xref: /linux/arch/arm64/include/asm/cpufeature.h (revision 37744feebc086908fd89760650f458ab19071750)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5 
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8 
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
13 
14 #define MAX_CPU_FEATURES	64
15 #define cpu_feature(x)		KERNEL_HWCAP_ ## x
16 
17 #ifndef __ASSEMBLY__
18 
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
22 
23 /*
24  * CPU feature register tracking
25  *
26  * The safe value of a CPUID feature field is dependent on the implications
27  * of the values assigned to it by the architecture. Based on the relationship
28  * between the values, the features are classified into 3 types - LOWER_SAFE,
29  * HIGHER_SAFE and EXACT.
30  *
31  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33  * a field when EXACT is specified, failing which, the safe value specified
34  * in the table is chosen.
35  */
36 
37 enum ftr_type {
38 	FTR_EXACT,			/* Use a predefined safe value */
39 	FTR_LOWER_SAFE,			/* Smaller value is safe */
40 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
41 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
42 };
43 
44 #define FTR_STRICT	true	/* SANITY check strict matching required */
45 #define FTR_NONSTRICT	false	/* SANITY check ignored */
46 
47 #define FTR_SIGNED	true	/* Value should be treated as signed */
48 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
49 
50 #define FTR_VISIBLE	true	/* Feature visible to the user space */
51 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
52 
53 #define FTR_VISIBLE_IF_IS_ENABLED(config)		\
54 	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
55 
56 struct arm64_ftr_bits {
57 	bool		sign;	/* Value is signed ? */
58 	bool		visible;
59 	bool		strict;	/* CPU Sanity check: strict matching required ? */
60 	enum ftr_type	type;
61 	u8		shift;
62 	u8		width;
63 	s64		safe_val; /* safe value for FTR_EXACT features */
64 };
65 
66 /*
67  * @arm64_ftr_reg - Feature register
68  * @strict_mask		Bits which should match across all CPUs for sanity.
69  * @sys_val		Safe value across the CPUs (system view)
70  */
71 struct arm64_ftr_reg {
72 	const char			*name;
73 	u64				strict_mask;
74 	u64				user_mask;
75 	u64				sys_val;
76 	u64				user_val;
77 	const struct arm64_ftr_bits	*ftr_bits;
78 };
79 
80 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
81 
82 /*
83  * CPU capabilities:
84  *
85  * We use arm64_cpu_capabilities to represent system features, errata work
86  * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
87  * ELF HWCAPs (which are exposed to user).
88  *
89  * To support systems with heterogeneous CPUs, we need to make sure that we
90  * detect the capabilities correctly on the system and take appropriate
91  * measures to ensure there are no incompatibilities.
92  *
93  * This comment tries to explain how we treat the capabilities.
94  * Each capability has the following list of attributes :
95  *
96  * 1) Scope of Detection : The system detects a given capability by
97  *    performing some checks at runtime. This could be, e.g, checking the
98  *    value of a field in CPU ID feature register or checking the cpu
99  *    model. The capability provides a call back ( @matches() ) to
100  *    perform the check. Scope defines how the checks should be performed.
101  *    There are three cases:
102  *
103  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
104  *        matches. This implies, we have to run the check on all the
105  *        booting CPUs, until the system decides that state of the
106  *        capability is finalised. (See section 2 below)
107  *		Or
108  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
109  *        matches. This implies, we run the check only once, when the
110  *        system decides to finalise the state of the capability. If the
111  *        capability relies on a field in one of the CPU ID feature
112  *        registers, we use the sanitised value of the register from the
113  *        CPU feature infrastructure to make the decision.
114  *		Or
115  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
116  *        feature. This category is for features that are "finalised"
117  *        (or used) by the kernel very early even before the SMP cpus
118  *        are brought up.
119  *
120  *    The process of detection is usually denoted by "update" capability
121  *    state in the code.
122  *
123  * 2) Finalise the state : The kernel should finalise the state of a
124  *    capability at some point during its execution and take necessary
125  *    actions if any. Usually, this is done, after all the boot-time
126  *    enabled CPUs are brought up by the kernel, so that it can make
127  *    better decision based on the available set of CPUs. However, there
128  *    are some special cases, where the action is taken during the early
129  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
130  *    Virtualisation Host Extensions). The kernel usually disallows any
131  *    changes to the state of a capability once it finalises the capability
132  *    and takes any action, as it may be impossible to execute the actions
133  *    safely. A CPU brought up after a capability is "finalised" is
134  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
135  *    CPUs are treated "late CPUs" for capabilities determined by the boot
136  *    CPU.
137  *
138  *    At the moment there are two passes of finalising the capabilities.
