_capabilities_finalized(void)
450 {
451 	return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM);
452 }
453 
454 /*
455  * Test for a capability with a runtime check.
456  *
457  * Before the capability is detected, this returns false.
458  */
459 static __always_inline bool cpus_have_cap(unsigned int num)
460 {
461 	if (__builtin_constant_p(num) && !cpucap_is_possible(num))
462 		return false;
463 	if (num >= ARM64_NCAPS)
464 		return false;
465 	return arch_test_bit(num, system_cpucaps);
466 }
467 
468 /*
469  * Test for a capability without a runtime check.
470  *
471  * Before boot capabilities are finalized, this will BUG().
472  * After boot capabilities are finalized, this is patched to avoid a runtime
473  * check.
474  *
475  * @num must be a compile-time constant.
476  */
477 static __always_inline bool cpus_have_final_boot_cap(int num)
478 {
479 	if (boot_capabilities_finalized())
480 		return alternative_has_cap_unlikely(num);
481 	else
482 		BUG();
483 }
484 
485 /*
486  * Test for a capability without a runtime check.
487  *
488  * Before system capabilities are finalized, this will BUG().
489  * After system capabilities are finalized, this is patched to avoid a runtime
490  * check.
491  *
492  * @num must be a compile-time constant.
493  */
494 static __always_inline bool cpus_have_final_cap(int num)
495 {
496 	if (system_capabilities_finalized())
497 		return alternative_has_cap_unlikely(num);
498 	else
499 		BUG();
500 }
501 
502 static inline int __attribute_const__
503 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
504 {
505 	return (s64)(features << (64 - width - field)) >> (64 - width);
506 }
507 
508 static inline int __attribute_const__
509 cpuid_feature_extract_signed_field(u64 features, int field)
510 {
511 	return cpuid_feature_extract_signed_field_width(features, field, 4);
512 }
513 
514 static __always_inline unsigned int __attribute_const__
515 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
516 {
517 	return (u64)(features << (64 - width - field)) >> (64 - width);
518 }
519 
520 static __always_inline unsigned int __attribute_const__
521 cpuid_feature_extract_unsigned_field(u64 features, int field)
522 {
523 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
524 }
525 
526 /*
527  * Fields that identify the version of the Performance Monitors Extension do
528  * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
529  * "Alternative ID scheme used for the Performance Monitors Extension version".
530  */
531 static inline u64 __attribute_const__
532 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
533 {
534 	u64 val = cpuid_feature_extract_unsigned_field(features, field);
535 	u64 mask = GENMASK_ULL(field + 3, field);
536 
537 	/* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
538 	if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
539 		val = 0;
540 
541 	if (val > cap) {
542 		features &= ~mask;
543 		features |= (cap << field) & mask;
544 	}
545 
546 	return features;
547 }
548 
549 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
550 {
551 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
552 }
553 
554 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
555 {
556 	return (reg->user_val | (reg->sys_val & reg->user_mask));
557 }
558 
559 static inline int __attribute_const__
560 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
561 {
562 	if (WARN_ON_ONCE(!width))
563 		width = 4;
564 	return (sign) ?
565 		cpuid_feature_extract_signed_field_width(features, field, width) :
566 		cpuid_feature_extract_unsigned_field_width(features, field, width);
567 }
568 
569 static inline int __attribute_const__
570 cpuid_feature_extract_field(u64 features, int field, bool sign)
571 {
572 	return cpuid_feature_extract_field_width(features, field, 4, sign);
573 }
574 
575 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
576 {
577 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
578 }
579 
580 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
581 {
582 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 ||
583 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1;
584 }
585 
586 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
587 {
588 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT);
589 
590 	return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
591 }
592 
593 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
594 {
595 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT);
