xref: /linux/arch/arm64/crypto/aes-glue.c (revision 402eb8ec54b36f8fc0649768c01abb57062d6f8b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha2.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21 
22 #include "aes-ce-setkey.h"
23 
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE			"ce"
26 #define PRIO			300
27 #define aes_expandkey		ce_aes_expandkey
28 #define aes_ecb_encrypt		ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt		ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt		ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt		ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt	ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt	ce_aes_cbc_cts_decrypt
34 #define aes_essiv_cbc_encrypt	ce_aes_essiv_cbc_encrypt
35 #define aes_essiv_cbc_decrypt	ce_aes_essiv_cbc_decrypt
36 #define aes_ctr_encrypt		ce_aes_ctr_encrypt
37 #define aes_xts_encrypt		ce_aes_xts_encrypt
38 #define aes_xts_decrypt		ce_aes_xts_decrypt
39 #define aes_mac_update		ce_aes_mac_update
40 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
41 #else
42 #define MODE			"neon"
43 #define PRIO			200
44 #define aes_ecb_encrypt		neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt		neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt		neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt		neon_aes_cbc_decrypt
48 #define aes_cbc_cts_encrypt	neon_aes_cbc_cts_encrypt
49 #define aes_cbc_cts_decrypt	neon_aes_cbc_cts_decrypt
50 #define aes_essiv_cbc_encrypt	neon_aes_essiv_cbc_encrypt
51 #define aes_essiv_cbc_decrypt	neon_aes_essiv_cbc_decrypt
52 #define aes_ctr_encrypt		neon_aes_ctr_encrypt
53 #define aes_xts_encrypt		neon_aes_xts_encrypt
54 #define aes_xts_decrypt		neon_aes_xts_decrypt
55 #define aes_mac_update		neon_aes_mac_update
56 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
57 #endif
58 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
59 MODULE_ALIAS_CRYPTO("ecb(aes)");
60 MODULE_ALIAS_CRYPTO("cbc(aes)");
61 MODULE_ALIAS_CRYPTO("ctr(aes)");
62 MODULE_ALIAS_CRYPTO("xts(aes)");
63 #endif
64 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
65 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
66 MODULE_ALIAS_CRYPTO("cmac(aes)");
67 MODULE_ALIAS_CRYPTO("xcbc(aes)");
68 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
69 
70 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
71 MODULE_LICENSE("GPL v2");
72 
73 /* defined in aes-modes.S */
74 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
75 				int rounds, int blocks);
76 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
77 				int rounds, int blocks);
78 
79 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
80 				int rounds, int blocks, u8 iv[]);
81 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
82 				int rounds, int blocks, u8 iv[]);
83 
84 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
85 				int rounds, int bytes, u8 const iv[]);
86 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
87 				int rounds, int bytes, u8 const iv[]);
88 
89 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
90 				int rounds, int bytes, u8 ctr[]);
91 
92 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
93 				int rounds, int bytes, u32 const rk2[], u8 iv[],
94 				int first);
95 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
96 				int rounds, int bytes, u32 const rk2[], u8 iv[],
97 				int first);
98 
99 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
100 				      int rounds, int blocks, u8 iv[],
101 				      u32 const rk2[]);
102 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
103 				      int rounds, int blocks, u8 iv[],
104 				      u32 const rk2[]);
105 
106 asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds,
107 			      int blocks, u8 dg[], int enc_before,
108 			      int enc_after);
109 
110 struct crypto_aes_xts_ctx {
111 	struct crypto_aes_ctx key1;
112 	struct crypto_aes_ctx __aligned(8) key2;
113 };
114 
115 struct crypto_aes_essiv_cbc_ctx {
116 	struct crypto_aes_ctx key1;
117 	struct crypto_aes_ctx __aligned(8) key2;
118 	struct crypto_shash *hash;
119 };
120 
121 struct mac_tfm_ctx {
122 	struct crypto_aes_ctx key;
123 	u8 __aligned(8) consts[];
124 };
125 
126 struct mac_desc_ctx {
127 	unsigned int len;
128 	u8 dg[AES_BLOCK_SIZE];
