xref: /linux/arch/arm64/crypto/aes-glue.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21 
22 #include "aes-ce-setkey.h"
23 
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE			"ce"
26 #define PRIO			300
27 #define aes_expandkey		ce_aes_expandkey
28 #define aes_ecb_encrypt		ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt		ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt		ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt		ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt	ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt	ce_aes_cbc_cts_decrypt
34 #define aes_essiv_cbc_encrypt	ce_aes_essiv_cbc_encrypt
35 #define aes_essiv_cbc_decrypt	ce_aes_essiv_cbc_decrypt
36 #define aes_ctr_encrypt		ce_aes_ctr_encrypt
37 #define aes_xts_encrypt		ce_aes_xts_encrypt
38 #define aes_xts_decrypt		ce_aes_xts_decrypt
39 #define aes_mac_update		ce_aes_mac_update
40 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
41 #else
42 #define MODE			"neon"
43 #define PRIO			200
44 #define aes_ecb_encrypt		neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt		neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt		neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt		neon_aes_cbc_decrypt
48 #define aes_cbc_cts_encrypt	neon_aes_cbc_cts_encrypt
49 #define aes_cbc_cts_decrypt	neon_aes_cbc_cts_decrypt
50 #define aes_essiv_cbc_encrypt	neon_aes_essiv_cbc_encrypt
51 #define aes_essiv_cbc_decrypt	neon_aes_essiv_cbc_decrypt
52 #define aes_ctr_encrypt		neon_aes_ctr_encrypt
53 #define aes_xts_encrypt		neon_aes_xts_encrypt
54 #define aes_xts_decrypt		neon_aes_xts_decrypt
55 #define aes_mac_update		neon_aes_mac_update
56 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
57 #endif
58 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !defined(CONFIG_CRYPTO_AES_ARM64_BS)
59 MODULE_ALIAS_CRYPTO("ecb(aes)");
60 MODULE_ALIAS_CRYPTO("cbc(aes)");
61 MODULE_ALIAS_CRYPTO("ctr(aes)");
62 MODULE_ALIAS_CRYPTO("xts(aes)");
63 #endif
64 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
65 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
66 MODULE_ALIAS_CRYPTO("cmac(aes)");
67 MODULE_ALIAS_CRYPTO("xcbc(aes)");
68 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
69 
70 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
71 MODULE_LICENSE("GPL v2");
72 
73 /* defined in aes-modes.S */
74 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
75 				int rounds, int blocks);
76 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
77 				int rounds, int blocks);
78 
79 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
80 				int rounds, int blocks, u8 iv[]);
81 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
82 				int rounds, int blocks, u8 iv[]);
83 
84 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
85 				int rounds, int bytes, u8 const iv[]);
86 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
87 				int rounds, int bytes, u8 const iv[]);
88 
89 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
90 				int rounds, int blocks, u8 ctr[]);
91 
92 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
93 				int rounds, int bytes, u32 const rk2[], u8 iv[],
94 				int first);
95 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
96 				int rounds, int bytes, u32 const rk2[], u8 iv[],
97 				int first);
98 
99 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
100 				      int rounds, int blocks, u8 iv[],
101 				      u32 const rk2[]);
102 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
103 				      int rounds, int blocks, u8 iv[],
104 				      u32 const rk2[]);
105 
106 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
107 			       int blocks, u8 dg[], int enc_before,
108 			       int enc_after);
109 
110 struct crypto_aes_xts_ctx {
111 	struct crypto_aes_ctx key1;
112 	struct crypto_aes_ctx __aligned(8) key2;
113 };
114 
115 struct crypto_aes_essiv_cbc_ctx {
116 	struct crypto_aes_ctx key1;
117 	struct crypto_aes_ctx __aligned(8) key2;
118 	struct crypto_shash *hash;
119 };