596 
597 	return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
598 }
599 
600 static inline bool id_aa64pfr0_sve(u64 pfr0)
601 {
602 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT);
603 
604 	return val > 0;
605 }
606 
607 static inline bool id_aa64pfr1_sme(u64 pfr1)
608 {
609 	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT);
610 
611 	return val > 0;
612 }
613 
614 static inline bool id_aa64pfr1_mte(u64 pfr1)
615 {
616 	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT);
617 
618 	return val >= ID_AA64PFR1_EL1_MTE_MTE2;
619 }
620 
621 void __init setup_boot_cpu_features(void);
622 void __init setup_system_features(void);
623 void __init setup_user_features(void);
624 
625 void check_local_cpu_capabilities(void);
626 
627 u64 read_sanitised_ftr_reg(u32 id);
628 u64 __read_sysreg_by_encoding(u32 sys_id);
629 
630 static inline bool cpu_supports_mixed_endian_el0(void)
631 {
632 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
633 }
634 
635 
636 static inline bool supports_csv2p3(int scope)
637 {
638 	u64 pfr0;
639 	u8 csv2_val;
640 
641 	if (scope == SCOPE_LOCAL_CPU)
642 		pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
643 	else
644 		pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
645 
646 	csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
647 							ID_AA64PFR0_EL1_CSV2_SHIFT);
648 	return csv2_val == 3;
649 }
650 
651 static inline bool supports_clearbhb(int scope)
652 {
653 	u64 isar2;
654 
655 	if (scope == SCOPE_LOCAL_CPU)
656 		isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
657 	else
658 		isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
659 
660 	return cpuid_feature_extract_unsigned_field(isar2,
661 						    ID_AA64ISAR2_EL1_CLRBHB_SHIFT);
662 }
663 
664 const struct cpumask *system_32bit_el0_cpumask(void);
665 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
666 
667 static inline bool system_supports_32bit_el0(void)
668 {
669 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
670 
671 	return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
672 	       id_aa64pfr0_32bit_el0(pfr0);
673 }
674 
675 static inline bool system_supports_4kb_granule(void)
676 {
677 	u64 mmfr0;
678 	u32 val;
679 
680 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
681 	val = cpuid_feature_extract_unsigned_field(mmfr0,
682 						ID_AA64MMFR0_EL1_TGRAN4_SHIFT);
683 
684 	return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) &&
685 	       (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX);
686 }
687 
688 static inline bool system_supports_64kb_granule(void)
689 {
690 	u64 mmfr0;
691 	u32 val;
692 
693 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
694 	val = cpuid_feature_extract_unsigned_field(mmfr0,
695 						ID_AA64MMFR0_EL1_TGRAN64_SHIFT);
696 
697 	return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) &&
698 	       (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX);
699 }
700 
701 static inline bool system_supports_16kb_granule(void)
702 {
703 	u64 mmfr0;
704 	u32 val;
705 
706 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
707 	val = cpuid_feature_extract_unsigned_field(mmfr0,
708 						ID_AA64MMFR0_EL1_TGRAN16_SHIFT);
709 
710 	return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) &&
711 	       (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX);
712 }
713 
714 static inline bool system_supports_mixed_endian_el0(void)
715 {
716 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
717 }
718 
719 static inline bool system_supports_mixed_endian(void)
720 {
721 	u64 mmfr0;
722 	u32 val;
723 
724 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
725 	val = cpuid_feature_extract_unsigned_field(mmfr0,
726 						ID_AA64MMFR0_EL1_BIGEND_SHIFT);
727 
728 	return val == 0x1;
729 }
730 
731 static __always_inline bool system_supports_fpsimd(void)
732 {
733 	return alternative_has_cap_likely(ARM64_HAS_FPSIMD);
734 }
735 
736 static inline bool system_uses_hw_pan(void)
737 {
738 	return alternative_has_cap_unlikely(ARM64_HAS_PAN);
739 }
740 
741 static inline bool system_uses_ttbr0_pan(void)
742 {
743 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
744 		!system_uses_hw_pan();
745 }
746 
747 static __always_inline bool system_supports_sve(void)
748 {
749 	return alternative_has_cap_unlikely(ARM64_SVE);
750 }
751 
752 static __always_inline bool system_supports_sme(void)
753 {
754 	return alternative_has_cap_unlikely(ARM64_SME);
755 }
756 
