xref: /linux/arch/arm64/crypto/ghash-ce-glue.c (revision e7e86d7697c6ed1dbbde18d7185c35b6967945ed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
4  *
5  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <crypto/aes.h>
10 #include <crypto/b128ops.h>
11 #include <crypto/gcm.h>
12 #include <crypto/ghash.h>
13 #include <crypto/gf128mul.h>
14 #include <crypto/internal/aead.h>
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/cpufeature.h>
19 #include <linux/errno.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/string.h>
23 #include <linux/unaligned.h>
24 
25 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
26 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
27 MODULE_LICENSE("GPL v2");
28 MODULE_ALIAS_CRYPTO("ghash");
29 
30 #define RFC4106_NONCE_SIZE	4
31 
32 struct ghash_key {
33 	be128			k;
34 	u64			h[][2];
35 };
36 
37 struct arm_ghash_desc_ctx {
38 	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
39 };
40 
41 struct gcm_aes_ctx {
42 	struct crypto_aes_ctx	aes_key;
43 	u8			nonce[RFC4106_NONCE_SIZE];
44 	struct ghash_key	ghash_key;
45 };
46 
47 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
48 				       u64 const h[][2], const char *head);
49 
50 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
51 				      u64 const h[][2], const char *head);
52 
53 asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
54 				  u64 const h[][2], u64 dg[], u8 ctr[],
55 				  u32 const rk[], int rounds, u8 tag[]);
56 asmlinkage int pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
57 				 u64 const h[][2], u64 dg[], u8 ctr[],
58 				 u32 const rk[], int rounds, const u8 l[],
59 				 const u8 tag[], u64 authsize);
60 
61 static int ghash_init(struct shash_desc *desc)
62 {
63 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
64 
65 	*ctx = (struct arm_ghash_desc_ctx){};
66 	return 0;
67 }
68 
69 static __always_inline
70 void ghash_do_simd_update(int blocks, u64 dg[], const char *src,
71 			  struct ghash_key *key, const char *head,
72 			  void (*simd_update)(int blocks, u64 dg[],
73 					      const char *src,
74 					      u64 const h[][2],
75 					      const char *head))
76 {
77 	kernel_neon_begin();
78 	simd_update(blocks, dg, src, key->h, head);
79 	kernel_neon_end();
80 }
81 
82 /* avoid hogging the CPU for too long */
83 #define MAX_BLOCKS	(SZ_64K / GHASH_BLOCK_SIZE)
84 
85 static int ghash_update(struct shash_desc *desc, const u8 *src,
86 			unsigned int len)
87 {
88 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
89 	struct ghash_key *key = crypto_shash_ctx(desc->tfm);
90 	int blocks;
91 
92 	blocks = len / GHASH_BLOCK_SIZE;
93 	len -= blocks * GHASH_BLOCK_SIZE;
94 
95 	do {
96 		int chunk = min(blocks, MAX_BLOCKS);
97 
98 		ghash_do_simd_update(chunk, ctx->digest, src, key, NULL,
99 				     pmull_ghash_update_p8);
100 		blocks -= chunk;
101 		src += chunk * GHASH_BLOCK_SIZE;
102 	} while (unlikely(blocks > 0));
103 	return len;
104 }
105 
106 static int ghash_export(struct shash_desc *desc, void *out)
107 {
108 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
109 	u8 *dst = out;
110 
111 	put_unaligned_be64(ctx->digest[1], dst);
112 	put_unaligned_be64(ctx->digest[0], dst + 8);
113 	return 0;
114 }
115 
116 static int ghash_import(struct shash_desc *desc, const void *in)
117 {
118 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
119 	const u8 *src = in;
120 
121 	ctx->digest[1] = get_unaligned_be64(src);
122 	ctx->digest[0] = get_unaligned_be64(src + 8);
123 	return 0;
124 }
125 
126 static int ghash_finup(struct shash_desc *desc, const u8 *src,
127 		       unsigned int len, u8 *dst)
128 {
129 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
130 	struct ghash_key *key = crypto_shash_ctx(desc->tfm);
131 
132 	if (len) {
133 		u8 buf[GHASH_BLOCK_SIZE] = {};
134 
135 		memcpy(buf, src, len);
136 		ghash_do_simd_update(1, ctx->digest, src, key, NULL,
137 				     pmull_ghash_update_p8);