120 
121 struct mac_tfm_ctx {
122 	struct crypto_aes_ctx key;
123 	u8 __aligned(8) consts[];
124 };
125 
126 struct mac_desc_ctx {
127 	unsigned int len;
128 	u8 dg[AES_BLOCK_SIZE];
129 };
130 
131 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
132 			       unsigned int key_len)
133 {
134 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
135 
136 	return aes_expandkey(ctx, in_key, key_len);
137 }
138 
139 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
140 				      const u8 *in_key, unsigned int key_len)
141 {
142 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
143 	int ret;
144 
145 	ret = xts_verify_key(tfm, in_key, key_len);
146 	if (ret)
147 		return ret;
148 
149 	ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
150 	if (!ret)
151 		ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
152 				    key_len / 2);
153 	return ret;
154 }
155 
156 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
157 					    const u8 *in_key,
158 					    unsigned int key_len)
159 {
160 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
161 	SHASH_DESC_ON_STACK(desc, ctx->hash);
162 	u8 digest[SHA256_DIGEST_SIZE];
163 	int ret;
164 
165 	ret = aes_expandkey(&ctx->key1, in_key, key_len);
166 	if (ret)
167 		return ret;
168 
169 	desc->tfm = ctx->hash;
170 	crypto_shash_digest(desc, in_key, key_len, digest);
171 
172 	return aes_expandkey(&ctx->key2, digest, sizeof(digest));
173 }
174 
175 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
176 {
177 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
178 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
179 	int err, rounds = 6 + ctx->key_length / 4;
180 	struct skcipher_walk walk;
181 	unsigned int blocks;
182 
183 	err = skcipher_walk_virt(&walk, req, false);
184 
185 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
186 		kernel_neon_begin();
187 		aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
188 				ctx->key_enc, rounds, blocks);
189 		kernel_neon_end();
190 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
191 	}
192 	return err;
193 }
194 
195 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
196 {
197 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
198 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
199 	int err, rounds = 6 + ctx->key_length / 4;
200 	struct skcipher_walk walk;
201 	unsigned int blocks;
202 
203 	err = skcipher_walk_virt(&walk, req, false);
204 
205 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
206 		kernel_neon_begin();
207 		aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
208 				ctx->key_dec, rounds, blocks);
209 		kernel_neon_end();
210 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
211 	}
212 	return err;
213 }
214 
215 static int cbc_encrypt_walk(struct skcipher_request *req,
216 			    struct skcipher_walk *walk)
217 {
218 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
219 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
220 	int err = 0, rounds = 6 + ctx->key_length / 4;
221 	unsigned int blocks;
222 
223 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
224 		kernel_neon_begin();
225 		aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
226 				ctx->key_enc, rounds, blocks, walk->iv);
227 		kernel_neon_end();
228 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
229 	}
230 	return err;
231 }
232 
233 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
234 {
235 	struct skcipher_walk walk;
236 	int err;
237 
238 	err = skcipher_walk_virt(&walk, req, false);
239 	if (err)
240 		return err;
241 	return cbc_encrypt_walk(req, &walk);
242 }
243 
244 static int cbc_decrypt_walk(struct skcipher_request *req,
245 			    struct skcipher_walk *walk)
246 {
247 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
248 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
249 	int err = 0, rounds = 6 + ctx->key_length / 4;
250 	unsigned int blocks;
251 
252 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
253 		kernel_neon_begin();
