1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org> 4 */ 5 6 #ifndef __ASM_CPUFEATURE_H 7 #define __ASM_CPUFEATURE_H 8 9 #include <asm/alternative-macros.h> 10 #include <asm/cpucaps.h> 11 #include <asm/cputype.h> 12 #include <asm/hwcap.h> 13 #include <asm/sysreg.h> 14 15 #define MAX_CPU_FEATURES 128 16 #define cpu_feature(x) KERNEL_HWCAP_ ## x 17 18 #define ARM64_SW_FEATURE_OVERRIDE_NOKASLR 0 19 #define ARM64_SW_FEATURE_OVERRIDE_HVHE 4 20 21 #ifndef __ASSEMBLY__ 22 23 #include <linux/bug.h> 24 #include <linux/jump_label.h> 25 #include <linux/kernel.h> 26 #include <linux/cpumask.h> 27 28 /* 29 * CPU feature register tracking 30 * 31 * The safe value of a CPUID feature field is dependent on the implications 32 * of the values assigned to it by the architecture. Based on the relationship 33 * between the values, the features are classified into 3 types - LOWER_SAFE, 34 * HIGHER_SAFE and EXACT. 35 * 36 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest 37 * for HIGHER_SAFE. It is expected that all CPUs have the same value for 38 * a field when EXACT is specified, failing which, the safe value specified 39 * in the table is chosen. 40 */ 41 42 enum ftr_type { 43 FTR_EXACT, /* Use a predefined safe value */ 44 FTR_LOWER_SAFE, /* Smaller value is safe */ 45 FTR_HIGHER_SAFE, /* Bigger value is safe */ 46 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ 47 }; 48 49 #define FTR_STRICT true /* SANITY check strict matching required */ 50 #define FTR_NONSTRICT false /* SANITY check ignored */ 51 52 #define FTR_SIGNED true /* Value should be treated as signed */ 53 #define FTR_UNSIGNED false /* Value should be treated as unsigned */ 54 55 #define FTR_VISIBLE true /* Feature visible to the user space */ 56 #define FTR_HIDDEN false /* Feature is hidden from the user */ 57 58 #define FTR_VISIBLE_IF_IS_ENABLED(config) \ 59 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN) 60 61 struct arm64_ftr_bits { 62 bool sign; /* Value is signed ? */ 63 bool visible; 64 bool strict; /* CPU Sanity check: strict matching required ? */ 65 enum ftr_type type; 66 u8 shift; 67 u8 width; 68 s64 safe_val; /* safe value for FTR_EXACT features */ 69 }; 70 71 /* 72 * Describe the early feature override to the core override code: 73 * 74 * @val Values that are to be merged into the final 75 * sanitised value of the register. Only the bitfields 76 * set to 1 in @mask are valid 77 * @mask Mask of the features that are overridden by @val 78 * 79 * A @mask field set to full-1 indicates that the corresponding field 80 * in @val is a valid override. 81 * 82 * A @mask field set to full-0 with the corresponding @val field set 83 * to full-0 denotes that this field has no override 84 * 85 * A @mask field set to full-0 with the corresponding @val field set 86 * to full-1 denotes thath this field has an invalid override. 87 */ 88 struct arm64_ftr_override { 89 u64 val; 90 u64 mask; 91 }; 92 93 /* 94 * @arm64_ftr_reg - Feature register 95 * @strict_mask Bits which should match across all CPUs for sanity. 96 * @sys_val Safe value across the CPUs (system view) 97 */ 98 struct arm64_ftr_reg { 99 const char *name; 100 u64 strict_mask; 101 u64 user_mask; 102 u64 sys_val; 103 u64 user_val; 104 struct arm64_ftr_override *override; 105 const struct arm64_ftr_bits *ftr_bits; 106 }; 107 108 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0; 109 110 /* 111 * CPU capabilities: 112 * 113 * We use arm64_cpu_capabilities to represent system features, errata work 114 * arounds (both used internally by kernel and tracked in system_cpucaps) and 115 * ELF HWCAPs (which are exposed to user). 116 * 117 * To support systems with heterogeneous CPUs, we need to make sure that we 118 * detect the capabilities correctly on the system and take appropriate 119 * measures to ensure there are no incompatibilities. 120 * 121 * This comment tries to explain how we treat the capabilities. 122 * Each capability has the following list of attributes : 123 * 124 * 1) Scope of Detection : The system detects a given capability by 125 * performing some checks at runtime. This could be, e.g, checking the 126 * value of a field in CPU ID feature register or checking the cpu 127 * model. The capability provides a call back ( @matches() ) to 128 * perform the check. Scope defines how the checks should be performed. 