1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Accelerated GHASH implementation with ARMv8 PMULL instructions. 4 * 5 * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org> 6 */ 7 8 #include <asm/neon.h> 9 #include <asm/simd.h> 10 #include <asm/unaligned.h> 11 #include <crypto/aes.h> 12 #include <crypto/algapi.h> 13 #include <crypto/b128ops.h> 14 #include <crypto/gf128mul.h> 15 #include <crypto/internal/aead.h> 16 #include <crypto/internal/hash.h> 17 #include <crypto/internal/simd.h> 18 #include <crypto/internal/skcipher.h> 19 #include <crypto/scatterwalk.h> 20 #include <linux/cpufeature.h> 21 #include <linux/crypto.h> 22 #include <linux/module.h> 23 24 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions"); 25 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); 26 MODULE_LICENSE("GPL v2"); 27 MODULE_ALIAS_CRYPTO("ghash"); 28 29 #define GHASH_BLOCK_SIZE 16 30 #define GHASH_DIGEST_SIZE 16 31 #define GCM_IV_SIZE 12 32 33 struct ghash_key { 34 u64 h[2]; 35 u64 h2[2]; 36 u64 h3[2]; 37 u64 h4[2]; 38 39 be128 k; 40 }; 41 42 struct ghash_desc_ctx { 43 u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)]; 44 u8 buf[GHASH_BLOCK_SIZE]; 45 u32 count; 46 }; 47 48 struct gcm_aes_ctx { 49 struct crypto_aes_ctx aes_key; 50 struct ghash_key ghash_key; 51 }; 52 53 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src, 54 struct ghash_key const *k, 55 const char *head); 56 57 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, 58 struct ghash_key const *k, 59 const char *head); 60 61 asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[], 62 struct ghash_key const *k, u64 dg[], 63 u8 ctr[], u32 const rk[], int rounds, 64 u8 tag[]); 65 66 asmlinkage void pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[], 67 struct ghash_key const *k, u64 dg[], 68 u8 ctr[], u32 const rk[], int rounds, 69 u8 tag[]); 70 71 static int ghash_init(struct shash_desc *desc) 72 { 73 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); 74 75 *ctx = (struct ghash_desc_ctx){}; 76 return 0; 77 } 78 79 static void ghash_do_update(int blocks, u64 dg[], const char *src, 80 struct ghash_key *key, const char *head, 81 void (*simd_update)(int blocks, u64 dg[], 82 const char *src, 83 struct ghash_key const *k, 84 const char *head)) 85 { 86 if (likely(crypto_simd_usable() && simd_update)) { 87 kernel_neon_begin(); 88 simd_update(blocks, dg, src, key, head); 89 kernel_neon_end(); 90 } else { 91 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; 92 93 do { 94 const u8 *in = src; 95 96 if (head) { 97 in = head; 98 blocks++; 99 head = NULL; 100 } else { 101 src += GHASH_BLOCK_SIZE; 102 } 103 104 crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE); 105 gf128mul_lle(&dst, &key->k); 106 } while (--blocks); 107 108 dg[0] = be64_to_cpu(dst.b); 109 dg[1] = be64_to_cpu(dst.a); 110 } 111 } 112 113 /* avoid hogging the CPU for too long */ 114 #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE) 115 116 static int __ghash_update(struct shash_desc *desc, const u8 *src, 117 unsigned int len, 118 void (*simd_update)(int blocks, u64 dg[], 119 const char *src, 120 struct ghash_key const *k, 121 const char *head)) 122 { 123 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); 124 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; 125 126 ctx->count += len; 127 128 if ((partial + len) >= GHASH_BLOCK_SIZE) { 129 struct ghash_key *key = crypto_shash_ctx(desc->tfm); 130 int blocks; 131 132 if (partial) { 133 int p = GHASH_BLOCK_SIZE - partial; 134 135 memcpy(ctx->buf + partial, src, p); 136 src += p; 137 len -= p; 138 } 139 140 blocks = len / GHASH_BLOCK_SIZE; 141 