138 		memzero_explicit(buf, sizeof(buf));
139 	}
140 	return ghash_export(desc, dst);
141 }
142 
143 static void ghash_reflect(u64 h[], const be128 *k)
144 {
145 	u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
146 
147 	h[0] = (be64_to_cpu(k->b) << 1) | carry;
148 	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
149 
150 	if (carry)
151 		h[1] ^= 0xc200000000000000UL;
152 }
153 
154 static int ghash_setkey(struct crypto_shash *tfm,
155 			const u8 *inkey, unsigned int keylen)
156 {
157 	struct ghash_key *key = crypto_shash_ctx(tfm);
158 
159 	if (keylen != GHASH_BLOCK_SIZE)
160 		return -EINVAL;
161 
162 	/* needed for the fallback */
163 	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
164 
165 	ghash_reflect(key->h[0], &key->k);
166 	return 0;
167 }
168 
169 static struct shash_alg ghash_alg = {
170 	.base.cra_name		= "ghash",
171 	.base.cra_driver_name	= "ghash-neon",
172 	.base.cra_priority	= 150,
173 	.base.cra_flags		= CRYPTO_AHASH_ALG_BLOCK_ONLY,
174 	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
175 	.base.cra_ctxsize	= sizeof(struct ghash_key) + sizeof(u64[2]),
176 	.base.cra_module	= THIS_MODULE,
177 
178 	.digestsize		= GHASH_DIGEST_SIZE,
179 	.init			= ghash_init,
180 	.update			= ghash_update,
181 	.finup			= ghash_finup,
182 	.setkey			= ghash_setkey,
183 	.export			= ghash_export,
184 	.import			= ghash_import,
185 	.descsize		= sizeof(struct arm_ghash_desc_ctx),
186 	.statesize		= sizeof(struct ghash_desc_ctx),
187 };
188 
189 static int num_rounds(struct crypto_aes_ctx *ctx)
190 {
191 	/*
192 	 * # of rounds specified by AES:
193 	 * 128 bit key		10 rounds
194 	 * 192 bit key		12 rounds
195 	 * 256 bit key		14 rounds
196 	 * => n byte key	=> 6 + (n/4) rounds
197 	 */
198 	return 6 + ctx->key_length / 4;
199 }
200 
201 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
202 			  unsigned int keylen)
203 {
204 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
205 	u8 key[GHASH_BLOCK_SIZE];
206 	be128 h;
207 	int ret;
208 
209 	ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
210 	if (ret)
211 		return -EINVAL;
212 
213 	aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
214 
215 	/* needed for the fallback */
216 	memcpy(&ctx->ghash_key.k, key, GHASH_BLOCK_SIZE);
217 
218 	ghash_reflect(ctx->ghash_key.h[0], &ctx->ghash_key.k);
219 
220 	h = ctx->ghash_key.k;
221 	gf128mul_lle(&h, &ctx->ghash_key.k);
222 	ghash_reflect(ctx->ghash_key.h[1], &h);
223 
224 	gf128mul_lle(&h, &ctx->ghash_key.k);
225 	ghash_reflect(ctx->ghash_key.h[2], &h);
226 
227 	gf128mul_lle(&h, &ctx->ghash_key.k);
228 	ghash_reflect(ctx->ghash_key.h[3], &h);
229 
230 	return 0;
231 }
232 
233 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
234 {
235 	return crypto_gcm_check_authsize(authsize);
236 }
237 
238 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
239 			   int *buf_count, struct gcm_aes_ctx *ctx)
240 {
241 	if (*buf_count > 0) {
242 		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
243 
244 		memcpy(&buf[*buf_count], src, buf_added);
245 
246 		*buf_count += buf_added;
247 		src += buf_added;
248 		count -= buf_added;
249 	}
250 
251 	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
252 		int blocks = count / GHASH_BLOCK_SIZE;
253 
254 		ghash_do_simd_update(blocks, dg, src, &ctx->ghash_key,
255 				     *buf_count ? buf : NULL,
256 				     pmull_ghash_update_p64);
257 
258 		src += blocks * GHASH_BLOCK_SIZE;
259 		count %= GHASH_BLOCK_SIZE;
260 		*buf_count = 0;
261 	}
262 
263 	if (count > 0) {
264 		memcpy(buf, src, count);
265 		*buf_count = count;
266 	}
267 }
268 
269 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
270 {
271 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
272 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
273 	u8 buf[GHASH_BLOCK_SIZE];
274 	struct scatter_walk walk;
275 	int buf_count = 0;
276 
277 	scatterwalk_start(&walk, req->src);
278 
279 	do {
280 		unsigned int n;