129 };
130 
131 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
132 			       unsigned int key_len)
133 {
134 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
135 
136 	return aes_expandkey(ctx, in_key, key_len);
137 }
138 
139 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
140 				      const u8 *in_key, unsigned int key_len)
141 {
142 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
143 	int ret;
144 
145 	ret = xts_verify_key(tfm, in_key, key_len);
146 	if (ret)
147 		return ret;
148 
149 	ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
150 	if (!ret)
151 		ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
152 				    key_len / 2);
153 	return ret;
154 }
155 
156 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
157 					    const u8 *in_key,
158 					    unsigned int key_len)
159 {
160 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
161 	u8 digest[SHA256_DIGEST_SIZE];
162 	int ret;
163 
164 	ret = aes_expandkey(&ctx->key1, in_key, key_len);
165 	if (ret)
166 		return ret;
167 
168 	crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
169 
170 	return aes_expandkey(&ctx->key2, digest, sizeof(digest));
171 }
172 
173 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
174 {
175 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
176 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
177 	int err, rounds = 6 + ctx->key_length / 4;
178 	struct skcipher_walk walk;
179 	unsigned int blocks;
180 
181 	err = skcipher_walk_virt(&walk, req, false);
182 
183 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
184 		kernel_neon_begin();
185 		aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
186 				ctx->key_enc, rounds, blocks);
187 		kernel_neon_end();
188 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
189 	}
190 	return err;
191 }
192 
193 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
194 {
195 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
196 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
197 	int err, rounds = 6 + ctx->key_length / 4;
198 	struct skcipher_walk walk;
199 	unsigned int blocks;
200 
201 	err = skcipher_walk_virt(&walk, req, false);
202 
203 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
204 		kernel_neon_begin();
205 		aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
206 				ctx->key_dec, rounds, blocks);
207 		kernel_neon_end();
208 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
209 	}
210 	return err;
211 }
212 
213 static int cbc_encrypt_walk(struct skcipher_request *req,
214 			    struct skcipher_walk *walk)
215 {
216 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
217 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
218 	int err = 0, rounds = 6 + ctx->key_length / 4;
219 	unsigned int blocks;
220 
221 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
222 		kernel_neon_begin();
223 		aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
224 				ctx->key_enc, rounds, blocks, walk->iv);
225 		kernel_neon_end();
226 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
227 	}
228 	return err;
229 }
230 
231 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
232 {
233 	struct skcipher_walk walk;
234 	int err;
235 
236 	err = skcipher_walk_virt(&walk, req, false);
237 	if (err)
238 		return err;
239 	return cbc_encrypt_walk(req, &walk);
240 }
241 
242 static int cbc_decrypt_walk(struct skcipher_request *req,
243 			    struct skcipher_walk *walk)
244 {
245 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
246 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
247 	int err = 0, rounds = 6 + ctx->key_length / 4;
248 	unsigned int blocks;
249 
250 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
251 		kernel_neon_begin();
252 		aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
253 				ctx->key_dec, rounds, blocks, walk->iv);
254 		kernel_neon_end();
255 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
256 	}
257 	return err;
258 }
259 
260 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
261 {
262 	struct skcipher_walk walk;
263 	int err;
264 
265 	err = skcipher_walk_virt(&walk, req, false);
266 	if (err)
267 		return err;
268 	return cbc_decrypt_walk(req, &walk);
269 }
270 
