xref: /linux/arch/arm/vfp/vfpmodule.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/vfp/vfpmodule.c
4  *
5  *  Copyright (C) 2004 ARM Limited.
6  *  Written by Deep Blue Solutions Limited.
7  */
8 #include <linux/types.h>
9 #include <linux/cpu.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21 #include <linux/perf_event.h>
22 
23 #include <asm/cp15.h>
24 #include <asm/cputype.h>
25 #include <asm/system_info.h>
26 #include <asm/thread_notify.h>
27 #include <asm/traps.h>
28 #include <asm/vfp.h>
29 #include <asm/neon.h>
30 
31 #include "vfpinstr.h"
32 #include "vfp.h"
33 
34 static bool have_vfp __ro_after_init;
35 
36 /*
37  * Dual-use variable.
38  * Used in startup: set to non-zero if VFP checks fail
39  * After startup, holds VFP architecture
40  */
41 static unsigned int VFP_arch;
42 
43 #ifdef CONFIG_CPU_FEROCEON
44 extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
45 #endif
46 
47 /*
48  * The pointer to the vfpstate structure of the thread which currently
49  * owns the context held in the VFP hardware, or NULL if the hardware
50  * context is invalid.
51  *
52  * For UP, this is sufficient to tell which thread owns the VFP context.
53  * However, for SMP, we also need to check the CPU number stored in the
54  * saved state too to catch migrations.
55  */
56 union vfp_state *vfp_current_hw_state[NR_CPUS];
57 
58 /*
59  * Is 'thread's most up to date state stored in this CPUs hardware?
60  * Must be called from non-preemptible context.
61  */
62 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
63 {
64 #ifdef CONFIG_SMP
65 	if (thread->vfpstate.hard.cpu != cpu)
66 		return false;
67 #endif
68 	return vfp_current_hw_state[cpu] == &thread->vfpstate;
69 }
70 
71 /*
72  * Force a reload of the VFP context from the thread structure.  We do
73  * this by ensuring that access to the VFP hardware is disabled, and
74  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
75  */
76 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
77 {
78 	if (vfp_state_in_hw(cpu, thread)) {
79 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
80 		vfp_current_hw_state[cpu] = NULL;
81 	}
82 #ifdef CONFIG_SMP
83 	thread->vfpstate.hard.cpu = NR_CPUS;
84 #endif
85 }
86 
87 /*
88  * Per-thread VFP initialization.
89  */
90 static void vfp_thread_flush(struct thread_info *thread)
91 {
92 	union vfp_state *vfp = &thread->vfpstate;
93 	unsigned int cpu;
94 
95 	/*
96 	 * Disable VFP to ensure we initialize it first.  We must ensure
97 	 * that the modification of vfp_current_hw_state[] and hardware
98 	 * disable are done for the same CPU and without preemption.
99 	 *
100 	 * Do this first to ensure that preemption won't overwrite our
101 	 * state saving should access to the VFP be enabled at this point.
102 	 */
103 	cpu = get_cpu();
104 	if (vfp_current_hw_state[cpu] == vfp)
105 		vfp_current_hw_state[cpu] = NULL;
106 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
107 	put_cpu();
108 
109 	memset(vfp, 0, sizeof(union vfp_state));
110 
111 	vfp->hard.fpexc = FPEXC_EN;
112 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
113 #ifdef CONFIG_SMP
114 	vfp->hard.cpu = NR_CPUS;
115 #endif
116 }
117 
118 static void vfp_thread_exit(struct thread_info *thread)
119 {
120 	/* release case: Per-thread VFP cleanup. */
121 	union vfp_state *vfp = &thread->vfpstate;
122 	unsigned int cpu = get_cpu();
123 
124 	if (vfp_current_hw_state[cpu] == vfp)
125 		vfp_current_hw_state[cpu] = NULL;
126 	put_cpu();
127 }
128 
129 static void vfp_thread_copy(struct thread_info *thread)
130 {
131 	struct thread_info *parent = current_thread_info();
132 
133 	vfp_sync_hwstate(parent);
134 	thread->vfpstate = parent->vfpstate;
135 #ifdef CONFIG_SMP
136 	thread->vfpstate.hard.cpu = NR_CPUS;
137 #endif
138 }
139 
140 /*
141  * When this function is called with the following 'cmd's, the following
142  * is true while this function is being run:
143  *  THREAD_NOFTIFY_SWTICH:
144  *   - the previously running thread will not be scheduled onto another CPU.