139  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
140  *         setup_boot_cpu_capabilities().
141  *      b) Everything except (a) - Run via setup_system_capabilities().
142  *
143  * 3) Verification: When a CPU is brought online (e.g, by user or by the
144  *    kernel), the kernel should make sure that it is safe to use the CPU,
145  *    by verifying that the CPU is compliant with the state of the
146  *    capabilities finalised already. This happens via :
147  *
148  *	secondary_start_kernel()-> check_local_cpu_capabilities()
149  *
150  *    As explained in (2) above, capabilities could be finalised at
151  *    different points in the execution. Each newly booted CPU is verified
152  *    against the capabilities that have been finalised by the time it
153  *    boots.
154  *
155  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
156  *	except for the primary boot CPU.
157  *
158  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
159  *	user after the kernel boot are verified against the capability.
160  *
161  *    If there is a conflict, the kernel takes an action, based on the
162  *    severity (e.g, a CPU could be prevented from booting or cause a
163  *    kernel panic). The CPU is allowed to "affect" the state of the
164  *    capability, if it has not been finalised already. See section 5
165  *    for more details on conflicts.
166  *
167  * 4) Action: As mentioned in (2), the kernel can take an action for each
168  *    detected capability, on all CPUs on the system. Appropriate actions
169  *    include, turning on an architectural feature, modifying the control
170  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
171  *    alternatives. The kernel patching is batched and performed at later
172  *    point. The actions are always initiated only after the capability
173  *    is finalised. This is usally denoted by "enabling" the capability.
174  *    The actions are initiated as follows :
175  *	a) Action is triggered on all online CPUs, after the capability is
176  *	finalised, invoked within the stop_machine() context from
177  *	enable_cpu_capabilitie().
178  *
179  *	b) Any late CPU, brought up after (1), the action is triggered via:
180  *
181  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
182  *
183  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
184  *    the system state, we could have the following combinations :
185  *
186  *		x-----------------------------x
187  *		| Type  | System   | Late CPU |
188  *		|-----------------------------|
189  *		|  a    |   y      |    n     |
190  *		|-----------------------------|
191  *		|  b    |   n      |    y     |
192  *		x-----------------------------x
193  *
194  *     Two separate flag bits are defined to indicate whether each kind of
195  *     conflict can be allowed:
196  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
197  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
198  *
199  *     Case (a) is not permitted for a capability that the system requires
200  *     all CPUs to have in order for the capability to be enabled. This is
201  *     typical for capabilities that represent enhanced functionality.
202  *
203  *     Case (b) is not permitted for a capability that must be enabled
204  *     during boot if any CPU in the system requires it in order to run
205  *     safely. This is typical for erratum work arounds that cannot be
206  *     enabled after the corresponding capability is finalised.
207  *
208  *     In some non-typical cases either both (a) and (b), or neither,
209  *     should be permitted. This can be described by including neither
210  *     or both flags in the capability's type field.
211  *
212  *     In case of a conflict, the CPU is prevented from booting. If the
213  *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
214  *     then a kernel panic is triggered.
215  */
216 
217 
218 /*
219  * Decide how the capability is detected.
220  * On any local CPU vs System wide vs the primary boot CPU
221  */
222 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
223 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
224 /*
225  * The capabilitiy is detected on the Boot CPU and is used by kernel
226  * during early boot. i.e, the capability should be "detected" and
227  * "enabled" as early as possibly on all booting CPUs.
228  */
229 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
230 #define ARM64_CPUCAP_SCOPE_MASK			\
231 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
232 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
233 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
234 
235 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
236 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
237 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
238 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
239 
240 /*
241  * Is it permitted for a late CPU to have this capability when system
242  * hasn't already enabled it ?
243  */
244 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
245 /* Is it safe for a late CPU to miss this capability when system has it */
246 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
247 /* Panic when a conflict is detected */
248 #define ARM64_CPUCAP_PANIC_ON_CONFLICT		((u16)BIT(6))
249 
250 /*
251  * CPU errata workarounds that need to be enabled at boot time if one or
252  * more CPUs in the system requires it. When one of these capabilities
253  * has been enabled, it is safe to allow any CPU to boot that doesn't
254  * require the workaround. However, it is not safe if a "late" CPU
255  * requires a workaround and the system hasn't enabled it already.
256  */
257 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
258 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
259 /*
260  * CPU feature detected at boot time based on system-wide value of a
261  * feature. It is safe for a late CPU to have this feature even though
262  * the system hasn't enabled it, although the feature will not be used
263  * by Linux in this case. If the system has enabled this feature already,
264  * then every late CPU must have it.