254 		aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
255 				ctx->key_dec, rounds, blocks, walk->iv);
256 		kernel_neon_end();
257 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
258 	}
259 	return err;
260 }
261 
262 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
263 {
264 	struct skcipher_walk walk;
265 	int err;
266 
267 	err = skcipher_walk_virt(&walk, req, false);
268 	if (err)
269 		return err;
270 	return cbc_decrypt_walk(req, &walk);
271 }
272 
273 static int cts_cbc_encrypt(struct skcipher_request *req)
274 {
275 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
276 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
277 	int err, rounds = 6 + ctx->key_length / 4;
278 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
279 	struct scatterlist *src = req->src, *dst = req->dst;
280 	struct scatterlist sg_src[2], sg_dst[2];
281 	struct skcipher_request subreq;
282 	struct skcipher_walk walk;
283 
284 	skcipher_request_set_tfm(&subreq, tfm);
285 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
286 				      NULL, NULL);
287 
288 	if (req->cryptlen <= AES_BLOCK_SIZE) {
289 		if (req->cryptlen < AES_BLOCK_SIZE)
290 			return -EINVAL;
291 		cbc_blocks = 1;
292 	}
293 
294 	if (cbc_blocks > 0) {
295 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
296 					   cbc_blocks * AES_BLOCK_SIZE,
297 					   req->iv);
298 
299 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
300 		      cbc_encrypt_walk(&subreq, &walk);
301 		if (err)
302 			return err;
303 
304 		if (req->cryptlen == AES_BLOCK_SIZE)
305 			return 0;
306 
307 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
308 		if (req->dst != req->src)
309 			dst = scatterwalk_ffwd(sg_dst, req->dst,
310 					       subreq.cryptlen);
311 	}
312 
313 	/* handle ciphertext stealing */
314 	skcipher_request_set_crypt(&subreq, src, dst,
315 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
316 				   req->iv);
317 
318 	err = skcipher_walk_virt(&walk, &subreq, false);
319 	if (err)
320 		return err;
321 
322 	kernel_neon_begin();
323 	aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
324 			    ctx->key_enc, rounds, walk.nbytes, walk.iv);
325 	kernel_neon_end();
326 
327 	return skcipher_walk_done(&walk, 0);
328 }
329 
330 static int cts_cbc_decrypt(struct skcipher_request *req)
331 {
332 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
333 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
334 	int err, rounds = 6 + ctx->key_length / 4;
335 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
336 	struct scatterlist *src = req->src, *dst = req->dst;
337 	struct scatterlist sg_src[2], sg_dst[2];
338 	struct skcipher_request subreq;
339 	struct skcipher_walk walk;
340 
341 	skcipher_request_set_tfm(&subreq, tfm);
342 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
343 				      NULL, NULL);
344 
345 	if (req->cryptlen <= AES_BLOCK_SIZE) {
346 		if (req->cryptlen < AES_BLOCK_SIZE)
347 			return -EINVAL;
348 		cbc_blocks = 1;
349 	}
350 
351 	if (cbc_blocks > 0) {
352 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
353 					   cbc_blocks * AES_BLOCK_SIZE,
354 					   req->iv);
355 
356 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
357 		      cbc_decrypt_walk(&subreq, &walk);
358 		if (err)
359 			return err;
360 
361 		if (req->cryptlen == AES_BLOCK_SIZE)
362 			return 0;
363 
364 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
365 		if (req->dst != req->src)
366 			dst = scatterwalk_ffwd(sg_dst, req->dst,
367 					       subreq.cryptlen);
368 	}
369 
370 	/* handle ciphertext stealing */
371 	skcipher_request_set_crypt(&subreq, src, dst,
372 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
373 				   req->iv);
374 
375 	err = skcipher_walk_virt(&walk, &subreq, false);
376 	if (err)
377 		return err;
378 
379 	kernel_neon_begin();
380 	aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
381 			    ctx->key_dec, rounds, walk.nbytes, walk.iv);
382 	kernel_neon_end();
383 
384 	return skcipher_walk_done(&walk, 0);