145  *   - the next thread to be run (v) will not be running on another CPU.
146  *   - thread->cpu is the local CPU number
147  *   - not preemptible as we're called in the middle of a thread switch
148  *  THREAD_NOTIFY_FLUSH:
149  *   - the thread (v) will be running on the local CPU, so
150  *	v === current_thread_info()
151  *   - thread->cpu is the local CPU number at the time it is accessed,
152  *	but may change at any time.
153  *   - we could be preempted if tree preempt rcu is enabled, so
154  *	it is unsafe to use thread->cpu.
155  *  THREAD_NOTIFY_EXIT
156  *   - we could be preempted if tree preempt rcu is enabled, so
157  *	it is unsafe to use thread->cpu.
158  */
159 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
160 {
161 	struct thread_info *thread = v;
162 	u32 fpexc;
163 #ifdef CONFIG_SMP
164 	unsigned int cpu;
165 #endif
166 
167 	switch (cmd) {
168 	case THREAD_NOTIFY_SWITCH:
169 		fpexc = fmrx(FPEXC);
170 
171 #ifdef CONFIG_SMP
172 		cpu = thread->cpu;
173 
174 		/*
175 		 * On SMP, if VFP is enabled, save the old state in
176 		 * case the thread migrates to a different CPU. The
177 		 * restoring is done lazily.
178 		 */
179 		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
180 			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
181 #endif
182 
183 		/*
184 		 * Always disable VFP so we can lazily save/restore the
185 		 * old state.
186 		 */
187 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
188 		break;
189 
190 	case THREAD_NOTIFY_FLUSH:
191 		vfp_thread_flush(thread);
192 		break;
193 
194 	case THREAD_NOTIFY_EXIT:
195 		vfp_thread_exit(thread);
196 		break;
197 
198 	case THREAD_NOTIFY_COPY:
199 		vfp_thread_copy(thread);
200 		break;
201 	}
202 
203 	return NOTIFY_DONE;
204 }
205 
206 static struct notifier_block vfp_notifier_block = {
207 	.notifier_call	= vfp_notifier,
208 };
209 
210 /*
211  * Raise a SIGFPE for the current process.
212  * sicode describes the signal being raised.
213  */
214 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
215 {
216 	/*
217 	 * This is the same as NWFPE, because it's not clear what
218 	 * this is used for
219 	 */
220 	current->thread.error_code = 0;
221 	current->thread.trap_no = 6;
222 
223 	send_sig_fault(SIGFPE, sicode,
224 		       (void __user *)(instruction_pointer(regs) - 4),
225 		       current);
226 }
227 
228 static void vfp_panic(char *reason, u32 inst)
229 {
230 	int i;
231 
232 	pr_err("VFP: Error: %s\n", reason);
233 	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
234 		fmrx(FPEXC), fmrx(FPSCR), inst);
235 	for (i = 0; i < 32; i += 2)
236 		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
237 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
238 }
239 
240 /*
241  * Process bitmask of exception conditions.
242  */
243 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
244 {
245 	int si_code = 0;
246 
247 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
248 
249 	if (exceptions == VFP_EXCEPTION_ERROR) {
250 		vfp_panic("unhandled bounce", inst);
251 		vfp_raise_sigfpe(FPE_FLTINV, regs);
252 		return;
253 	}
254 
255 	/*
256 	 * If any of the status flags are set, update the FPSCR.
257 	 * Comparison instructions always return at least one of
258 	 * these flags set.
259 	 */
260 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
261 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
262 
263 	fpscr |= exceptions;
264 
265 	fmxr(FPSCR, fpscr);
266 
267 #define RAISE(stat,en,sig)				\
268 	if (exceptions & stat && fpscr & en)		\
269 		si_code = sig;
270 
271 	/*
272 	 * These are arranged in priority order, least to highest.