len %= GHASH_BLOCK_SIZE; 142 143 do { 144 int chunk = min(blocks, MAX_BLOCKS); 145 146 ghash_do_update(chunk, ctx->digest, src, key, 147 partial ? ctx->buf : NULL, 148 simd_update); 149 150 blocks -= chunk; 151 src += chunk * GHASH_BLOCK_SIZE; 152 partial = 0; 153 } while (unlikely(blocks > 0)); 154 } 155 if (len) 156 memcpy(ctx->buf + partial, src, len); 157 return 0; 158 } 159 160 static int ghash_update_p8(struct shash_desc *desc, const u8 *src, 161 unsigned int len) 162 { 163 return __ghash_update(desc, src, len, pmull_ghash_update_p8); 164 } 165 166 static int ghash_update_p64(struct shash_desc *desc, const u8 *src, 167 unsigned int len) 168 { 169 return __ghash_update(desc, src, len, pmull_ghash_update_p64); 170 } 171 172 static int ghash_final_p8(struct shash_desc *desc, u8 *dst) 173 { 174 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); 175 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; 176 177 if (partial) { 178 struct ghash_key *key = crypto_shash_ctx(desc->tfm); 179 180 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); 181 182 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, 183 pmull_ghash_update_p8); 184 } 185 put_unaligned_be64(ctx->digest[1], dst); 186 put_unaligned_be64(ctx->digest[0], dst + 8); 187 188 *ctx = (struct ghash_desc_ctx){}; 189 return 0; 190 } 191 192 static int ghash_final_p64(struct shash_desc *desc, u8 *dst) 193 { 194 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); 195 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; 196 197 if (partial) { 198 struct ghash_key *key = crypto_shash_ctx(desc->tfm); 199 200 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); 201 202 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, 203 pmull_ghash_update_p64); 204 } 205 put_unaligned_be64(ctx->digest[1], dst); 206 put_unaligned_be64(ctx->digest[0], dst + 8); 207 208 *ctx = (struct ghash_desc_ctx){}; 209 return 0; 210 } 211 212 static void ghash_reflect(u64 h[], const be128 *k) 213 { 214 u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0; 215 216 h[0] = (be64_to_cpu(k->b) << 1) | carry; 217 h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63); 218 219 if (carry) 220 h[1] ^= 0xc200000000000000UL; 221 } 222 223 static int __ghash_setkey(struct ghash_key *key, 224 const u8 *inkey, unsigned int keylen) 225 { 226 be128 h; 227 228 /* needed for the fallback */ 229 memcpy(&key->k, inkey, GHASH_BLOCK_SIZE); 230 231 ghash_reflect(key->h, &key->k); 232 233 h = key->k; 234 gf128mul_lle(&h, &key->k); 235 ghash_reflect(key->h2, &h); 236 237 gf128mul_lle(&h, &key->k); 238 ghash_reflect(key->h3, &h); 239 240 gf128mul_lle(&h, &key->k); 241 ghash_reflect(key->h4, &h); 242 243 return 0; 244 } 245 246 static int ghash_setkey(struct crypto_shash *tfm, 247 const u8 *inkey, unsigned int keylen) 248 { 249 struct ghash_key *key = crypto_shash_ctx(tfm); 250 251 if (keylen != GHASH_BLOCK_SIZE) { 252 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); 253 return -EINVAL; 254 } 255 256 return __ghash_setkey(key, inkey, keylen); 257 } 258 259 static struct shash_alg ghash_alg[] = {{ 260 .base.cra_name = "ghash", 261 .base.cra_driver_name = "ghash-neon", 262 .base.cra_priority = 100, 263 .base.cra_blocksize = GHASH_BLOCK_SIZE, 264 .base.cra_ctxsize = sizeof(struct ghash_key), 265 .base.cra_module = THIS_MODULE, 266 267 .digestsize = GHASH_DIGEST_SIZE, 268 .init = ghash_init, 269 .update = ghash_update_p8, 270 .final = ghash_final_p8, 271 .setkey = ghash_setkey, 272 .descsize = sizeof(struct ghash_desc_ctx), 273 }, { 274 .base.cra_name = "ghash", 275 .base.cra_driver_name = "ghash-ce", 276 .base.cra_priority = 200, 277 .base.cra_blocksize = GHASH_BLOCK_SIZE, 278 .base.cra_ctxsize = sizeof(struct ghash_key), 279 .base.cra_module = THIS_MODULE, 280 281 .digestsize = GHASH_DIGEST_SIZE, 282 .init = ghash_init, 283 .update = ghash_update_p64, 284 .final = ghash_final_p64, 285 .setkey = ghash_setkey, 286 .descsize = sizeof(struct ghash_desc_ctx), 287 }}; 288 289 static int num_rounds(struct crypto_aes_ctx *ctx) 290 { 291 /* 292 * # of rounds specified by AES: 293 * 128 bit key 10 rounds 294 * 192 bit key 12 rounds 295 * 256 bit key 14 rounds 296 * => n byte key => 6 + (n/4) rounds 297 */ 298 return 6 + ctx->key_length / 4; 299 } 300 301 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey, 302 unsigned int keylen) 303 { 304 struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm); 305 u8 key[GHASH_BLOCK_SIZE]; 306 int ret; 307 308 ret = aes_expandkey(&ctx->aes_key, inkey, keylen); 309 if (ret) { 310 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; 311 return -EINVAL; 312 } 313 314 aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){}); 315 316 return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128)); 317 } 318 319 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) 320 { 321 switch (authsize) { 322 case 4: 323 case 8: 324 case 12 ... 16: 325 break; 326 default: 327 return -EINVAL; 328 } 329 return 0; 330 } 331 332 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], 333 int *buf_count, struct gcm_aes_ctx *ctx) 334 { 335 if (*buf_count > 0) { 336 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count); 337 338 memcpy(&buf[*buf_count], src, buf_added); 339 340 *buf_count += buf_added; 341 src += buf_added; 342 count -= buf_added; 343 } 344 345 if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) { 346 int blocks = count / GHASH_BLOCK_SIZE; 347 348 ghash_do_update(blocks, dg, src, &ctx->ghash_key, 349 *buf_count ? buf : NULL, 350 pmull_ghash_update_p64); 351 352 src += blocks * GHASH_BLOCK_SIZE; 353 count %= GHASH_BLOCK_SIZE; 354 *buf_count = 0; 355 } 356 357 if (count > 0) { 358 memcpy(buf, src, count); 359 *buf_count = count; 360 } 361 } 362 363 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[]) 364 { 365 struct crypto_aead *aead = crypto_aead_reqtfm(req); 366 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); 367 u8 buf[GHASH_BLOCK_SIZE]; 368 struct scatter_walk walk; 369 u32 len = req->assoclen; 370 int buf_count = 0; 371 372 scatterwalk_start(&walk, req->src); 373 374 do { 375 u32 n = scatterwalk_clamp(&walk, len); 376 u8 *p; 377 378 if (!n) { 379 scatterwalk_start(&walk, sg_next(walk.sg)); 380 n = scatterwalk_clamp(&walk, len); 381 } 382 p = scatterwalk_map(&walk); 383 384 gcm_update_mac(dg, p, n, buf, &buf_count, ctx); 385 len -= n; 386 387 scatterwalk_unmap(p); 388 scatterwalk_advance(&walk, n); 389 scatterwalk_done(&walk, 0, len); 390 } while (len); 391 392 if (buf_count) { 393 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); 394 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL, 395 pmull_ghash_update_p64); 396 } 397 } 398 399 static int gcm_encrypt(struct aead_request *req) 400 { 401 struct crypto_aead *aead = crypto_aead_reqtfm(req); 402 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); 403 int nrounds = num_rounds(&ctx->aes_key); 404 struct skcipher_walk walk; 405 u8 buf[AES_BLOCK_SIZE]; 406 u8 iv[AES_BLOCK_SIZE]; 407 u64 dg[2] = {}; 408 u128 lengths; 409 u8 *tag; 410 int err; 411 412 lengths.a = cpu_to_be64(req->assoclen * 8); 413 lengths.b = cpu_to_be64(req->cryptlen * 8); 414 415 if (req->assoclen) 416 gcm_calculate_auth_mac(req, dg); 417 418 memcpy(iv, req->iv, GCM_IV_SIZE); 419 