385 }
386 
387 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
388 {
389 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
390 
391 	ctx->hash = crypto_alloc_shash("sha256", 0, 0);
392 
393 	return PTR_ERR_OR_ZERO(ctx->hash);
394 }
395 
396 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
397 {
398 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
399 
400 	crypto_free_shash(ctx->hash);
401 }
402 
403 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
404 {
405 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
406 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
407 	int err, rounds = 6 + ctx->key1.key_length / 4;
408 	struct skcipher_walk walk;
409 	unsigned int blocks;
410 
411 	err = skcipher_walk_virt(&walk, req, false);
412 
413 	blocks = walk.nbytes / AES_BLOCK_SIZE;
414 	if (blocks) {
415 		kernel_neon_begin();
416 		aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
417 				      ctx->key1.key_enc, rounds, blocks,
418 				      req->iv, ctx->key2.key_enc);
419 		kernel_neon_end();
420 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
421 	}
422 	return err ?: cbc_encrypt_walk(req, &walk);
423 }
424 
425 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
426 {
427 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
428 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
429 	int err, rounds = 6 + ctx->key1.key_length / 4;
430 	struct skcipher_walk walk;
431 	unsigned int blocks;
432 
433 	err = skcipher_walk_virt(&walk, req, false);
434 
435 	blocks = walk.nbytes / AES_BLOCK_SIZE;
436 	if (blocks) {
437 		kernel_neon_begin();
438 		aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
439 				      ctx->key1.key_dec, rounds, blocks,
440 				      req->iv, ctx->key2.key_enc);
441 		kernel_neon_end();
442 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
443 	}
444 	return err ?: cbc_decrypt_walk(req, &walk);
445 }
446 
447 static int ctr_encrypt(struct skcipher_request *req)
448 {
449 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
451 	int err, rounds = 6 + ctx->key_length / 4;
452 	struct skcipher_walk walk;
453 	int blocks;
454 
455 	err = skcipher_walk_virt(&walk, req, false);
456 
457 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
458 		kernel_neon_begin();
459 		aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
460 				ctx->key_enc, rounds, blocks, walk.iv);
461 		kernel_neon_end();
462 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
463 	}
464 	if (walk.nbytes) {
465 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
466 		unsigned int nbytes = walk.nbytes;
467 		u8 *tdst = walk.dst.virt.addr;
468 		u8 *tsrc = walk.src.virt.addr;
469 
470 		/*
471 		 * Tell aes_ctr_encrypt() to process a tail block.
472 		 */
473 		blocks = -1;
474 
475 		kernel_neon_begin();
476 		aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
477 				blocks, walk.iv);
478 		kernel_neon_end();
479 		crypto_xor_cpy(tdst, tsrc, tail, nbytes);
480 		err = skcipher_walk_done(&walk, 0);
481 	}
482 
483 	return err;
484 }
485 
486 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
487 {
488 	const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
489 	unsigned long flags;
490 
491 	/*
492 	 * Temporarily disable interrupts to avoid races where
493 	 * cachelines are evicted when the CPU is interrupted
494 	 * to do something else.
495 	 */
496 	local_irq_save(flags);
497 	aes_encrypt(ctx, dst, src);
498 	local_irq_restore(flags);
499 }
500 
501 static int __maybe_unused ctr_encrypt_sync(struct skcipher_request *req)
502 {
503 	if (!crypto_simd_usable())
504 		return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
505 
506 	return ctr_encrypt(req);
507 }
508 
509 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
510 {
511 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
512 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
513 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
514 	int tail = req->cryptlen % AES_BLOCK_SIZE;