271 static int cts_cbc_encrypt(struct skcipher_request *req)
272 {
273 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
274 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
275 	int err, rounds = 6 + ctx->key_length / 4;
276 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
277 	struct scatterlist *src = req->src, *dst = req->dst;
278 	struct scatterlist sg_src[2], sg_dst[2];
279 	struct skcipher_request subreq;
280 	struct skcipher_walk walk;
281 
282 	skcipher_request_set_tfm(&subreq, tfm);
283 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
284 				      NULL, NULL);
285 
286 	if (req->cryptlen <= AES_BLOCK_SIZE) {
287 		if (req->cryptlen < AES_BLOCK_SIZE)
288 			return -EINVAL;
289 		cbc_blocks = 1;
290 	}
291 
292 	if (cbc_blocks > 0) {
293 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
294 					   cbc_blocks * AES_BLOCK_SIZE,
295 					   req->iv);
296 
297 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
298 		      cbc_encrypt_walk(&subreq, &walk);
299 		if (err)
300 			return err;
301 
302 		if (req->cryptlen == AES_BLOCK_SIZE)
303 			return 0;
304 
305 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
306 		if (req->dst != req->src)
307 			dst = scatterwalk_ffwd(sg_dst, req->dst,
308 					       subreq.cryptlen);
309 	}
310 
311 	/* handle ciphertext stealing */
312 	skcipher_request_set_crypt(&subreq, src, dst,
313 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
314 				   req->iv);
315 
316 	err = skcipher_walk_virt(&walk, &subreq, false);
317 	if (err)
318 		return err;
319 
320 	kernel_neon_begin();
321 	aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
322 			    ctx->key_enc, rounds, walk.nbytes, walk.iv);
323 	kernel_neon_end();
324 
325 	return skcipher_walk_done(&walk, 0);
326 }
327 
328 static int cts_cbc_decrypt(struct skcipher_request *req)
329 {
330 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
331 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
332 	int err, rounds = 6 + ctx->key_length / 4;
333 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
334 	struct scatterlist *src = req->src, *dst = req->dst;
335 	struct scatterlist sg_src[2], sg_dst[2];
336 	struct skcipher_request subreq;
337 	struct skcipher_walk walk;
338 
339 	skcipher_request_set_tfm(&subreq, tfm);
340 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
341 				      NULL, NULL);
342 
343 	if (req->cryptlen <= AES_BLOCK_SIZE) {
344 		if (req->cryptlen < AES_BLOCK_SIZE)
345 			return -EINVAL;
346 		cbc_blocks = 1;
347 	}
348 
349 	if (cbc_blocks > 0) {
350 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
351 					   cbc_blocks * AES_BLOCK_SIZE,
352 					   req->iv);
353 
354 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
355 		      cbc_decrypt_walk(&subreq, &walk);
356 		if (err)
357 			return err;
358 
359 		if (req->cryptlen == AES_BLOCK_SIZE)
360 			return 0;
361 
362 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
363 		if (req->dst != req->src)
364 			dst = scatterwalk_ffwd(sg_dst, req->dst,
365 					       subreq.cryptlen);
366 	}
367 
368 	/* handle ciphertext stealing */
369 	skcipher_request_set_crypt(&subreq, src, dst,
370 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
371 				   req->iv);
372 
373 	err = skcipher_walk_virt(&walk, &subreq, false);
374 	if (err)
375 		return err;
376 
377 	kernel_neon_begin();
378 	aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
379 			    ctx->key_dec, rounds, walk.nbytes, walk.iv);
380 	kernel_neon_end();
381 
382 	return skcipher_walk_done(&walk, 0);
383 }
384 
385 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
386 {
387 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
388 
389 	ctx->hash = crypto_alloc_shash("sha256", 0, 0);
390 
391 	return PTR_ERR_OR_ZERO(ctx->hash);
392 }
393 
394 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
395 {
396 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
397 
398 	crypto_free_shash(ctx->hash);
399 }
400 
401 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
402 {
403 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
404 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
405 	int err, rounds = 6 + ctx->key1.key_length / 4;
406 	struct skcipher_walk walk;
407 	unsigned int blocks;
408 