129 * There are three cases: 130 * 131 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one 132 * matches. This implies, we have to run the check on all the 133 * booting CPUs, until the system decides that state of the 134 * capability is finalised. (See section 2 below) 135 * Or 136 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs 137 * matches. This implies, we run the check only once, when the 138 * system decides to finalise the state of the capability. If the 139 * capability relies on a field in one of the CPU ID feature 140 * registers, we use the sanitised value of the register from the 141 * CPU feature infrastructure to make the decision. 142 * Or 143 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the 144 * feature. This category is for features that are "finalised" 145 * (or used) by the kernel very early even before the SMP cpus 146 * are brought up. 147 * 148 * The process of detection is usually denoted by "update" capability 149 * state in the code. 150 * 151 * 2) Finalise the state : The kernel should finalise the state of a 152 * capability at some point during its execution and take necessary 153 * actions if any. Usually, this is done, after all the boot-time 154 * enabled CPUs are brought up by the kernel, so that it can make 155 * better decision based on the available set of CPUs. However, there 156 * are some special cases, where the action is taken during the early 157 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with 158 * Virtualisation Host Extensions). The kernel usually disallows any 159 * changes to the state of a capability once it finalises the capability 160 * and takes any action, as it may be impossible to execute the actions 161 * safely. A CPU brought up after a capability is "finalised" is 162 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary 163 * CPUs are treated "late CPUs" for capabilities determined by the boot 164 * CPU. 165 * 166 * At the moment there are two passes of finalising the capabilities. 167 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via 168 * setup_boot_cpu_capabilities(). 169 * b) Everything except (a) - Run via setup_system_capabilities(). 170 * 171 * 3) Verification: When a CPU is brought online (e.g, by user or by the 172 * kernel), the kernel should make sure that it is safe to use the CPU, 173 * by verifying that the CPU is compliant with the state of the 174 * capabilities finalised already. This happens via : 175 * 176 * secondary_start_kernel()-> check_local_cpu_capabilities() 177 * 178 * As explained in (2) above, capabilities could be finalised at 179 * different points in the execution. Each newly booted CPU is verified 180 * against the capabilities that have been finalised by the time it 181 * boots. 182 * 183 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability 184 * except for the primary boot CPU. 185 * 186 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the 187 * user after the kernel boot are verified against the capability. 188 * 189 * If there is a conflict, the kernel takes an action, based on the 190 * severity (e.g, a CPU could be prevented from booting or cause a 191 * kernel panic). The CPU is allowed to "affect" the state of the 192 * capability, if it has not been finalised already. See section 5 193 * for more details on conflicts. 194 * 195 * 4) Action: As mentioned in (2), the kernel can take an action for each 196 * detected capability, on all CPUs on the system. Appropriate actions 197 * include, turning on an architectural feature, modifying the control 198 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via 199 * alternatives. The kernel patching is batched and performed at later 200 * point. The actions are always initiated only after the capability 201 * is finalised. This is usally denoted by "enabling" the capability. 202 * The actions are initiated as follows : 203 * a) Action is triggered on all online CPUs, after the capability is 204 * finalised, invoked within the stop_machine() context from 205 * enable_cpu_capabilitie(). 206 * 207 * b) Any late CPU, brought up after (1), the action is triggered via: 208 * 209 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities() 210 * 211 * 5) Conflicts: Based on the state of the capability on a late CPU vs. 212 * the system state, we could have the following combinations : 213 * 214 * x-----------------------------x 215 * | Type | System | Late CPU | 216 * |-----------------------------| 217 * | a | y | n | 218 * |-----------------------------| 219 * | b | n | y | 220 * x-----------------------------x 221 * 222 * Two separate flag bits are defined to indicate whether each kind of 223 * conflict can be allowed: 224 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed 225 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed 226 * 227 * Case (a) is not permitted for a capability that the system requires 228 * all CPUs to have in order for the capability to be enabled. This is 229 * typical for capabilities that represent enhanced functionality. 