515 	struct scatterlist sg_src[2], sg_dst[2];
516 	struct skcipher_request subreq;
517 	struct scatterlist *src, *dst;
518 	struct skcipher_walk walk;
519 
520 	if (req->cryptlen < AES_BLOCK_SIZE)
521 		return -EINVAL;
522 
523 	err = skcipher_walk_virt(&walk, req, false);
524 
525 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
526 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
527 					      AES_BLOCK_SIZE) - 2;
528 
529 		skcipher_walk_abort(&walk);
530 
531 		skcipher_request_set_tfm(&subreq, tfm);
532 		skcipher_request_set_callback(&subreq,
533 					      skcipher_request_flags(req),
534 					      NULL, NULL);
535 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
536 					   xts_blocks * AES_BLOCK_SIZE,
537 					   req->iv);
538 		req = &subreq;
539 		err = skcipher_walk_virt(&walk, req, false);
540 	} else {
541 		tail = 0;
542 	}
543 
544 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
545 		int nbytes = walk.nbytes;
546 
547 		if (walk.nbytes < walk.total)
548 			nbytes &= ~(AES_BLOCK_SIZE - 1);
549 
550 		kernel_neon_begin();
551 		aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
552 				ctx->key1.key_enc, rounds, nbytes,
553 				ctx->key2.key_enc, walk.iv, first);
554 		kernel_neon_end();
555 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
556 	}
557 
558 	if (err || likely(!tail))
559 		return err;
560 
561 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
562 	if (req->dst != req->src)
563 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
564 
565 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
566 				   req->iv);
567 
568 	err = skcipher_walk_virt(&walk, &subreq, false);
569 	if (err)
570 		return err;
571 
572 	kernel_neon_begin();
573 	aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
574 			ctx->key1.key_enc, rounds, walk.nbytes,
575 			ctx->key2.key_enc, walk.iv, first);
576 	kernel_neon_end();
577 
578 	return skcipher_walk_done(&walk, 0);
579 }
580 
581 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
582 {
583 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
584 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
585 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
586 	int tail = req->cryptlen % AES_BLOCK_SIZE;
587 	struct scatterlist sg_src[2], sg_dst[2];
588 	struct skcipher_request subreq;
589 	struct scatterlist *src, *dst;
590 	struct skcipher_walk walk;
591 
592 	if (req->cryptlen < AES_BLOCK_SIZE)
593 		return -EINVAL;
594 
595 	err = skcipher_walk_virt(&walk, req, false);
596 
597 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
598 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
599 					      AES_BLOCK_SIZE) - 2;
600 
601 		skcipher_walk_abort(&walk);
602 
603 		skcipher_request_set_tfm(&subreq, tfm);
604 		skcipher_request_set_callback(&subreq,
605 					      skcipher_request_flags(req),
606 					      NULL, NULL);
607 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
608 					   xts_blocks * AES_BLOCK_SIZE,
609 					   req->iv);
610 		req = &subreq;
611 		err = skcipher_walk_virt(&walk, req, false);
612 	} else {
613 		tail = 0;
614 	}
615 
616 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
617 		int nbytes = walk.nbytes;
618 
619 		if (walk.nbytes < walk.total)
620 			nbytes &= ~(AES_BLOCK_SIZE - 1);
621 
622 		kernel_neon_begin();
623 		aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
624 				ctx->key1.key_dec, rounds, nbytes,
625 				ctx->key2.key_enc, walk.iv, first);
626 		kernel_neon_end();
627 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
628 	}
629 
630 	if (err || likely(!tail))
631 		return err;
632 
633 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
634 	if (req->dst != req->src)
635 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
636 
637 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
638 				   req->iv);
639 
640 	err = skcipher_walk_virt(&walk, &subreq, false);
641 	if (err)
642 		return err;
643 
644 
645 	kernel_neon_begin();