409 	err = skcipher_walk_virt(&walk, req, false);
410 
411 	blocks = walk.nbytes / AES_BLOCK_SIZE;
412 	if (blocks) {
413 		kernel_neon_begin();
414 		aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
415 				      ctx->key1.key_enc, rounds, blocks,
416 				      req->iv, ctx->key2.key_enc);
417 		kernel_neon_end();
418 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
419 	}
420 	return err ?: cbc_encrypt_walk(req, &walk);
421 }
422 
423 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
424 {
425 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
426 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
427 	int err, rounds = 6 + ctx->key1.key_length / 4;
428 	struct skcipher_walk walk;
429 	unsigned int blocks;
430 
431 	err = skcipher_walk_virt(&walk, req, false);
432 
433 	blocks = walk.nbytes / AES_BLOCK_SIZE;
434 	if (blocks) {
435 		kernel_neon_begin();
436 		aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
437 				      ctx->key1.key_dec, rounds, blocks,
438 				      req->iv, ctx->key2.key_enc);
439 		kernel_neon_end();
440 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
441 	}
442 	return err ?: cbc_decrypt_walk(req, &walk);
443 }
444 
445 static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
446 {
447 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
448 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
449 	int err, rounds = 6 + ctx->key_length / 4;
450 	struct skcipher_walk walk;
451 
452 	err = skcipher_walk_virt(&walk, req, false);
453 
454 	while (walk.nbytes > 0) {
455 		const u8 *src = walk.src.virt.addr;
456 		unsigned int nbytes = walk.nbytes;
457 		u8 *dst = walk.dst.virt.addr;
458 		u8 buf[AES_BLOCK_SIZE];
459 
460 		if (unlikely(nbytes < AES_BLOCK_SIZE))
461 			src = dst = memcpy(buf + sizeof(buf) - nbytes,
462 					   src, nbytes);
463 		else if (nbytes < walk.total)
464 			nbytes &= ~(AES_BLOCK_SIZE - 1);
465 
466 		kernel_neon_begin();
467 		aes_ctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
468 				walk.iv);
469 		kernel_neon_end();
470 
471 		if (unlikely(nbytes < AES_BLOCK_SIZE))
472 			memcpy(walk.dst.virt.addr,
473 			       buf + sizeof(buf) - nbytes, nbytes);
474 
475 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
476 	}
477 
478 	return err;
479 }
480 
481 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
482 {
483 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
484 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
485 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
486 	int tail = req->cryptlen % AES_BLOCK_SIZE;
487 	struct scatterlist sg_src[2], sg_dst[2];
488 	struct skcipher_request subreq;
489 	struct scatterlist *src, *dst;
490 	struct skcipher_walk walk;
491 
492 	if (req->cryptlen < AES_BLOCK_SIZE)
493 		return -EINVAL;
494 
495 	err = skcipher_walk_virt(&walk, req, false);
496 
497 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
498 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
499 					      AES_BLOCK_SIZE) - 2;
500 
501 		skcipher_walk_abort(&walk);
502 
503 		skcipher_request_set_tfm(&subreq, tfm);
504 		skcipher_request_set_callback(&subreq,
505 					      skcipher_request_flags(req),
506 					      NULL, NULL);
507 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
508 					   xts_blocks * AES_BLOCK_SIZE,
509 					   req->iv);
510 		req = &subreq;
511 		err = skcipher_walk_virt(&walk, req, false);
512 	} else {
513 		tail = 0;
514 	}
515 
516 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
517 		int nbytes = walk.nbytes;
518 
519 		if (walk.nbytes < walk.total)
520 			nbytes &= ~(AES_BLOCK_SIZE - 1);
521 
522 		kernel_neon_begin();
523 		aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
524 				ctx->key1.key_enc, rounds, nbytes,
525 				ctx->key2.key_enc, walk.iv, first);
526 		kernel_neon_end();
527 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
528 	}
529 
530 	if (err || likely(!tail))
531 		return err;
532 
533 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
534 	if (req->dst != req->src)
535 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
536 
537 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
538 				   req->iv);
539 
540 	err = skcipher_walk_virt(&walk, &subreq, false);
541 	if (err)
542 		return err;