230 * 231 * Case (b) is not permitted for a capability that must be enabled 232 * during boot if any CPU in the system requires it in order to run 233 * safely. This is typical for erratum work arounds that cannot be 234 * enabled after the corresponding capability is finalised. 235 * 236 * In some non-typical cases either both (a) and (b), or neither, 237 * should be permitted. This can be described by including neither 238 * or both flags in the capability's type field. 239 * 240 * In case of a conflict, the CPU is prevented from booting. If the 241 * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability, 242 * then a kernel panic is triggered. 243 */ 244 245 246 /* 247 * Decide how the capability is detected. 248 * On any local CPU vs System wide vs the primary boot CPU 249 */ 250 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0)) 251 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1)) 252 /* 253 * The capabilitiy is detected on the Boot CPU and is used by kernel 254 * during early boot. i.e, the capability should be "detected" and 255 * "enabled" as early as possibly on all booting CPUs. 256 */ 257 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2)) 258 #define ARM64_CPUCAP_SCOPE_MASK \ 259 (ARM64_CPUCAP_SCOPE_SYSTEM | \ 260 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 261 ARM64_CPUCAP_SCOPE_BOOT_CPU) 262 263 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM 264 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU 265 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU 266 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK 267 268 /* 269 * Is it permitted for a late CPU to have this capability when system 270 * hasn't already enabled it ? 271 */ 272 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4)) 273 /* Is it safe for a late CPU to miss this capability when system has it */ 274 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5)) 275 /* Panic when a conflict is detected */ 276 #define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6)) 277 278 /* 279 * CPU errata workarounds that need to be enabled at boot time if one or 280 * more CPUs in the system requires it. When one of these capabilities 281 * has been enabled, it is safe to allow any CPU to boot that doesn't 282 * require the workaround. However, it is not safe if a "late" CPU 283 * requires a workaround and the system hasn't enabled it already. 284 */ 285 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \ 286 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 287 /* 288 * CPU feature detected at boot time based on system-wide value of a 289 * feature. It is safe for a late CPU to have this feature even though 290 * the system hasn't enabled it, although the feature will not be used 291 * by Linux in this case. If the system has enabled this feature already, 292 * then every late CPU must have it. 293 */ 294 #define ARM64_CPUCAP_SYSTEM_FEATURE \ 295 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 296 /* 297 * CPU feature detected at boot time based on feature of one or more CPUs. 298 * All possible conflicts for a late CPU are ignored. 299 * NOTE: this means that a late CPU with the feature will *not* cause the 300 * capability to be advertised by cpus_have_*cap()! 301 */ 302 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \ 303 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 304 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \ 305 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 306 307 /* 308 * CPU feature detected at boot time, on one or more CPUs. A late CPU 309 * is not allowed to have the capability when the system doesn't have it. 310 * It is Ok for a late CPU to miss the feature. 311 */ 312 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \ 313 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ 314 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) 315 316 /* 317 * CPU feature used early in the boot based on the boot CPU. All secondary 318 * CPUs must match the state of the capability as detected by the boot CPU. In 319 * case of a conflict, a kernel panic is triggered. 