646 	aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
647 			ctx->key1.key_dec, rounds, walk.nbytes,
648 			ctx->key2.key_enc, walk.iv, first);
649 	kernel_neon_end();
650 
651 	return skcipher_walk_done(&walk, 0);
652 }
653 
654 static struct skcipher_alg aes_algs[] = { {
655 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !defined(CONFIG_CRYPTO_AES_ARM64_BS)
656 	.base = {
657 		.cra_name		= "__ecb(aes)",
658 		.cra_driver_name	= "__ecb-aes-" MODE,
659 		.cra_priority		= PRIO,
660 		.cra_flags		= CRYPTO_ALG_INTERNAL,
661 		.cra_blocksize		= AES_BLOCK_SIZE,
662 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
663 		.cra_module		= THIS_MODULE,
664 	},
665 	.min_keysize	= AES_MIN_KEY_SIZE,
666 	.max_keysize	= AES_MAX_KEY_SIZE,
667 	.setkey		= skcipher_aes_setkey,
668 	.encrypt	= ecb_encrypt,
669 	.decrypt	= ecb_decrypt,
670 }, {
671 	.base = {
672 		.cra_name		= "__cbc(aes)",
673 		.cra_driver_name	= "__cbc-aes-" MODE,
674 		.cra_priority		= PRIO,
675 		.cra_flags		= CRYPTO_ALG_INTERNAL,
676 		.cra_blocksize		= AES_BLOCK_SIZE,
677 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
678 		.cra_module		= THIS_MODULE,
679 	},
680 	.min_keysize	= AES_MIN_KEY_SIZE,
681 	.max_keysize	= AES_MAX_KEY_SIZE,
682 	.ivsize		= AES_BLOCK_SIZE,
683 	.setkey		= skcipher_aes_setkey,
684 	.encrypt	= cbc_encrypt,
685 	.decrypt	= cbc_decrypt,
686 }, {
687 	.base = {
688 		.cra_name		= "__ctr(aes)",
689 		.cra_driver_name	= "__ctr-aes-" MODE,
690 		.cra_priority		= PRIO,
691 		.cra_flags		= CRYPTO_ALG_INTERNAL,
692 		.cra_blocksize		= 1,
693 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
694 		.cra_module		= THIS_MODULE,
695 	},
696 	.min_keysize	= AES_MIN_KEY_SIZE,
697 	.max_keysize	= AES_MAX_KEY_SIZE,
698 	.ivsize		= AES_BLOCK_SIZE,
699 	.chunksize	= AES_BLOCK_SIZE,
700 	.setkey		= skcipher_aes_setkey,
701 	.encrypt	= ctr_encrypt,
702 	.decrypt	= ctr_encrypt,
703 }, {
704 	.base = {
705 		.cra_name		= "ctr(aes)",
706 		.cra_driver_name	= "ctr-aes-" MODE,
707 		.cra_priority		= PRIO - 1,
708 		.cra_blocksize		= 1,
709 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
710 		.cra_module		= THIS_MODULE,
711 	},
712 	.min_keysize	= AES_MIN_KEY_SIZE,
713 	.max_keysize	= AES_MAX_KEY_SIZE,
714 	.ivsize		= AES_BLOCK_SIZE,
715 	.chunksize	= AES_BLOCK_SIZE,
716 	.setkey		= skcipher_aes_setkey,
717 	.encrypt	= ctr_encrypt_sync,
718 	.decrypt	= ctr_encrypt_sync,
719 }, {
720 	.base = {
721 		.cra_name		= "__xts(aes)",
722 		.cra_driver_name	= "__xts-aes-" MODE,
723 		.cra_priority		= PRIO,
724 		.cra_flags		= CRYPTO_ALG_INTERNAL,
725 		.cra_blocksize		= AES_BLOCK_SIZE,
726 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
727 		.cra_module		= THIS_MODULE,
728 	},
729 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
730 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
731 	.ivsize		= AES_BLOCK_SIZE,
732 	.walksize	= 2 * AES_BLOCK_SIZE,
733 	.setkey		= xts_set_key,
734 	.encrypt	= xts_encrypt,
735 	.decrypt	= xts_decrypt,
736 }, {
737 #endif
738 	.base = {
739 		.cra_name		= "__cts(cbc(aes))",
740 		.cra_driver_name	= "__cts-cbc-aes-" MODE,
741 		.cra_priority		= PRIO,
742 		.cra_flags		= CRYPTO_ALG_INTERNAL,
743 		.cra_blocksize		= AES_BLOCK_SIZE,
744 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
745 		.cra_module		= THIS_MODULE,
746 	},
747 	.min_keysize	= AES_MIN_KEY_SIZE,
748 	.max_keysize	= AES_MAX_KEY_SIZE,
749 	.ivsize		= AES_BLOCK_SIZE,
750 	.walksize	= 2 * AES_BLOCK_SIZE,
751 	.setkey		= skcipher_aes_setkey,
752 	.encrypt	= cts_cbc_encrypt,
753 	.decrypt	= cts_cbc_decrypt,
754 }, {
755 	.base = {
756 		.cra_name		= "__essiv(cbc(aes),sha256)",
757 		.cra_driver_name	= "__essiv-cbc-aes-sha256-" MODE,
758 		.cra_priority		= PRIO + 1,
759 		.cra_flags		= CRYPTO_ALG_INTERNAL,
760 		.cra_blocksize		= AES_BLOCK_SIZE,
761 		.cra_ctxsize		= sizeof(struct crypto_aes_essiv_cbc_ctx),
762 		.cra_module		= THIS_MODULE,
763 	},
764 	.min_keysize	= AES_MIN_KEY_SIZE,
765 	.max_keysize	= AES_MAX_KEY_SIZE,
766 	.ivsize		= AES_BLOCK_SIZE,
