xref: /linux/arch/arm64/include/asm/cacheflush.h (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Based on arch/arm/include/asm/cacheflush.h
3  *
4  * Copyright (C) 1999-2002 Russell King.
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef __ASM_CACHEFLUSH_H
20 #define __ASM_CACHEFLUSH_H
21 
22 #include <linux/mm.h>
23 
24 /*
25  * This flag is used to indicate that the page pointed to by a pte is clean
26  * and does not require cleaning before returning it to the user.
27  */
28 #define PG_dcache_clean PG_arch_1
29 
30 /*
31  *	MM Cache Management
32  *	===================
33  *
34  *	The arch/arm64/mm/cache.S implements these methods.
35  *
36  *	Start addresses are inclusive and end addresses are exclusive; start
37  *	addresses should be rounded down, end addresses up.
38  *
39  *	See Documentation/cachetlb.txt for more information. Please note that
40  *	the implementation assumes non-aliasing VIPT D-cache and (aliasing)
41  *	VIPT or ASID-tagged VIVT I-cache.
42  *
43  *	flush_cache_mm(mm)
44  *
45  *		Clean and invalidate all user space cache entries
46  *		before a change of page tables.
47  *
48  *	flush_icache_range(start, end)
49  *
50  *		Ensure coherency between the I-cache and the D-cache in the
51  *		region described by start, end.
52  *		- start  - virtual start address
53  *		- end    - virtual end address
54  *
55  *	__flush_cache_user_range(start, end)
56  *
57  *		Ensure coherency between the I-cache and the D-cache in the
58  *		region described by start, end.
59  *		- start  - virtual start address
60  *		- end    - virtual end address
61  *
62  *	__flush_dcache_area(kaddr, size)
63  *
64  *		Ensure that the data held in page is written back.
65  *		- kaddr  - page address
66  *		- size   - region size
67  */
68 extern void flush_icache_range(unsigned long start, unsigned long end);
69 extern void __flush_dcache_area(void *addr, size_t len);
70 extern void __clean_dcache_area_poc(void *addr, size_t len);
71 extern void __clean_dcache_area_pou(void *addr, size_t len);
72 extern long __flush_cache_user_range(unsigned long start, unsigned long end);
73 extern void sync_icache_aliases(void *kaddr, unsigned long len);
74 
75 static inline void flush_cache_mm(struct mm_struct *mm)
76 {
77 }
78 
79 static inline void flush_cache_page(struct vm_area_struct *vma,
80 				    unsigned long user_addr, unsigned long pfn)
81 {
82 }
83 
84 static inline void flush_cache_range(struct vm_area_struct *vma,
85 				     unsigned long start, unsigned long end)
86 {
87 }
88 
89 /*
90  * Cache maintenance functions used by the DMA API. No to be used directly.
91  */
92 extern void __dma_map_area(const void *, size_t, int);
93 extern void __dma_unmap_area(const void *, size_t, int);
94 extern void __dma_flush_area(const void *, size_t);
95 
96 /*
97  * Copy user data from/to a page which is mapped into a different
98  * processes address space.  Really, we want to allow our "user
99  * space" model to handle this.
100  */
101 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
102 	unsigned long, void *, const void *, unsigned long);
103 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
104 	do {							\
105 		memcpy(dst, src, len);				\
106 	} while (0)
107 
108 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
109 
110 /*
111  * flush_dcache_page is used when the kernel has written to the page
112  * cache page at virtual address page->virtual.
113  *
114  * If this page isn't mapped (ie, page_mapping == NULL), or it might
115  * have userspace mappings, then we _must_ always clean + invalidate
116  * the dcache entries associated with the kernel mapping.
117  *
118  * Otherwise we can defer the operation, and clean the cache when we are
119  * about to change to user space.  This is the same method as used on SPARC64.
120  * See update_mmu_cache for the user space part.
121  */
122 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
123 extern void flush_dcache_page(struct page *);
124 
125 static inline void __flush_icache_all(void)
126 {
127 	asm("ic	ialluis");
128 	dsb(ish);
129 }
130 
131 #define flush_dcache_mmap_lock(mapping) \
132 	spin_lock_irq(&(mapping)->tree_lock)
133 #define flush_dcache_mmap_unlock(mapping) \
134 	spin_unlock_irq(&(mapping)->tree_lock)
135 
136 /*
137  * We don't appear to need to do anything here.  In fact, if we did, we'd
138  * duplicate cache flushing elsewhere performed by flush_dcache_page().
139  */
140 #define flush_icache_page(vma,page)	do { } while (0)
141 
142 /*
143  * Not required on AArch64 (PIPT or VIPT non-aliasing D-cache).
144  */
145 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
146 {
147 }
148 
149 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
150 {
151 }
152 
153 int set_memory_ro(unsigned long addr, int numpages);
154 int set_memory_rw(unsigned long addr, int numpages);
155 int set_memory_x(unsigned long addr, int numpages);
156 int set_memory_nx(unsigned long addr, int numpages);
157 
158 #endif
159