757 static __always_inline bool system_supports_sme2(void)
758 {
759 	return alternative_has_cap_unlikely(ARM64_SME2);
760 }
761 
762 static __always_inline bool system_supports_fa64(void)
763 {
764 	return alternative_has_cap_unlikely(ARM64_SME_FA64);
765 }
766 
767 static __always_inline bool system_supports_tpidr2(void)
768 {
769 	return system_supports_sme();
770 }
771 
772 static __always_inline bool system_supports_fpmr(void)
773 {
774 	return alternative_has_cap_unlikely(ARM64_HAS_FPMR);
775 }
776 
777 static __always_inline bool system_supports_cnp(void)
778 {
779 	return alternative_has_cap_unlikely(ARM64_HAS_CNP);
780 }
781 
782 static inline bool system_supports_address_auth(void)
783 {
784 	return cpus_have_final_boot_cap(ARM64_HAS_ADDRESS_AUTH);
785 }
786 
787 static inline bool system_supports_generic_auth(void)
788 {
789 	return alternative_has_cap_unlikely(ARM64_HAS_GENERIC_AUTH);
790 }
791 
792 static inline bool system_has_full_ptr_auth(void)
793 {
794 	return system_supports_address_auth() && system_supports_generic_auth();
795 }
796 
797 static __always_inline bool system_uses_irq_prio_masking(void)
798 {
799 	return alternative_has_cap_unlikely(ARM64_HAS_GIC_PRIO_MASKING);
800 }
801 
802 static inline bool system_supports_mte(void)
803 {
804 	return alternative_has_cap_unlikely(ARM64_MTE);
805 }
806 
807 static inline bool system_has_prio_mask_debugging(void)
808 {
809 	return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
810 	       system_uses_irq_prio_masking();
811 }
812 
813 static inline bool system_supports_bti(void)
814 {
815 	return cpus_have_final_cap(ARM64_BTI);
816 }
817 
818 static inline bool system_supports_bti_kernel(void)
819 {
820 	return IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) &&
821 		cpus_have_final_boot_cap(ARM64_BTI);
822 }
823 
824 static inline bool system_supports_tlb_range(void)
825 {
826 	return alternative_has_cap_unlikely(ARM64_HAS_TLB_RANGE);
827 }
828 
829 static inline bool system_supports_lpa2(void)
830 {
831 	return cpus_have_final_cap(ARM64_HAS_LPA2);
832 }
833 
834 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
835 bool try_emulate_mrs(struct pt_regs *regs, u32 isn);
836 
837 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
838 {
839 	switch (parange) {
840 	case ID_AA64MMFR0_EL1_PARANGE_32: return 32;
841 	case ID_AA64MMFR0_EL1_PARANGE_36: return 36;
842 	case ID_AA64MMFR0_EL1_PARANGE_40: return 40;
843 	case ID_AA64MMFR0_EL1_PARANGE_42: return 42;
844 	case ID_AA64MMFR0_EL1_PARANGE_44: return 44;
845 	case ID_AA64MMFR0_EL1_PARANGE_48: return 48;
846 	case ID_AA64MMFR0_EL1_PARANGE_52: return 52;
847 	/*
848 	 * A future PE could use a value unknown to the kernel.
849 	 * However, by the "D10.1.4 Principles of the ID scheme
850 	 * for fields in ID registers", ARM DDI 0487C.a, any new
851 	 * value is guaranteed to be higher than what we know already.
852 	 * As a safe limit, we return the limit supported by the kernel.
853 	 */
854 	default: return CONFIG_ARM64_PA_BITS;
855 	}
856 }
857 
858 /* Check whether hardware update of the Access flag is supported */
859 static inline bool cpu_has_hw_af(void)
860 {
861 	u64 mmfr1;
862 
863 	if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
864 		return false;
865 
866 	/*
867 	 * Use cached version to avoid emulated msr operation on KVM
868 	 * guests.
869 	 */
870 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
871 	return cpuid_feature_extract_unsigned_field(mmfr1,
872 						ID_AA64MMFR1_EL1_HAFDBS_SHIFT);
873 }
874 
875 static inline bool cpu_has_pan(void)
876 {
877 	u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
878 	return cpuid_feature_extract_unsigned_field(mmfr1,
879 						    ID_AA64MMFR1_EL1_PAN_SHIFT);
880 }
881 
882 #ifdef CONFIG_ARM64_AMU_EXTN
883 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
884 extern bool cpu_has_amu_feat(int cpu);
885 #else
886 static inline bool cpu_has_amu_feat(int cpu)
887 {
888 	return false;
889 }
890 #endif
891 
892 /* Get a cpu that supports the Activity Monitors Unit (AMU) */
893 extern int get_cpu_with_amu_feat(void);
894 
895 static inline unsigned int get_vmid_bits(u64 mmfr1)
896 {
897 	int vmid_bits;
898 
899 	vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
900 						ID_AA64MMFR1_EL1_VMIDBits_SHIFT);
901 	if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16)
902 		return 16;
903 
904 	/*
905 	 * Return the default here even if any reserved
906 	 * value is fetched from the system register.