767 	.setkey		= essiv_cbc_set_key,
768 	.encrypt	= essiv_cbc_encrypt,
769 	.decrypt	= essiv_cbc_decrypt,
770 	.init		= essiv_cbc_init_tfm,
771 	.exit		= essiv_cbc_exit_tfm,
772 } };
773 
774 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
775 			 unsigned int key_len)
776 {
777 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
778 
779 	return aes_expandkey(&ctx->key, in_key, key_len);
780 }
781 
782 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
783 {
784 	u64 a = be64_to_cpu(x->a);
785 	u64 b = be64_to_cpu(x->b);
786 
787 	y->a = cpu_to_be64((a << 1) | (b >> 63));
788 	y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
789 }
790 
791 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
792 		       unsigned int key_len)
793 {
794 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
795 	be128 *consts = (be128 *)ctx->consts;
796 	int rounds = 6 + key_len / 4;
797 	int err;
798 
799 	err = cbcmac_setkey(tfm, in_key, key_len);
800 	if (err)
801 		return err;
802 
803 	/* encrypt the zero vector */
804 	kernel_neon_begin();
805 	aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
806 			rounds, 1);
807 	kernel_neon_end();
808 
809 	cmac_gf128_mul_by_x(consts, consts);
810 	cmac_gf128_mul_by_x(consts + 1, consts);
811 
812 	return 0;
813 }
814 
815 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
816 		       unsigned int key_len)
817 {
818 	static u8 const ks[3][AES_BLOCK_SIZE] = {
819 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
820 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
821 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
822 	};
823 
824 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
825 	int rounds = 6 + key_len / 4;
826 	u8 key[AES_BLOCK_SIZE];
827 	int err;
828 
829 	err = cbcmac_setkey(tfm, in_key, key_len);
830 	if (err)
831 		return err;
832 
833 	kernel_neon_begin();
834 	aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
835 	aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
836 	kernel_neon_end();
837 
838 	return cbcmac_setkey(tfm, key, sizeof(key));
839 }
840 
841 static int mac_init(struct shash_desc *desc)
842 {
843 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
844 
845 	memset(ctx->dg, 0, AES_BLOCK_SIZE);
846 	ctx->len = 0;
847 
848 	return 0;
849 }
850 
851 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
852 			  u8 dg[], int enc_before, int enc_after)
853 {
854 	int rounds = 6 + ctx->key_length / 4;
855 
856 	if (crypto_simd_usable()) {
857 		kernel_neon_begin();
858 		aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
859 			       enc_after);
860 		kernel_neon_end();
861 	} else {
862 		if (enc_before)
863 			aes_encrypt(ctx, dg, dg);
864 
865 		while (blocks--) {
866 			crypto_xor(dg, in, AES_BLOCK_SIZE);
867 			in += AES_BLOCK_SIZE;
868 
869 			if (blocks || enc_after)
870 				aes_encrypt(ctx, dg, dg);
871 		}
872 	}
873 }
874 
875 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
876 {
877 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
878 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
879 
880 	while (len > 0) {
881 		unsigned int l;
882 
883 		if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
884 		    (ctx->len + len) > AES_BLOCK_SIZE) {
885 
886 			int blocks = len / AES_BLOCK_SIZE;
887 
888 			len %= AES_BLOCK_SIZE;
889 
890 			mac_do_update(&tctx->key, p, blocks, ctx->dg,
891 				      (ctx->len != 0), (len != 0));
892 
893 			p += blocks * AES_BLOCK_SIZE;
894 
895 			if (!len) {
896 				ctx->len = AES_BLOCK_SIZE;
897 				break;
898 			}
899 			ctx->len = 0;
900 		}
901 
902 		l = min(len, AES_BLOCK_SIZE - ctx->len);
903 
904 		if (l <= AES_BLOCK_SIZE) {
905 			crypto_xor(ctx->dg + ctx->len, p, l);
906 			ctx->len += l;
907 			len -= l;
908 			p += l;
909 		}
910 	}
911 
912 	return 0;
913 }
914 
915 static int cbcmac_final(struct shash_desc *desc, u8 *out)
916 {
917 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
918 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
919 