281 
282 		n = scatterwalk_next(&walk, len);
283 		gcm_update_mac(dg, walk.addr, n, buf, &buf_count, ctx);
284 		scatterwalk_done_src(&walk, n);
285 		len -= n;
286 	} while (len);
287 
288 	if (buf_count) {
289 		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
290 		ghash_do_simd_update(1, dg, buf, &ctx->ghash_key, NULL,
291 				     pmull_ghash_update_p64);
292 	}
293 }
294 
295 static int gcm_encrypt(struct aead_request *req, char *iv, int assoclen)
296 {
297 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
298 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
299 	int nrounds = num_rounds(&ctx->aes_key);
300 	struct skcipher_walk walk;
301 	u8 buf[AES_BLOCK_SIZE];
302 	u64 dg[2] = {};
303 	be128 lengths;
304 	u8 *tag;
305 	int err;
306 
307 	lengths.a = cpu_to_be64(assoclen * 8);
308 	lengths.b = cpu_to_be64(req->cryptlen * 8);
309 
310 	if (assoclen)
311 		gcm_calculate_auth_mac(req, dg, assoclen);
312 
313 	put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
314 
315 	err = skcipher_walk_aead_encrypt(&walk, req, false);
316 
317 	do {
318 		const u8 *src = walk.src.virt.addr;
319 		u8 *dst = walk.dst.virt.addr;
320 		int nbytes = walk.nbytes;
321 
322 		tag = (u8 *)&lengths;
323 
324 		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
325 			src = dst = memcpy(buf + sizeof(buf) - nbytes,
326 					   src, nbytes);
327 		} else if (nbytes < walk.total) {
328 			nbytes &= ~(AES_BLOCK_SIZE - 1);
329 			tag = NULL;
330 		}
331 
332 		kernel_neon_begin();
333 		pmull_gcm_encrypt(nbytes, dst, src, ctx->ghash_key.h,
334 				  dg, iv, ctx->aes_key.key_enc, nrounds,
335 				  tag);
336 		kernel_neon_end();
337 
338 		if (unlikely(!nbytes))
339 			break;
340 
341 		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
342 			memcpy(walk.dst.virt.addr,
343 			       buf + sizeof(buf) - nbytes, nbytes);
344 
345 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
346 	} while (walk.nbytes);
347 
348 	if (err)
349 		return err;
350 
351 	/* copy authtag to end of dst */
352 	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
353 				 crypto_aead_authsize(aead), 1);
354 
355 	return 0;
356 }
357 
358 static int gcm_decrypt(struct aead_request *req, char *iv, int assoclen)
359 {
360 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
361 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
362 	unsigned int authsize = crypto_aead_authsize(aead);
363 	int nrounds = num_rounds(&ctx->aes_key);
364 	struct skcipher_walk walk;
365 	u8 otag[AES_BLOCK_SIZE];
366 	u8 buf[AES_BLOCK_SIZE];
367 	u64 dg[2] = {};
368 	be128 lengths;
369 	u8 *tag;
370 	int ret;
371 	int err;
372 
373 	lengths.a = cpu_to_be64(assoclen * 8);
374 	lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
375 
376 	if (assoclen)
377 		gcm_calculate_auth_mac(req, dg, assoclen);
378 
379 	put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
380 
381 	scatterwalk_map_and_copy(otag, req->src,
382 				 req->assoclen + req->cryptlen - authsize,
383 				 authsize, 0);
384 
385 	err = skcipher_walk_aead_decrypt(&walk, req, false);
386 
387 	do {
388 		const u8 *src = walk.src.virt.addr;
389 		u8 *dst = walk.dst.virt.addr;
390 		int nbytes = walk.nbytes;
391 
392 		tag = (u8 *)&lengths;
393 
394 		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
395 			src = dst = memcpy(buf + sizeof(buf) - nbytes,
396 					   src, nbytes);
397 		} else if (nbytes < walk.total) {
398 			nbytes &= ~(AES_BLOCK_SIZE - 1);
399 			tag = NULL;
400 		}
401 
402 		kernel_neon_begin();
403 		ret = pmull_gcm_decrypt(nbytes, dst, src, ctx->ghash_key.h,
404 					dg, iv, ctx->aes_key.key_enc,
405 					nrounds, tag, otag, authsize);
406 		kernel_neon_end();
407 
408 		if (unlikely(!nbytes))
409 			break;
410 
411 		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
412 			memcpy(walk.dst.virt.addr,
413 			       buf + sizeof(buf) - nbytes, nbytes);
414 
415 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