265  */
266 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
267 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
268 /*
269  * CPU feature detected at boot time based on feature of one or more CPUs.
270  * All possible conflicts for a late CPU are ignored.
271  */
272 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
273 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
274 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
275 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
276 
277 /*
278  * CPU feature detected at boot time, on one or more CPUs. A late CPU
279  * is not allowed to have the capability when the system doesn't have it.
280  * It is Ok for a late CPU to miss the feature.
281  */
282 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
283 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
284 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
285 
286 /*
287  * CPU feature used early in the boot based on the boot CPU. All secondary
288  * CPUs must match the state of the capability as detected by the boot CPU. In
289  * case of a conflict, a kernel panic is triggered.
290  */
291 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE		\
292 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
293 
294 /*
295  * CPU feature used early in the boot based on the boot CPU. It is safe for a
296  * late CPU to have this feature even though the boot CPU hasn't enabled it,
297  * although the feature will not be used by Linux in this case. If the boot CPU
298  * has enabled this feature already, then every late CPU must have it.
299  */
300 #define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
301 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
302 
303 struct arm64_cpu_capabilities {
304 	const char *desc;
305 	u16 capability;
306 	u16 type;
307 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
308 	/*
309 	 * Take the appropriate actions to configure this capability
310 	 * for this CPU. If the capability is detected by the kernel
311 	 * this will be called on all the CPUs in the system,
312 	 * including the hotplugged CPUs, regardless of whether the
313 	 * capability is available on that specific CPU. This is
314 	 * useful for some capabilities (e.g, working around CPU
315 	 * errata), where all the CPUs must take some action (e.g,
316 	 * changing system control/configuration). Thus, if an action
317 	 * is required only if the CPU has the capability, then the
318 	 * routine must check it before taking any action.
319 	 */
320 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
321 	union {
322 		struct {	/* To be used for erratum handling only */
323 			struct midr_range midr_range;
324 			const struct arm64_midr_revidr {
325 				u32 midr_rv;		/* revision/variant */
326 				u32 revidr_mask;
327 			} * const fixed_revs;
328 		};
329 
330 		const struct midr_range *midr_range_list;
331 		struct {	/* Feature register checking */
332 			u32 sys_reg;
333 			u8 field_pos;
334 			u8 min_field_value;
335 			u8 hwcap_type;
336 			bool sign;
337 			unsigned long hwcap;
338 		};
339 	};
340 
341 	/*
342 	 * An optional list of "matches/cpu_enable" pair for the same
343 	 * "capability" of the same "type" as described by the parent.
344 	 * Only matches(), cpu_enable() and fields relevant to these
345 	 * methods are significant in the list. The cpu_enable is
346 	 * invoked only if the corresponding entry "matches()".
347 	 * However, if a cpu_enable() method is associated
348 	 * with multiple matches(), care should be taken that either
349 	 * the match criteria are mutually exclusive, or that the
350 	 * method is robust against being called multiple times.
351 	 */
352 	const struct arm64_cpu_capabilities *match_list;
353 };
354 
355 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
356 {
357 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
358 }
359 
360 /*
361  * Generic helper for handling capabilties with multiple (match,enable) pairs
362  * of call backs, sharing the same capability bit.
363  * Iterate over each entry to see if at least one matches.
364  */
365 static inline bool
366 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
367 			       int scope)
368 {
369 	const struct arm64_cpu_capabilities *caps;
370 
371 	for (caps = entry->match_list; caps->matches; caps++)
372 		if (caps->matches(caps, scope))
373 			return true;
374 
375 	return false;
376 }
377 
378 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
379 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
380 extern struct static_key_false arm64_const_caps_ready;
381 
382 /* ARM64 CAPS + alternative_cb */
383 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
384 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
385 
386 #define for_each_available_cap(cap)		\
387 	for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
388 
389 bool this_cpu_has_cap(unsigned int cap);
390 void cpu_set_feature(unsigned int num);
391 bool cpu_have_feature(unsigned int num);
392 unsigned long cpu_get_elf_hwcap(void);
393 unsigned long cpu_get_elf_hwcap2(void);
394 
395 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
396 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
397 
398 static __always_inline bool system_capabilities_finalized(void)
399 {
400 	return static_branch_likely(&arm64_const_caps_ready);
401 }
402 
403 /*
404  * Test for a capability with a runtime check.
405  *
406  * Before the capability is detected, this returns false.
407  */
408 static inline bool cpus_have_cap(unsigned int num)
409 {
410 	if (num >= ARM64_NCAPS)
411 		return false;
412 	return test_bit(num, cpu_hwcaps);
413 }
414 
415 /*
416  * Test for a capability without a runtime check.