273 	 */
274 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
275 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
276 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
277 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
278 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
279 
280 	if (si_code)
281 		vfp_raise_sigfpe(si_code, regs);
282 }
283 
284 /*
285  * Emulate a VFP instruction.
286  */
287 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
288 {
289 	u32 exceptions = VFP_EXCEPTION_ERROR;
290 
291 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
292 
293 	if (INST_CPRTDO(inst)) {
294 		if (!INST_CPRT(inst)) {
295 			/*
296 			 * CPDO
297 			 */
298 			if (vfp_single(inst)) {
299 				exceptions = vfp_single_cpdo(inst, fpscr);
300 			} else {
301 				exceptions = vfp_double_cpdo(inst, fpscr);
302 			}
303 		} else {
304 			/*
305 			 * A CPRT instruction can not appear in FPINST2, nor
306 			 * can it cause an exception.  Therefore, we do not
307 			 * have to emulate it.
308 			 */
309 		}
310 	} else {
311 		/*
312 		 * A CPDT instruction can not appear in FPINST2, nor can
313 		 * it cause an exception.  Therefore, we do not have to
314 		 * emulate it.
315 		 */
316 	}
317 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
318 	return exceptions & ~VFP_NAN_FLAG;
319 }
320 
321 /*
322  * Package up a bounce condition.
323  */
324 static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
325 {
326 	u32 fpscr, orig_fpscr, fpsid, exceptions;
327 
328 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
329 
330 	/*
331 	 * At this point, FPEXC can have the following configuration:
332 	 *
333 	 *  EX DEX IXE
334 	 *  0   1   x   - synchronous exception
335 	 *  1   x   0   - asynchronous exception
336 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
337 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
338 	 *                implementation), undefined otherwise
339 	 *
340 	 * Clear various bits and enable access to the VFP so we can
341 	 * handle the bounce.
342 	 */
343 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
344 
345 	fpsid = fmrx(FPSID);
346 	orig_fpscr = fpscr = fmrx(FPSCR);
347 
348 	/*
349 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
350 	 */
351 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
352 	    && (fpscr & FPSCR_IXE)) {
353 		/*
354 		 * Synchronous exception, emulate the trigger instruction
355 		 */
356 		goto emulate;
357 	}
358 
359 	if (fpexc & FPEXC_EX) {
360 		/*
361 		 * Asynchronous exception. The instruction is read from FPINST
362 		 * and the interrupted instruction has to be restarted.
363 		 */
364 		trigger = fmrx(FPINST);
365 		regs->ARM_pc -= 4;
366 	} else if (!(fpexc & FPEXC_DEX)) {
367 		/*
368 		 * Illegal combination of bits. It can be caused by an
369 		 * unallocated VFP instruction but with FPSCR.IXE set and not
370 		 * on VFP subarch 1.
371 		 */
372 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
373 		return;
374 	}
375 
376 	/*
377 	 * Modify fpscr to indicate the number of iterations remaining.
378 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
379 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
380 	 */
381 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
382 		u32 len;
383 
384 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
385 
386 		fpscr &= ~FPSCR_LENGTH_MASK;
387 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
388 	}
389 
390 	/*
391 	 * Handle the first FP instruction.  We used to take note of the
392 	 * FPEXC bounce reason, but this appears to be unreliable.
393 	 * Emulate the bounced instruction instead.
394 	 */
395 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
396 	if (exceptions)
397 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
398 
399 	/*
400 	 * If there isn't a second FP instruction, exit now. Note that
401 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
402 	 */
403 	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
404 		return;
405 
406 	/*
407 	 * The barrier() here prevents fpinst2 being read
408 	 * before the condition above.
409 	 */
410 	barrier();
411 	trigger = fmrx(FPINST2);
412 
413  emulate:
414 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
415 	if (exceptions)
416 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
417 }
418 
419 static void vfp_enable(void *unused)
420 {
421 	u32 access;
422 
423 	BUG_ON(preemptible());
424 	access = get_copro_access();
425 
426 	/*
427 	 * Enable full access to VFP (cp10 and cp11)
428 	 */
429 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
430 }
431 
432 /* Called by platforms on which we want to disable VFP because it may not be
433  * present on all CPUs within a SMP complex. Needs to be called prior to
434  * vfp_init().