416 	} while (walk.nbytes);
417 
418 	if (err)
419 		return err;
420 
421 	return ret ? -EBADMSG : 0;
422 }
423 
424 static int gcm_aes_encrypt(struct aead_request *req)
425 {
426 	u8 iv[AES_BLOCK_SIZE];
427 
428 	memcpy(iv, req->iv, GCM_AES_IV_SIZE);
429 	return gcm_encrypt(req, iv, req->assoclen);
430 }
431 
432 static int gcm_aes_decrypt(struct aead_request *req)
433 {
434 	u8 iv[AES_BLOCK_SIZE];
435 
436 	memcpy(iv, req->iv, GCM_AES_IV_SIZE);
437 	return gcm_decrypt(req, iv, req->assoclen);
438 }
439 
440 static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
441 			  unsigned int keylen)
442 {
443 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
444 	int err;
445 
446 	keylen -= RFC4106_NONCE_SIZE;
447 	err = gcm_aes_setkey(tfm, inkey, keylen);
448 	if (err)
449 		return err;
450 
451 	memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
452 	return 0;
453 }
454 
455 static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
456 {
457 	return crypto_rfc4106_check_authsize(authsize);
458 }
459 
460 static int rfc4106_encrypt(struct aead_request *req)
461 {
462 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
463 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
464 	u8 iv[AES_BLOCK_SIZE];
465 
466 	memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
467 	memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
468 
469 	return crypto_ipsec_check_assoclen(req->assoclen) ?:
470 	       gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
471 }
472 
473 static int rfc4106_decrypt(struct aead_request *req)
474 {
475 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
476 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
477 	u8 iv[AES_BLOCK_SIZE];
478 
479 	memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
480 	memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
481 
482 	return crypto_ipsec_check_assoclen(req->assoclen) ?:
483 	       gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
484 }
485 
486 static struct aead_alg gcm_aes_algs[] = {{
487 	.ivsize			= GCM_AES_IV_SIZE,
488 	.chunksize		= AES_BLOCK_SIZE,
489 	.maxauthsize		= AES_BLOCK_SIZE,
490 	.setkey			= gcm_aes_setkey,
491 	.setauthsize		= gcm_aes_setauthsize,
492 	.encrypt		= gcm_aes_encrypt,
493 	.decrypt		= gcm_aes_decrypt,
494 
495 	.base.cra_name		= "gcm(aes)",
496 	.base.cra_driver_name	= "gcm-aes-ce",
497 	.base.cra_priority	= 300,
498 	.base.cra_blocksize	= 1,
499 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx) +
500 				  4 * sizeof(u64[2]),
501 	.base.cra_module	= THIS_MODULE,
502 }, {
503 	.ivsize			= GCM_RFC4106_IV_SIZE,
504 	.chunksize		= AES_BLOCK_SIZE,
505 	.maxauthsize		= AES_BLOCK_SIZE,
506 	.setkey			= rfc4106_setkey,
507 	.setauthsize		= rfc4106_setauthsize,
508 	.encrypt		= rfc4106_encrypt,
509 	.decrypt		= rfc4106_decrypt,
510 
511 	.base.cra_name		= "rfc4106(gcm(aes))",
512 	.base.cra_driver_name	= "rfc4106-gcm-aes-ce",
513 	.base.cra_priority	= 300,
514 	.base.cra_blocksize	= 1,
515 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx) +
516 				  4 * sizeof(u64[2]),
517 	.base.cra_module	= THIS_MODULE,
518 }};
519 
520 static int __init ghash_ce_mod_init(void)
521 {
522 	if (!cpu_have_named_feature(ASIMD))
523 		return -ENODEV;
524 
525 	if (cpu_have_named_feature(PMULL))
526 		return crypto_register_aeads(gcm_aes_algs,
527 					     ARRAY_SIZE(gcm_aes_algs));
528 
529 	return crypto_register_shash(&ghash_alg);
530 }
531 
532 static void __exit ghash_ce_mod_exit(void)
533 {
534 	if (cpu_have_named_feature(PMULL))
535 		crypto_unregister_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs));
536 	else
537 		crypto_unregister_shash(&ghash_alg);
538 }
539 
540 static const struct cpu_feature __maybe_unused ghash_cpu_feature[] = {
541 	{ cpu_feature(PMULL) }, { }
542 };
543 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
544 
545 module_init(ghash_ce_mod_init);
546 module_exit(ghash_ce_mod_exit);
547