543 
544 	kernel_neon_begin();
545 	aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
546 			ctx->key1.key_enc, rounds, walk.nbytes,
547 			ctx->key2.key_enc, walk.iv, first);
548 	kernel_neon_end();
549 
550 	return skcipher_walk_done(&walk, 0);
551 }
552 
553 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
554 {
555 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
556 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
557 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
558 	int tail = req->cryptlen % AES_BLOCK_SIZE;
559 	struct scatterlist sg_src[2], sg_dst[2];
560 	struct skcipher_request subreq;
561 	struct scatterlist *src, *dst;
562 	struct skcipher_walk walk;
563 
564 	if (req->cryptlen < AES_BLOCK_SIZE)
565 		return -EINVAL;
566 
567 	err = skcipher_walk_virt(&walk, req, false);
568 
569 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
570 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
571 					      AES_BLOCK_SIZE) - 2;
572 
573 		skcipher_walk_abort(&walk);
574 
575 		skcipher_request_set_tfm(&subreq, tfm);
576 		skcipher_request_set_callback(&subreq,
577 					      skcipher_request_flags(req),
578 					      NULL, NULL);
579 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
580 					   xts_blocks * AES_BLOCK_SIZE,
581 					   req->iv);
582 		req = &subreq;
583 		err = skcipher_walk_virt(&walk, req, false);
584 	} else {
585 		tail = 0;
586 	}
587 
588 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
589 		int nbytes = walk.nbytes;
590 
591 		if (walk.nbytes < walk.total)
592 			nbytes &= ~(AES_BLOCK_SIZE - 1);
593 
594 		kernel_neon_begin();
595 		aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
596 				ctx->key1.key_dec, rounds, nbytes,
597 				ctx->key2.key_enc, walk.iv, first);
598 		kernel_neon_end();
599 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
600 	}
601 
602 	if (err || likely(!tail))
603 		return err;
604 
605 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
606 	if (req->dst != req->src)
607 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
608 
609 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
610 				   req->iv);
611 
612 	err = skcipher_walk_virt(&walk, &subreq, false);
613 	if (err)
614 		return err;
615 
616 
617 	kernel_neon_begin();
618 	aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
619 			ctx->key1.key_dec, rounds, walk.nbytes,
620 			ctx->key2.key_enc, walk.iv, first);
621 	kernel_neon_end();
622 
623 	return skcipher_walk_done(&walk, 0);
624 }
625 
626 static struct skcipher_alg aes_algs[] = { {
627 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
628 	.base = {
629 		.cra_name		= "ecb(aes)",
630 		.cra_driver_name	= "ecb-aes-" MODE,
631 		.cra_priority		= PRIO,
632 		.cra_blocksize		= AES_BLOCK_SIZE,
633 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
634 		.cra_module		= THIS_MODULE,
635 	},
636 	.min_keysize	= AES_MIN_KEY_SIZE,
637 	.max_keysize	= AES_MAX_KEY_SIZE,
638 	.setkey		= skcipher_aes_setkey,
639 	.encrypt	= ecb_encrypt,
640 	.decrypt	= ecb_decrypt,
641 }, {
642 	.base = {
643 		.cra_name		= "cbc(aes)",
644 		.cra_driver_name	= "cbc-aes-" MODE,
645 		.cra_priority		= PRIO,
646 		.cra_blocksize		= AES_BLOCK_SIZE,
647 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
648 		.cra_module		= THIS_MODULE,
649 	},
650 	.min_keysize	= AES_MIN_KEY_SIZE,
651 	.max_keysize	= AES_MAX_KEY_SIZE,
652 	.ivsize		= AES_BLOCK_SIZE,
653 	.setkey		= skcipher_aes_setkey,
654 	.encrypt	= cbc_encrypt,
655 	.decrypt	= cbc_decrypt,
656 }, {
657 	.base = {
658 		.cra_name		= "ctr(aes)",
659 		.cra_driver_name	= "ctr-aes-" MODE,
660 		.cra_priority		= PRIO,
661 		.cra_blocksize		= 1,
662 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
663 		.cra_module		= THIS_MODULE,
664 	},
665 	.min_keysize	= AES_MIN_KEY_SIZE,
666 	.max_keysize	= AES_MAX_KEY_SIZE,
667 	.ivsize		= AES_BLOCK_SIZE,
668 	.chunksize	= AES_BLOCK_SIZE,
669 	.setkey		= skcipher_aes_setkey,
670 	.encrypt	= ctr_encrypt,
671 	.decrypt	= ctr_encrypt,
672 }, {
673 	.base = {
674 		.cra_name		= "xts(aes)",
675 		.cra_driver_name	= "xts-aes-" MODE,
676 		.cra_priority		= PRIO,
677 		.cra_blocksize		= AES_BLOCK_SIZE,
678 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
679 		.cra_module		= THIS_MODULE,