920 	mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
921 
922 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
923 
924 	return 0;
925 }
926 
927 static int cmac_final(struct shash_desc *desc, u8 *out)
928 {
929 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
930 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
931 	u8 *consts = tctx->consts;
932 
933 	if (ctx->len != AES_BLOCK_SIZE) {
934 		ctx->dg[ctx->len] ^= 0x80;
935 		consts += AES_BLOCK_SIZE;
936 	}
937 
938 	mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
939 
940 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
941 
942 	return 0;
943 }
944 
945 static struct shash_alg mac_algs[] = { {
946 	.base.cra_name		= "cmac(aes)",
947 	.base.cra_driver_name	= "cmac-aes-" MODE,
948 	.base.cra_priority	= PRIO,
949 	.base.cra_blocksize	= AES_BLOCK_SIZE,
950 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
951 				  2 * AES_BLOCK_SIZE,
952 	.base.cra_module	= THIS_MODULE,
953 
954 	.digestsize		= AES_BLOCK_SIZE,
955 	.init			= mac_init,
956 	.update			= mac_update,
957 	.final			= cmac_final,
958 	.setkey			= cmac_setkey,
959 	.descsize		= sizeof(struct mac_desc_ctx),
960 }, {
961 	.base.cra_name		= "xcbc(aes)",
962 	.base.cra_driver_name	= "xcbc-aes-" MODE,
963 	.base.cra_priority	= PRIO,
964 	.base.cra_blocksize	= AES_BLOCK_SIZE,
965 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
966 				  2 * AES_BLOCK_SIZE,
967 	.base.cra_module	= THIS_MODULE,
968 
969 	.digestsize		= AES_BLOCK_SIZE,
970 	.init			= mac_init,
971 	.update			= mac_update,
972 	.final			= cmac_final,
973 	.setkey			= xcbc_setkey,
974 	.descsize		= sizeof(struct mac_desc_ctx),
975 }, {
976 	.base.cra_name		= "cbcmac(aes)",
977 	.base.cra_driver_name	= "cbcmac-aes-" MODE,
978 	.base.cra_priority	= PRIO,
979 	.base.cra_blocksize	= 1,
980 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx),
981 	.base.cra_module	= THIS_MODULE,
982 
983 	.digestsize		= AES_BLOCK_SIZE,
984 	.init			= mac_init,
985 	.update			= mac_update,
986 	.final			= cbcmac_final,
987 	.setkey			= cbcmac_setkey,
988 	.descsize		= sizeof(struct mac_desc_ctx),
989 } };
990 
991 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
992 
993 static void aes_exit(void)
994 {
995 	int i;
996 
997 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
998 		if (aes_simd_algs[i])
999 			simd_skcipher_free(aes_simd_algs[i]);
1000 
1001 	crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1002 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1003 }
1004 
1005 static int __init aes_init(void)
1006 {
1007 	struct simd_skcipher_alg *simd;
1008 	const char *basename;
1009 	const char *algname;
1010 	const char *drvname;
1011 	int err;
1012 	int i;
1013 
1014 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1015 	if (err)
1016 		return err;
1017 
1018 	err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1019 	if (err)
1020 		goto unregister_ciphers;
1021 
1022 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1023 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
1024 			continue;
1025 
1026 		algname = aes_algs[i].base.cra_name + 2;
1027 		drvname = aes_algs[i].base.cra_driver_name + 2;
1028 		basename = aes_algs[i].base.cra_driver_name;
1029 		simd = simd_skcipher_create_compat(algname, drvname, basename);
1030 		err = PTR_ERR(simd);
1031 		if (IS_ERR(simd))
1032 			goto unregister_simds;
1033 
1034 		aes_simd_algs[i] = simd;
1035 	}
1036 
1037 	return 0;
1038 
1039 unregister_simds:
1040 	aes_exit();
1041 	return err;
1042 unregister_ciphers:
1043 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1044 	return err;
1045 }
1046 
1047 #ifdef USE_V8_CRYPTO_EXTENSIONS
1048 module_cpu_feature_match(AES, aes_init);
1049 #else
1050 module_init(aes_init);
1051 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
1052 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
1053 EXPORT_SYMBOL(neon_aes_xts_encrypt);
1054 EXPORT_SYMBOL(neon_aes_xts_decrypt);
1055 #endif
1056 module_exit(aes_exit);
1057