put_unaligned_be32(2, iv + GCM_IV_SIZE); 420 421 err = skcipher_walk_aead_encrypt(&walk, req, false); 422 423 if (likely(crypto_simd_usable())) { 424 do { 425 const u8 *src = walk.src.virt.addr; 426 u8 *dst = walk.dst.virt.addr; 427 int nbytes = walk.nbytes; 428 429 tag = (u8 *)&lengths; 430 431 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) { 432 src = dst = memcpy(buf + sizeof(buf) - nbytes, 433 src, nbytes); 434 } else if (nbytes < walk.total) { 435 nbytes &= ~(AES_BLOCK_SIZE - 1); 436 tag = NULL; 437 } 438 439 kernel_neon_begin(); 440 pmull_gcm_encrypt(nbytes, dst, src, &ctx->ghash_key, dg, 441 iv, ctx->aes_key.key_enc, nrounds, 442 tag); 443 kernel_neon_end(); 444 445 if (unlikely(!nbytes)) 446 break; 447 448 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) 449 memcpy(walk.dst.virt.addr, 450 buf + sizeof(buf) - nbytes, nbytes); 451 452 err = skcipher_walk_done(&walk, walk.nbytes - nbytes); 453 } while (walk.nbytes); 454 } else { 455 while (walk.nbytes >= AES_BLOCK_SIZE) { 456 int blocks = walk.nbytes / AES_BLOCK_SIZE; 457 const u8 *src = walk.src.virt.addr; 458 u8 *dst = walk.dst.virt.addr; 459 int remaining = blocks; 460 461 do { 462 aes_encrypt(&ctx->aes_key, buf, iv); 463 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE); 464 crypto_inc(iv, AES_BLOCK_SIZE); 465 466 dst += AES_BLOCK_SIZE; 467 src += AES_BLOCK_SIZE; 468 } while (--remaining > 0); 469 470 ghash_do_update(blocks, dg, walk.dst.virt.addr, 471 &ctx->ghash_key, NULL, NULL); 472 473 err = skcipher_walk_done(&walk, 474 walk.nbytes % AES_BLOCK_SIZE); 475 } 476 477 /* handle the tail */ 478 if (walk.nbytes) { 479 aes_encrypt(&ctx->aes_key, buf, iv); 480 481 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, 482 buf, walk.nbytes); 483 484 memcpy(buf, walk.dst.virt.addr, walk.nbytes); 485 memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes); 486 } 487 488 tag = (u8 *)&lengths; 489 ghash_do_update(1, dg, tag, &ctx->ghash_key, 490 walk.nbytes ? buf : NULL, NULL); 491 492 if (walk.nbytes) 493 err = skcipher_walk_done(&walk, 0); 494 495 put_unaligned_be64(dg[1], tag); 496 put_unaligned_be64(dg[0], tag + 8); 497 put_unaligned_be32(1, iv + GCM_IV_SIZE); 498 aes_encrypt(&ctx->aes_key, iv, iv); 499 crypto_xor(tag, iv, AES_BLOCK_SIZE); 500 } 501 502 if (err) 503 return err; 504 505 /* copy authtag to end of dst */ 506 scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen, 507 crypto_aead_authsize(aead), 1); 508 509 return 0; 510 } 511 512 static int gcm_decrypt(struct aead_request *req) 513 { 514 struct crypto_aead *aead = crypto_aead_reqtfm(req); 515 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); 516 unsigned int authsize = crypto_aead_authsize(aead); 517 int nrounds = num_rounds(&ctx->aes_key); 518 struct skcipher_walk walk; 519 u8 buf[AES_BLOCK_SIZE]; 520 u8 iv[AES_BLOCK_SIZE]; 521 u64 dg[2] = {}; 522 u128 lengths; 523 u8 *tag; 524 int err; 525 526 lengths.a = cpu_to_be64(req->assoclen * 8); 527 lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8); 528 529 if (req->assoclen) 530 gcm_calculate_auth_mac(req, dg); 531 532 memcpy(iv, req->iv, GCM_IV_SIZE); 533 put_unaligned_be32(2, iv + GCM_IV_SIZE); 534 535 err = skcipher_walk_aead_decrypt(&walk, req, false); 536 537 if (likely(crypto_simd_usable())) { 538 do { 539 const u8 *src = walk.src.virt.addr; 540 u8 *dst = walk.dst.virt.addr; 541 int nbytes = walk.nbytes; 542 543 tag = (u8 *)&lengths; 544 545 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) { 546 src = dst = memcpy(buf + sizeof(buf) - nbytes, 547 src, nbytes); 548 } else if (nbytes < walk.total) { 549 nbytes &= ~(AES_BLOCK_SIZE - 1); 