320 */ 321 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \ 322 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT) 323 324 /* 325 * CPU feature used early in the boot based on the boot CPU. It is safe for a 326 * late CPU to have this feature even though the boot CPU hasn't enabled it, 327 * although the feature will not be used by Linux in this case. If the boot CPU 328 * has enabled this feature already, then every late CPU must have it. 329 */ 330 #define ARM64_CPUCAP_BOOT_CPU_FEATURE \ 331 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) 332 333 struct arm64_cpu_capabilities { 334 const char *desc; 335 u16 capability; 336 u16 type; 337 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope); 338 /* 339 * Take the appropriate actions to configure this capability 340 * for this CPU. If the capability is detected by the kernel 341 * this will be called on all the CPUs in the system, 342 * including the hotplugged CPUs, regardless of whether the 343 * capability is available on that specific CPU. This is 344 * useful for some capabilities (e.g, working around CPU 345 * errata), where all the CPUs must take some action (e.g, 346 * changing system control/configuration). Thus, if an action 347 * is required only if the CPU has the capability, then the 348 * routine must check it before taking any action. 349 */ 350 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap); 351 union { 352 struct { /* To be used for erratum handling only */ 353 struct midr_range midr_range; 354 const struct arm64_midr_revidr { 355 u32 midr_rv; /* revision/variant */ 356 u32 revidr_mask; 357 } * const fixed_revs; 358 }; 359 360 const struct midr_range *midr_range_list; 361 struct { /* Feature register checking */ 362 u32 sys_reg; 363 u8 field_pos; 364 u8 field_width; 365 u8 min_field_value; 366 u8 hwcap_type; 367 bool sign; 368 unsigned long hwcap; 369 }; 370 }; 371 372 /* 373 * An optional list of "matches/cpu_enable" pair for the same 374 * "capability" of the same "type" as described by the parent. 375 * Only matches(), cpu_enable() and fields relevant to these 376 * methods are significant in the list. The cpu_enable is 377 * invoked only if the corresponding entry "matches()". 378 * However, if a cpu_enable() method is associated 379 * with multiple matches(), care should be taken that either 380 * the match criteria are mutually exclusive, or that the 381 * method is robust against being called multiple times. 382 */ 383 const struct arm64_cpu_capabilities *match_list; 384 const struct cpumask *cpus; 385 }; 386 387 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap) 388 { 389 return cap->type & ARM64_CPUCAP_SCOPE_MASK; 390 } 391 392 /* 393 * Generic helper for handling capabilities with multiple (match,enable) pairs 394 * of call backs, sharing the same capability bit. 395 * Iterate over each entry to see if at least one matches. 396 */ 397 static inline bool 398 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry, 399 int scope) 400 { 401 const struct arm64_cpu_capabilities *caps; 402 403 for (caps = entry->match_list; caps->matches; caps++) 404 if (caps->matches(caps, scope)) 405 return true; 406 407 return false; 408 } 409 410 static __always_inline bool is_vhe_hyp_code(void) 411 { 412 /* Only defined for code run in VHE hyp context */ 413 return __is_defined(__KVM_VHE_HYPERVISOR__); 414 } 415 416 static __always_inline bool is_nvhe_hyp_code(void) 417 { 418 /* Only defined for code run in NVHE hyp context */ 419 return __is_defined(__KVM_NVHE_HYPERVISOR__); 420 } 421 422 static __always_inline bool is_hyp_code(void) 423 { 424 return is_vhe_hyp_code() || is_nvhe_hyp_code(); 425 } 426 427 extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS); 428 429 extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS); 430 431 #define for_each_available_cap(cap) \ 432 for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS) 433 434 bool this_cpu_has_cap(unsigned int cap); 435 void cpu_set_feature(unsigned int num); 436 bool cpu_have_feature(unsigned int num); 437 unsigned long cpu_get_elf_hwcap(void); 438 unsigned long cpu_get_elf_hwcap2(void); 439 440 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name)) 441 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name)) 442 443 static __always_inline bool boot_capabilities_finalized(void) 444 { 445 return alternative_has_cap_likely(ARM64_ALWAYS_BOOT); 446 } 447 448 static __always_inline bool system_capabilities_finalized(void) 449 { 450 return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM); 451 } 452 453 /* 454 * Test for a capability with a runtime check. 