680 	},
681 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
682 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
683 	.ivsize		= AES_BLOCK_SIZE,
684 	.walksize	= 2 * AES_BLOCK_SIZE,
685 	.setkey		= xts_set_key,
686 	.encrypt	= xts_encrypt,
687 	.decrypt	= xts_decrypt,
688 }, {
689 #endif
690 	.base = {
691 		.cra_name		= "cts(cbc(aes))",
692 		.cra_driver_name	= "cts-cbc-aes-" MODE,
693 		.cra_priority		= PRIO,
694 		.cra_blocksize		= AES_BLOCK_SIZE,
695 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
696 		.cra_module		= THIS_MODULE,
697 	},
698 	.min_keysize	= AES_MIN_KEY_SIZE,
699 	.max_keysize	= AES_MAX_KEY_SIZE,
700 	.ivsize		= AES_BLOCK_SIZE,
701 	.walksize	= 2 * AES_BLOCK_SIZE,
702 	.setkey		= skcipher_aes_setkey,
703 	.encrypt	= cts_cbc_encrypt,
704 	.decrypt	= cts_cbc_decrypt,
705 }, {
706 	.base = {
707 		.cra_name		= "essiv(cbc(aes),sha256)",
708 		.cra_driver_name	= "essiv-cbc-aes-sha256-" MODE,
709 		.cra_priority		= PRIO + 1,
710 		.cra_blocksize		= AES_BLOCK_SIZE,
711 		.cra_ctxsize		= sizeof(struct crypto_aes_essiv_cbc_ctx),
712 		.cra_module		= THIS_MODULE,
713 	},
714 	.min_keysize	= AES_MIN_KEY_SIZE,
715 	.max_keysize	= AES_MAX_KEY_SIZE,
716 	.ivsize		= AES_BLOCK_SIZE,
717 	.setkey		= essiv_cbc_set_key,
718 	.encrypt	= essiv_cbc_encrypt,
719 	.decrypt	= essiv_cbc_decrypt,
720 	.init		= essiv_cbc_init_tfm,
721 	.exit		= essiv_cbc_exit_tfm,
722 } };
723 
724 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
725 			 unsigned int key_len)
726 {
727 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
728 
729 	return aes_expandkey(&ctx->key, in_key, key_len);
730 }
731 
732 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
733 {
734 	u64 a = be64_to_cpu(x->a);
735 	u64 b = be64_to_cpu(x->b);
736 
737 	y->a = cpu_to_be64((a << 1) | (b >> 63));
738 	y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
739 }
740 
741 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
742 		       unsigned int key_len)
743 {
744 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
745 	be128 *consts = (be128 *)ctx->consts;
746 	int rounds = 6 + key_len / 4;
747 	int err;
748 
749 	err = cbcmac_setkey(tfm, in_key, key_len);
750 	if (err)
751 		return err;
752 
753 	/* encrypt the zero vector */
754 	kernel_neon_begin();
755 	aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
756 			rounds, 1);
757 	kernel_neon_end();
758 
759 	cmac_gf128_mul_by_x(consts, consts);
760 	cmac_gf128_mul_by_x(consts + 1, consts);
761 
762 	return 0;
763 }
764 
765 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
766 		       unsigned int key_len)
767 {
768 	static u8 const ks[3][AES_BLOCK_SIZE] = {
769 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
770 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
771 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
772 	};
773 
774 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
775 	int rounds = 6 + key_len / 4;
776 	u8 key[AES_BLOCK_SIZE];
777 	int err;
778 
779 	err = cbcmac_setkey(tfm, in_key, key_len);
780 	if (err)
781 		return err;
782 
783 	kernel_neon_begin();
784 	aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
785 	aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
786 	kernel_neon_end();
787 
788 	return cbcmac_setkey(tfm, key, sizeof(key));
789 }
790 
791 static int mac_init(struct shash_desc *desc)
792 {
793 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
794 
795 	memset(ctx->dg, 0, AES_BLOCK_SIZE);
796 	ctx->len = 0;
797 
798 	return 0;
799 }
800 
801 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
802 			  u8 dg[], int enc_before, int enc_after)
803 {
804 	int rounds = 6 + ctx->key_length / 4;
805 
806 	if (crypto_simd_usable()) {
807 		int rem;
808 
809 		do {
810 			kernel_neon_begin();
811 			rem = aes_mac_update(in, ctx->key_enc, rounds, blocks,
812 					     dg, enc_before, enc_after);
813 			kernel_neon_end();
814 			in += (blocks - rem) * AES_BLOCK_SIZE;
815 			blocks = rem;
816 			enc_before = 0;
817 		} while (blocks);
818 	} else {
819 		if (enc_before)
820 			aes_encrypt(ctx, dg, dg);
821 
822 		while (blocks--) {
823 			crypto_xor(dg, in, AES_BLOCK_SIZE);
824 			in += AES_BLOCK_SIZE;
825 
826 			if (blocks || enc_after)
827 				aes_encrypt(ctx, dg, dg);