550 tag = NULL; 551 } 552 553 kernel_neon_begin(); 554 pmull_gcm_decrypt(nbytes, dst, src, &ctx->ghash_key, dg, 555 iv, ctx->aes_key.key_enc, nrounds, 556 tag); 557 kernel_neon_end(); 558 559 if (unlikely(!nbytes)) 560 break; 561 562 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) 563 memcpy(walk.dst.virt.addr, 564 buf + sizeof(buf) - nbytes, nbytes); 565 566 err = skcipher_walk_done(&walk, walk.nbytes - nbytes); 567 } while (walk.nbytes); 568 } else { 569 while (walk.nbytes >= AES_BLOCK_SIZE) { 570 int blocks = walk.nbytes / AES_BLOCK_SIZE; 571 const u8 *src = walk.src.virt.addr; 572 u8 *dst = walk.dst.virt.addr; 573 574 ghash_do_update(blocks, dg, walk.src.virt.addr, 575 &ctx->ghash_key, NULL, NULL); 576 577 do { 578 aes_encrypt(&ctx->aes_key, buf, iv); 579 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE); 580 crypto_inc(iv, AES_BLOCK_SIZE); 581 582 dst += AES_BLOCK_SIZE; 583 src += AES_BLOCK_SIZE; 584 } while (--blocks > 0); 585 586 err = skcipher_walk_done(&walk, 587 walk.nbytes % AES_BLOCK_SIZE); 588 } 589 590 /* handle the tail */ 591 if (walk.nbytes) { 592 memcpy(buf, walk.src.virt.addr, walk.nbytes); 593 memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes); 594 } 595 596 tag = (u8 *)&lengths; 597 ghash_do_update(1, dg, tag, &ctx->ghash_key, 598 walk.nbytes ? buf : NULL, NULL); 599 600 if (walk.nbytes) { 601 aes_encrypt(&ctx->aes_key, buf, iv); 602 603 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, 604 buf, walk.nbytes); 605 606 err = skcipher_walk_done(&walk, 0); 607 } 608 609 put_unaligned_be64(dg[1], tag); 610 put_unaligned_be64(dg[0], tag + 8); 611 put_unaligned_be32(1, iv + GCM_IV_SIZE); 612 aes_encrypt(&ctx->aes_key, iv, iv); 613 crypto_xor(tag, iv, AES_BLOCK_SIZE); 614 } 615 616 if (err) 617 return err; 618 619 /* compare calculated auth tag with the stored one */ 620 scatterwalk_map_and_copy(buf, req->src, 621 req->assoclen + req->cryptlen - authsize, 622 authsize, 0); 623 624 if (crypto_memneq(tag, buf, authsize)) 625 return -EBADMSG; 626 return 0; 627 } 628 629 static struct aead_alg gcm_aes_alg = { 630 .ivsize = GCM_IV_SIZE, 631 .chunksize = AES_BLOCK_SIZE, 632 .maxauthsize = AES_BLOCK_SIZE, 633 .setkey = gcm_setkey, 634 .setauthsize = gcm_setauthsize, 635 .encrypt = gcm_encrypt, 636 .decrypt = gcm_decrypt, 637 638 .base.cra_name = "gcm(aes)", 639 .base.cra_driver_name = "gcm-aes-ce", 640 .base.cra_priority = 300, 641 .base.cra_blocksize = 1, 642 .base.cra_ctxsize = sizeof(struct gcm_aes_ctx), 643 .base.cra_module = THIS_MODULE, 644 }; 645 646 static int __init ghash_ce_mod_init(void) 647 { 648 int ret; 649 650 if (!cpu_have_named_feature(ASIMD)) 651 return -ENODEV; 652 653 if (cpu_have_named_feature(PMULL)) 654 ret = crypto_register_shashes(ghash_alg, 655 ARRAY_SIZE(ghash_alg)); 656 else 657 /* only register the first array element */ 658 ret = crypto_register_shash(ghash_alg); 659 660 if (ret) 661 return ret; 662 663 if (cpu_have_named_feature(PMULL)) { 664 ret = crypto_register_aead(&gcm_aes_alg); 665 if (ret) 666 crypto_unregister_shashes(ghash_alg, 667 ARRAY_SIZE(ghash_alg)); 668 } 669 return ret; 670 } 671 672 static void __exit ghash_ce_mod_exit(void) 673 { 674 if (cpu_have_named_feature(PMULL)) 675 crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg)); 676 else 677 crypto_unregister_shash(ghash_alg); 678 crypto_unregister_aead(&gcm_aes_alg); 679 } 680 681 static const struct cpu_feature ghash_cpu_feature[] = { 682 { cpu_feature(PMULL) }, { } 683 }; 684 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature); 685 686 module_init(ghash_ce_mod_init); 687 module_exit(ghash_ce_mod_exit); 688