455 * 456 * Before the capability is detected, this returns false. 457 */ 458 static __always_inline bool cpus_have_cap(unsigned int num) 459 { 460 if (__builtin_constant_p(num) && !cpucap_is_possible(num)) 461 return false; 462 if (num >= ARM64_NCAPS) 463 return false; 464 return arch_test_bit(num, system_cpucaps); 465 } 466 467 /* 468 * Test for a capability without a runtime check. 469 * 470 * Before boot capabilities are finalized, this will BUG(). 471 * After boot capabilities are finalized, this is patched to avoid a runtime 472 * check. 473 * 474 * @num must be a compile-time constant. 475 */ 476 static __always_inline bool cpus_have_final_boot_cap(int num) 477 { 478 if (boot_capabilities_finalized()) 479 return alternative_has_cap_unlikely(num); 480 else 481 BUG(); 482 } 483 484 /* 485 * Test for a capability without a runtime check. 486 * 487 * Before system capabilities are finalized, this will BUG(). 488 * After system capabilities are finalized, this is patched to avoid a runtime 489 * check. 490 * 491 * @num must be a compile-time constant. 492 */ 493 static __always_inline bool cpus_have_final_cap(int num) 494 { 495 if (system_capabilities_finalized()) 496 return alternative_has_cap_unlikely(num); 497 else 498 BUG(); 499 } 500 501 static inline int __attribute_const__ 502 cpuid_feature_extract_signed_field_width(u64 features, int field, int width) 503 { 504 return (s64)(features << (64 - width - field)) >> (64 - width); 505 } 506 507 static inline int __attribute_const__ 508 cpuid_feature_extract_signed_field(u64 features, int field) 509 { 510 return cpuid_feature_extract_signed_field_width(features, field, 4); 511 } 512 513 static __always_inline unsigned int __attribute_const__ 514 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width) 515 { 516 return (u64)(features << (64 - width - field)) >> (64 - width); 517 } 518 519 static __always_inline unsigned int __attribute_const__ 520 cpuid_feature_extract_unsigned_field(u64 features, int field) 521 { 522 return cpuid_feature_extract_unsigned_field_width(features, field, 4); 523 } 524 525 /* 526 * Fields that identify the version of the Performance Monitors Extension do 527 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825, 528 * "Alternative ID scheme used for the Performance Monitors Extension version". 529 */ 530 static inline u64 __attribute_const__ 531 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap) 532 { 533 u64 val = cpuid_feature_extract_unsigned_field(features, field); 534 u64 mask = GENMASK_ULL(field + 3, field); 535 536 /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */ 537 if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) 538 val = 0; 539 540 if (val > cap) { 541 features &= ~mask; 542 features |= (cap << field) & mask; 543 } 544 545 return features; 546 } 547 548 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp) 549 { 550 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift); 551 } 552 553 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg) 554 { 555 return (reg->user_val | (reg->sys_val & reg->user_mask)); 556 } 557 558 static inline int __attribute_const__ 559 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign) 560 { 561 if (WARN_ON_ONCE(!width)) 562 width = 4; 563 return (sign) ? 564 cpuid_feature_extract_signed_field_width(features, field, width) : 565 cpuid_feature_extract_unsigned_field_width(features, field, width); 566 } 567 568 static inline int __attribute_const__ 569 cpuid_feature_extract_field(u64 features, int field, bool sign) 570 { 571 return cpuid_feature_extract_field_width(features, field, 4, sign); 572 } 573 574 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val) 575 { 576 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign); 577 } 578 579 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0) 580 { 581 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 || 582 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1; 583 } 584 585 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0) 586 { 587 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT); 588 589 return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT; 590 } 591 592 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0) 593 { 594 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT); 595 596 return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT; 597 } 598 599 static inline bool id_aa64pfr0_sve(u64 pfr0) 600 { 601 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT); 602 603 return val > 0; 604 } 605 606 static inline bool