417  *
418  * Before capabilities are finalized, this returns false.
419  * After capabilities are finalized, this is patched to avoid a runtime check.
420  *
421  * @num must be a compile-time constant.
422  */
423 static __always_inline bool __cpus_have_const_cap(int num)
424 {
425 	if (num >= ARM64_NCAPS)
426 		return false;
427 	return static_branch_unlikely(&cpu_hwcap_keys[num]);
428 }
429 
430 /*
431  * Test for a capability, possibly with a runtime check.
432  *
433  * Before capabilities are finalized, this behaves as cpus_have_cap().
434  * After capabilities are finalized, this is patched to avoid a runtime check.
435  *
436  * @num must be a compile-time constant.
437  */
438 static __always_inline bool cpus_have_const_cap(int num)
439 {
440 	if (system_capabilities_finalized())
441 		return __cpus_have_const_cap(num);
442 	else
443 		return cpus_have_cap(num);
444 }
445 
446 /*
447  * Test for a capability without a runtime check.
448  *
449  * Before capabilities are finalized, this will BUG().
450  * After capabilities are finalized, this is patched to avoid a runtime check.
451  *
452  * @num must be a compile-time constant.
453  */
454 static __always_inline bool cpus_have_final_cap(int num)
455 {
456 	if (system_capabilities_finalized())
457 		return __cpus_have_const_cap(num);
458 	else
459 		BUG();
460 }
461 
462 static inline void cpus_set_cap(unsigned int num)
463 {
464 	if (num >= ARM64_NCAPS) {
465 		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
466 			num, ARM64_NCAPS);
467 	} else {
468 		__set_bit(num, cpu_hwcaps);
469 	}
470 }
471 
472 static inline int __attribute_const__
473 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
474 {
475 	return (s64)(features << (64 - width - field)) >> (64 - width);
476 }
477 
478 static inline int __attribute_const__
479 cpuid_feature_extract_signed_field(u64 features, int field)
480 {
481 	return cpuid_feature_extract_signed_field_width(features, field, 4);
482 }
483 
484 static __always_inline unsigned int __attribute_const__
485 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
486 {
487 	return (u64)(features << (64 - width - field)) >> (64 - width);
488 }
489 
490 static __always_inline unsigned int __attribute_const__
491 cpuid_feature_extract_unsigned_field(u64 features, int field)
492 {
493 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
494 }
495 
496 /*
497  * Fields that identify the version of the Performance Monitors Extension do
498  * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
499  * "Alternative ID scheme used for the Performance Monitors Extension version".
500  */
501 static inline u64 __attribute_const__
502 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
503 {
504 	u64 val = cpuid_feature_extract_unsigned_field(features, field);
505 	u64 mask = GENMASK_ULL(field + 3, field);
506 
507 	/* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
508 	if (val == 0xf)
509 		val = 0;
510 
511 	if (val > cap) {
512 		features &= ~mask;
513 		features |= (cap << field) & mask;
514 	}
515 
516 	return features;
517 }
518 
519 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
520 {
521 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
522 }
523 
524 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
525 {
526 	return (reg->user_val | (reg->sys_val & reg->user_mask));
527 }
528 
529 static inline int __attribute_const__
530 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
531 {
532 	return (sign) ?