907 	 */
908 	return 8;
909 }
910 
911 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
912 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
913 
914 extern struct arm64_ftr_override id_aa64mmfr0_override;
915 extern struct arm64_ftr_override id_aa64mmfr1_override;
916 extern struct arm64_ftr_override id_aa64mmfr2_override;
917 extern struct arm64_ftr_override id_aa64pfr0_override;
918 extern struct arm64_ftr_override id_aa64pfr1_override;
919 extern struct arm64_ftr_override id_aa64zfr0_override;
920 extern struct arm64_ftr_override id_aa64smfr0_override;
921 extern struct arm64_ftr_override id_aa64isar1_override;
922 extern struct arm64_ftr_override id_aa64isar2_override;
923 
924 extern struct arm64_ftr_override arm64_sw_feature_override;
925 
926 static inline
927 u64 arm64_apply_feature_override(u64 val, int feat, int width,
928 				 const struct arm64_ftr_override *override)
929 {
930 	u64 oval = override->val;
931 
932 	/*
933 	 * When it encounters an invalid override (e.g., an override that
934 	 * cannot be honoured due to a missing CPU feature), the early idreg
935 	 * override code will set the mask to 0x0 and the value to non-zero for
936 	 * the field in question. In order to determine whether the override is
937 	 * valid or not for the field we are interested in, we first need to
938 	 * disregard bits belonging to other fields.
939 	 */
940 	oval &= GENMASK_ULL(feat + width - 1, feat);
941 
942 	/*
943 	 * The override is valid if all value bits are accounted for in the
944 	 * mask. If so, replace the masked bits with the override value.
945 	 */
946 	if (oval == (oval & override->mask)) {
947 		val &= ~override->mask;
948 		val |= oval;
949 	}
950 
951 	/* Extract the field from the updated value */
952 	return cpuid_feature_extract_unsigned_field(val, feat);
953 }
954 
955 static inline bool arm64_test_sw_feature_override(int feat)
956 {
957 	/*
958 	 * Software features are pseudo CPU features that have no underlying
959 	 * CPUID system register value to apply the override to.
960 	 */
961 	return arm64_apply_feature_override(0, feat, 4,
962 					    &arm64_sw_feature_override);
963 }
964 
965 static inline bool kaslr_disabled_cmdline(void)
966 {
967 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_NOKASLR);
968 }
969 
970 u32 get_kvm_ipa_limit(void);
971 void dump_cpu_features(void);
972 
973 static inline bool cpu_has_bti(void)
974 {
975 	if (!IS_ENABLED(CONFIG_ARM64_BTI))
976 		return false;
977 
978 	return arm64_apply_feature_override(read_cpuid(ID_AA64PFR1_EL1),
979 					    ID_AA64PFR1_EL1_BT_SHIFT, 4,
980 					    &id_aa64pfr1_override);
981 }
982 
983 static inline bool cpu_has_pac(void)
984 {
985 	u64 isar1, isar2;
986 
987 	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
988 		return false;
989 
990 	isar1 = read_cpuid(ID_AA64ISAR1_EL1);
991 	isar2 = read_cpuid(ID_AA64ISAR2_EL1);
992 
993 	if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_APA_SHIFT, 4,
994 					 &id_aa64isar1_override))
995 		return true;
996 
997 	if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_API_SHIFT, 4,
998 					 &id_aa64isar1_override))
999 		return true;
1000 
1001 	return arm64_apply_feature_override(isar2, ID_AA64ISAR2_EL1_APA3_SHIFT, 4,
1002 					    &id_aa64isar2_override);
1003 }
1004 
1005 static inline bool cpu_has_lva(void)
1006 {
1007 	u64 mmfr2;
1008 
1009 	mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1010 	mmfr2 &= ~id_aa64mmfr2_override.mask;
1011 	mmfr2 |= id_aa64mmfr2_override.val;
1012 	return cpuid_feature_extract_unsigned_field(mmfr2,
1013 						    ID_AA64MMFR2_EL1_VARange_SHIFT);
1014 }
1015 
1016 static inline bool cpu_has_lpa2(void)
1017 {
1018 #ifdef CONFIG_ARM64_LPA2
1019 	u64 mmfr0;
1020 	int feat;
1021 
1022 	mmfr0 = read_sysreg(id_aa64mmfr0_el1);
1023 	mmfr0 &= ~id_aa64mmfr0_override.mask;
1024 	mmfr0 |= id_aa64mmfr0_override.val;
1025 	feat = cpuid_feature_extract_signed_field(mmfr0,
1026 						  ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1027 
1028 	return feat >= ID_AA64MMFR0_EL1_TGRAN_LPA2;
1029 #else
1030 	return false;
1031 #endif
1032 }
1033 
1034 #endif /* __ASSEMBLY__ */
1035 
1036 #endif
1037