id_aa64pfr1_sme(u64 pfr1) 607 { 608 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT); 609 610 return val > 0; 611 } 612 613 static inline bool id_aa64pfr1_mte(u64 pfr1) 614 { 615 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT); 616 617 return val >= ID_AA64PFR1_EL1_MTE_MTE2; 618 } 619 620 void __init setup_boot_cpu_features(void); 621 void __init setup_system_features(void); 622 void __init setup_user_features(void); 623 624 void check_local_cpu_capabilities(void); 625 626 u64 read_sanitised_ftr_reg(u32 id); 627 u64 __read_sysreg_by_encoding(u32 sys_id); 628 629 static inline bool cpu_supports_mixed_endian_el0(void) 630 { 631 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1)); 632 } 633 634 635 static inline bool supports_csv2p3(int scope) 636 { 637 u64 pfr0; 638 u8 csv2_val; 639 640 if (scope == SCOPE_LOCAL_CPU) 641 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1); 642 else 643 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 644 645 csv2_val = cpuid_feature_extract_unsigned_field(pfr0, 646 ID_AA64PFR0_EL1_CSV2_SHIFT); 647 return csv2_val == 3; 648 } 649 650 static inline bool supports_clearbhb(int scope) 651 { 652 u64 isar2; 653 654 if (scope == SCOPE_LOCAL_CPU) 655 isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1); 656 else 657 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 658 659 return cpuid_feature_extract_unsigned_field(isar2, 660 ID_AA64ISAR2_EL1_CLRBHB_SHIFT); 661 } 662 663 const struct cpumask *system_32bit_el0_cpumask(void); 664 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); 665 666 static inline bool system_supports_32bit_el0(void) 667 { 668 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 669 670 return static_branch_unlikely(&arm64_mismatched_32bit_el0) || 671 id_aa64pfr0_32bit_el0(pfr0); 672 } 673 674 static inline bool system_supports_4kb_granule(void) 675 { 676 u64 mmfr0; 677 u32 val; 678 679 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 680 val = cpuid_feature_extract_unsigned_field(mmfr0, 681 ID_AA64MMFR0_EL1_TGRAN4_SHIFT); 682 683 return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) && 684 (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX); 685 } 686 687 static inline bool system_supports_64kb_granule(void) 688 { 689 u64 mmfr0; 690 u32 val; 691 692 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 693 val = cpuid_feature_extract_unsigned_field(mmfr0, 694 ID_AA64MMFR0_EL1_TGRAN64_SHIFT); 695 696 return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) && 697 (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX); 698 } 699 700 static inline bool system_supports_16kb_granule(void) 701 { 702 u64 mmfr0; 703 u32 val; 704 705 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 706 val = cpuid_feature_extract_unsigned_field(mmfr0, 707 ID_AA64MMFR0_EL1_TGRAN16_SHIFT); 708 709 return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) && 710 (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX); 711 } 712 713 static inline bool system_supports_mixed_endian_el0(void) 714 { 715 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1)); 716 } 717 718 static inline bool system_supports_mixed_endian(void) 719 { 720 u64 mmfr0; 721 u32 val; 722 723 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 724 val = cpuid_feature_extract_unsigned_field(mmfr0, 725 ID_AA64MMFR0_EL1_BIGEND_SHIFT); 726 727 return val == 0x1; 728 } 729 730 static __always_inline bool system_supports_fpsimd(void) 731 { 732 return alternative_has_cap_likely(ARM64_HAS_FPSIMD); 733 } 734 735 static inline bool system_uses_hw_pan(void) 736 { 737 return alternative_has_cap_unlikely(ARM64_HAS_PAN); 738 } 739 740 static inline bool system_uses_ttbr0_pan(void) 741 { 742 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) && 743 !system_uses_hw_pan(); 744 } 745 746 static __always_inline bool system_supports_sve(void) 747 { 748 return alternative_has_cap_unlikely(ARM64_SVE); 749 } 750 751 static __always_inline bool system_supports_sme(void) 752 { 753 return alternative_has_cap_unlikely(ARM64_SME); 754 } 755 756 static __always_inline bool system_supports_sme2(void) 757 { 758 return alternative_has_cap_unlikely(ARM64_SME2); 759 } 760 761 static __always_inline bool system_supports_fa64(void) 762 { 763 return alternative_has_cap_unlikely(ARM64_SME_FA64); 764 } 765 766 static __always_inline bool system_supports_tpidr2(void) 767 { 768 return system_supports_sme(); 769 } 770 771 static __always_inline bool system_supports_cnp(void) 772 { 773 return alternative_has_cap_unlikely(ARM64_HAS_CNP); 