828 		}
829 	}
830 }
831 
832 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
833 {
834 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
835 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
836 
837 	while (len > 0) {
838 		unsigned int l;
839 
840 		if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
841 		    (ctx->len + len) > AES_BLOCK_SIZE) {
842 
843 			int blocks = len / AES_BLOCK_SIZE;
844 
845 			len %= AES_BLOCK_SIZE;
846 
847 			mac_do_update(&tctx->key, p, blocks, ctx->dg,
848 				      (ctx->len != 0), (len != 0));
849 
850 			p += blocks * AES_BLOCK_SIZE;
851 
852 			if (!len) {
853 				ctx->len = AES_BLOCK_SIZE;
854 				break;
855 			}
856 			ctx->len = 0;
857 		}
858 
859 		l = min(len, AES_BLOCK_SIZE - ctx->len);
860 
861 		if (l <= AES_BLOCK_SIZE) {
862 			crypto_xor(ctx->dg + ctx->len, p, l);
863 			ctx->len += l;
864 			len -= l;
865 			p += l;
866 		}
867 	}
868 
869 	return 0;
870 }
871 
872 static int cbcmac_final(struct shash_desc *desc, u8 *out)
873 {
874 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
875 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
876 
877 	mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
878 
879 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
880 
881 	return 0;
882 }
883 
884 static int cmac_final(struct shash_desc *desc, u8 *out)
885 {
886 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
887 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
888 	u8 *consts = tctx->consts;
889 
890 	if (ctx->len != AES_BLOCK_SIZE) {
891 		ctx->dg[ctx->len] ^= 0x80;
892 		consts += AES_BLOCK_SIZE;
893 	}
894 
895 	mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
896 
897 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
898 
899 	return 0;
900 }
901 
902 static struct shash_alg mac_algs[] = { {
903 	.base.cra_name		= "cmac(aes)",
904 	.base.cra_driver_name	= "cmac-aes-" MODE,
905 	.base.cra_priority	= PRIO,
906 	.base.cra_blocksize	= AES_BLOCK_SIZE,
907 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
908 				  2 * AES_BLOCK_SIZE,
909 	.base.cra_module	= THIS_MODULE,
910 
911 	.digestsize		= AES_BLOCK_SIZE,
912 	.init			= mac_init,
913 	.update			= mac_update,
914 	.final			= cmac_final,
915 	.setkey			= cmac_setkey,
916 	.descsize		= sizeof(struct mac_desc_ctx),
917 }, {
918 	.base.cra_name		= "xcbc(aes)",
919 	.base.cra_driver_name	= "xcbc-aes-" MODE,
920 	.base.cra_priority	= PRIO,
921 	.base.cra_blocksize	= AES_BLOCK_SIZE,
922 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
923 				  2 * AES_BLOCK_SIZE,
924 	.base.cra_module	= THIS_MODULE,
925 
926 	.digestsize		= AES_BLOCK_SIZE,
927 	.init			= mac_init,
928 	.update			= mac_update,
929 	.final			= cmac_final,
930 	.setkey			= xcbc_setkey,
931 	.descsize		= sizeof(struct mac_desc_ctx),
932 }, {
933 	.base.cra_name		= "cbcmac(aes)",
934 	.base.cra_driver_name	= "cbcmac-aes-" MODE,
935 	.base.cra_priority	= PRIO,
936 	.base.cra_blocksize	= 1,
937 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx),
938 	.base.cra_module	= THIS_MODULE,
939 
940 	.digestsize		= AES_BLOCK_SIZE,
941 	.init			= mac_init,
942 	.update			= mac_update,
943 	.final			= cbcmac_final,
944 	.setkey			= cbcmac_setkey,
945 	.descsize		= sizeof(struct mac_desc_ctx),
946 } };
947 
948 static void aes_exit(void)
949 {
950 	crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
951 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
952 }
953 
954 static int __init aes_init(void)
955 {
956 	int err;
957 
958 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
959 	if (err)
960 		return err;
961 
962 	err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
963 	if (err)
964 		goto unregister_ciphers;
965 
966 	return 0;
967 
968 unregister_ciphers:
969 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
970 	return err;
971 }
972 
973 #ifdef USE_V8_CRYPTO_EXTENSIONS
974 module_cpu_feature_match(AES, aes_init);
975 #else
976 module_init(aes_init);
977 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
978 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
979 EXPORT_SYMBOL(neon_aes_ctr_encrypt);
980 EXPORT_SYMBOL(neon_aes_xts_encrypt);
981 EXPORT_SYMBOL(neon_aes_xts_decrypt);
982 #endif
983 module_exit(aes_exit);
984