533 		cpuid_feature_extract_signed_field_width(features, field, width) :
534 		cpuid_feature_extract_unsigned_field_width(features, field, width);
535 }
536 
537 static inline int __attribute_const__
538 cpuid_feature_extract_field(u64 features, int field, bool sign)
539 {
540 	return cpuid_feature_extract_field_width(features, field, 4, sign);
541 }
542 
543 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
544 {
545 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
546 }
547 
548 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
549 {
550 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
551 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
552 }
553 
554 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
555 {
556 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
557 
558 	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
559 }
560 
561 static inline bool id_aa64pfr0_sve(u64 pfr0)
562 {
563 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
564 
565 	return val > 0;
566 }
567 
568 void __init setup_cpu_features(void);
569 void check_local_cpu_capabilities(void);
570 
571 u64 read_sanitised_ftr_reg(u32 id);
572 
573 static inline bool cpu_supports_mixed_endian_el0(void)
574 {
575 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
576 }
577 
578 static inline bool system_supports_32bit_el0(void)
579 {
580 	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
581 }
582 
583 static inline bool system_supports_4kb_granule(void)
584 {
585 	u64 mmfr0;
586 	u32 val;
587 
588 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
589 	val = cpuid_feature_extract_unsigned_field(mmfr0,
590 						ID_AA64MMFR0_TGRAN4_SHIFT);
591 
592 	return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
593 }
594 
595 static inline bool system_supports_64kb_granule(void)
596 {
597 	u64 mmfr0;
598 	u32 val;
599 
600 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
601 	val = cpuid_feature_extract_unsigned_field(mmfr0,
602 						ID_AA64MMFR0_TGRAN64_SHIFT);
603 
604 	return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
605 }
606 
607 static inline bool system_supports_16kb_granule(void)
608 {
609 	u64 mmfr0;
610 	u32 val;
611 
612 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
613 	val = cpuid_feature_extract_unsigned_field(mmfr0,
614 						ID_AA64MMFR0_TGRAN16_SHIFT);
615 
616 	return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
617 }
618 
619 static inline bool system_supports_mixed_endian_el0(void)
620 {
621 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
622 }
623 
624 static inline bool system_supports_mixed_endian(void)
625 {
626 	u64 mmfr0;
627 	u32 val;
628 
629 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
630 	val = cpuid_feature_extract_unsigned_field(mmfr0,
631 						ID_AA64MMFR0_BIGENDEL_SHIFT);
632 
633 	return val == 0x1;
634 }
635 
636 static __always_inline bool system_supports_fpsimd(void)
637 {
638 	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
639 }
640 
641 static inline bool system_uses_ttbr0_pan(void)
642 {
643 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
644 		!cpus_have_const_cap(ARM64_HAS_PAN);
645 }
646 
647 static __always_inline bool system_supports_sve(void)
648 {
649 	return IS_ENABLED(CONFIG_ARM64_SVE) &&
650 		cpus_have_const_cap(ARM64_SVE);
651 }
652 
653 static __always_inline bool system_supports_cnp(void)
654 {
655 	return IS_ENABLED(CONFIG_ARM64_CNP) &&
656 		cpus_have_const_cap(ARM64_HAS_CNP);
657 }
658 
659 static inline bool system_supports_address_auth(void)
660 {
661 	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
662 		cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
663 }
664 
665 static inline bool system_supports_generic_auth(void)
666 {
667 	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
668 		cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
669 }
670 
671 static inline bool system_uses_irq_prio_masking(void)
672 {
673 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
674 	       cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
675 }
676 
677 static inline bool system_has_prio_mask_debugging(void)
678 {
679 	return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
680 	       system_uses_irq_prio_masking();
681 }
682 
683 #define ARM64_BP_HARDEN_UNKNOWN		-1
684 #define ARM64_BP_HARDEN_WA_NEEDED	0
685 #define ARM64_BP_HARDEN_NOT_REQUIRED	1
686 
687 int get_spectre_v2_workaround_state(void);
688 
689 #define ARM64_SSBD_UNKNOWN		-1
690 #define ARM64_SSBD_FORCE_DISABLE	0
691 #define ARM64_SSBD_KERNEL		1
692 #define ARM64_SSBD_FORCE_ENABLE		2
693 #define ARM64_SSBD_MITIGATED		3
694 
695 static inline int arm64_get_ssbd_state(void)
696 {
697 #ifdef CONFIG_ARM64_SSBD
698 	extern int ssbd_state;
699 	return ssbd_state;
700 #else
701 	return ARM64_SSBD_UNKNOWN;
702 #endif
703 }
704 
705 void arm64_set_ssbd_mitigation(bool state);
706 
707 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
708 
709 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
710 {
711 	switch (parange) {
712 	case 0: return 32;
713 	case 1: return 36;
714 	case 2: return 40;
715 	case 3: return 42;
716 	case 4: return 44;
717 	case 5: return 48;
718 	case 6: return 52;
719 	/*
720 	 * A future PE could use a value unknown to the kernel.
721 	 * However, by the "D10.1.4 Principles of the ID scheme
722 	 * for fields in ID registers", ARM DDI 0487C.a, any new
723 	 * value is guaranteed to be higher than what we know already.
724 	 * As a safe limit, we return the limit supported by the kernel.
725 	 */
726 	default: return CONFIG_ARM64_PA_BITS;
727 	}
728 }
729 
730 /* Check whether hardware update of the Access flag is supported */
731 static inline bool cpu_has_hw_af(void)
732 {
733 	u64 mmfr1;
734 
735 	if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
736 		return false;
737 
738 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
739 	return cpuid_feature_extract_unsigned_field(mmfr1,
740 						ID_AA64MMFR1_HADBS_SHIFT);
741 }
742 
743 #ifdef CONFIG_ARM64_AMU_EXTN
744 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
745 extern bool cpu_has_amu_feat(int cpu);
746 #endif
747 
748 #endif /* __ASSEMBLY__ */
749 
750 #endif
751