774 } 775 776 static inline bool system_supports_address_auth(void) 777 { 778 return cpus_have_final_boot_cap(ARM64_HAS_ADDRESS_AUTH); 779 } 780 781 static inline bool system_supports_generic_auth(void) 782 { 783 return alternative_has_cap_unlikely(ARM64_HAS_GENERIC_AUTH); 784 } 785 786 static inline bool system_has_full_ptr_auth(void) 787 { 788 return system_supports_address_auth() && system_supports_generic_auth(); 789 } 790 791 static __always_inline bool system_uses_irq_prio_masking(void) 792 { 793 return alternative_has_cap_unlikely(ARM64_HAS_GIC_PRIO_MASKING); 794 } 795 796 static inline bool system_supports_mte(void) 797 { 798 return alternative_has_cap_unlikely(ARM64_MTE); 799 } 800 801 static inline bool system_has_prio_mask_debugging(void) 802 { 803 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) && 804 system_uses_irq_prio_masking(); 805 } 806 807 static inline bool system_supports_bti(void) 808 { 809 return cpus_have_final_cap(ARM64_BTI); 810 } 811 812 static inline bool system_supports_bti_kernel(void) 813 { 814 return IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && 815 cpus_have_final_boot_cap(ARM64_BTI); 816 } 817 818 static inline bool system_supports_tlb_range(void) 819 { 820 return alternative_has_cap_unlikely(ARM64_HAS_TLB_RANGE); 821 } 822 823 static inline bool system_supports_lpa2(void) 824 { 825 return cpus_have_final_cap(ARM64_HAS_LPA2); 826 } 827 828 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt); 829 bool try_emulate_mrs(struct pt_regs *regs, u32 isn); 830 831 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange) 832 { 833 switch (parange) { 834 case ID_AA64MMFR0_EL1_PARANGE_32: return 32; 835 case ID_AA64MMFR0_EL1_PARANGE_36: return 36; 836 case ID_AA64MMFR0_EL1_PARANGE_40: return 40; 837 case ID_AA64MMFR0_EL1_PARANGE_42: return 42; 838 case ID_AA64MMFR0_EL1_PARANGE_44: return 44; 839 case ID_AA64MMFR0_EL1_PARANGE_48: return 48; 840 case ID_AA64MMFR0_EL1_PARANGE_52: return 52; 841 /* 842 * A future PE could use a value unknown to the kernel. 843 * However, by the "D10.1.4 Principles of the ID scheme 844 * for fields in ID registers", ARM DDI 0487C.a, any new 845 * value is guaranteed to be higher than what we know already. 846 * As a safe limit, we return the limit supported by the kernel. 847 */ 848 default: return CONFIG_ARM64_PA_BITS; 849 } 850 } 851 852 /* Check whether hardware update of the Access flag is supported */ 853 static inline bool cpu_has_hw_af(void) 854 { 855 u64 mmfr1; 856 857 if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM)) 858 return false; 859 860 /* 861 * Use cached version to avoid emulated msr operation on KVM 862 * guests. 863 */ 864 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 865 return cpuid_feature_extract_unsigned_field(mmfr1, 866 ID_AA64MMFR1_EL1_HAFDBS_SHIFT); 867 } 868 869 static inline bool cpu_has_pan(void) 870 { 871 u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 872 return cpuid_feature_extract_unsigned_field(mmfr1, 873 ID_AA64MMFR1_EL1_PAN_SHIFT); 874 } 875 876 #ifdef CONFIG_ARM64_AMU_EXTN 877 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */ 878 extern bool cpu_has_amu_feat(int cpu); 879 #else 880 static inline bool cpu_has_amu_feat(int cpu) 881 { 882 return false; 883 } 884 #endif 885 886 /* Get a cpu that supports the Activity Monitors Unit (AMU) */ 887 extern int get_cpu_with_amu_feat(void); 888 889 static inline unsigned int get_vmid_bits(u64 mmfr1) 890 { 891 int vmid_bits; 892 893 vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1, 894 ID_AA64MMFR1_EL1_VMIDBits_SHIFT); 895 if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16) 896 return 16; 897 898 /* 899 * Return the default here even if any reserved 900 * value is fetched from the system register. 901 */ 902 return 8; 903 } 904 905 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur); 906 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id); 907 908 extern struct arm64_ftr_override id_aa64mmfr1_override; 909 extern struct arm64_ftr_override id_aa64pfr0_override; 910 extern struct arm64_ftr_override id_aa64pfr1_override; 911 extern struct arm64_ftr_override id_aa64zfr0_override; 912 extern struct arm64_ftr_override id_aa64smfr0_override; 913 extern struct arm64_ftr_override id_aa64isar1_override; 914 extern struct arm64_ftr_override id_aa64isar2_override; 915 916 extern struct arm64_ftr_override arm64_sw_feature_override; 917 918 u32 get_kvm_ipa_limit(void); 919 void dump_cpu_features(void); 920 921 #endif /* __ASSEMBLY__ */ 922 923 #endif 924