435  */
436 void __init vfp_disable(void)
437 {
438 	if (VFP_arch) {
439 		pr_debug("%s: should be called prior to vfp_init\n", __func__);
440 		return;
441 	}
442 	VFP_arch = 1;
443 }
444 
445 #ifdef CONFIG_CPU_PM
446 static int vfp_pm_suspend(void)
447 {
448 	struct thread_info *ti = current_thread_info();
449 	u32 fpexc = fmrx(FPEXC);
450 
451 	/* if vfp is on, then save state for resumption */
452 	if (fpexc & FPEXC_EN) {
453 		pr_debug("%s: saving vfp state\n", __func__);
454 		vfp_save_state(&ti->vfpstate, fpexc);
455 
456 		/* disable, just in case */
457 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
458 	} else if (vfp_current_hw_state[ti->cpu]) {
459 #ifndef CONFIG_SMP
460 		fmxr(FPEXC, fpexc | FPEXC_EN);
461 		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
462 		fmxr(FPEXC, fpexc);
463 #endif
464 	}
465 
466 	/* clear any information we had about last context state */
467 	vfp_current_hw_state[ti->cpu] = NULL;
468 
469 	return 0;
470 }
471 
472 static void vfp_pm_resume(void)
473 {
474 	/* ensure we have access to the vfp */
475 	vfp_enable(NULL);
476 
477 	/* and disable it to ensure the next usage restores the state */
478 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
479 }
480 
481 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
482 	void *v)
483 {
484 	switch (cmd) {
485 	case CPU_PM_ENTER:
486 		vfp_pm_suspend();
487 		break;
488 	case CPU_PM_ENTER_FAILED:
489 	case CPU_PM_EXIT:
490 		vfp_pm_resume();
491 		break;
492 	}
493 	return NOTIFY_OK;
494 }
495 
496 static struct notifier_block vfp_cpu_pm_notifier_block = {
497 	.notifier_call = vfp_cpu_pm_notifier,
498 };
499 
500 static void vfp_pm_init(void)
501 {
502 	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
503 }
504 
505 #else
506 static inline void vfp_pm_init(void) { }
507 #endif /* CONFIG_CPU_PM */
508 
509 /*
510  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
511  * with the hardware state.
512  */
513 void vfp_sync_hwstate(struct thread_info *thread)
514 {
515 	unsigned int cpu = get_cpu();
516 
517 	local_bh_disable();
518 
519 	if (vfp_state_in_hw(cpu, thread)) {
520 		u32 fpexc = fmrx(FPEXC);
521 
522 		/*
523 		 * Save the last VFP state on this CPU.
524 		 */
525 		fmxr(FPEXC, fpexc | FPEXC_EN);
526 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
527 		fmxr(FPEXC, fpexc);
528 	}
529 
530 	local_bh_enable();
531 	put_cpu();
532 }
533 
534 /* Ensure that the thread reloads the hardware VFP state on the next use. */
535 void vfp_flush_hwstate(struct thread_info *thread)
536 {
537 	unsigned int cpu = get_cpu();
538 
539 	vfp_force_reload(cpu, thread);
540 
541 	put_cpu();
542 }
543 
544 /*
545  * Save the current VFP state into the provided structures and prepare
546  * for entry into a new function (signal handler).
547  */
548 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
549 				    struct user_vfp_exc *ufp_exc)
550 {
551 	struct thread_info *thread = current_thread_info();
552 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
553 
554 	/* Ensure that the saved hwstate is up-to-date. */
555 	vfp_sync_hwstate(thread);
556 
557 	/*
558 	 * Copy the floating point registers. There can be unused
559 	 * registers see asm/hwcap.h for details.
560 	 */
561 	memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
562 
563 	/*
564 	 * Copy the status and control register.
565 	 */
566 	ufp->fpscr = hwstate->fpscr;
567 
568 	/*
569 	 * Copy the exception registers.
570 	 */
571 	ufp_exc->fpexc = hwstate->fpexc;
572 	ufp_exc->fpinst = hwstate->fpinst;
573 	ufp_exc->fpinst2 = hwstate->fpinst2;
574 
575 	/* Ensure that VFP is disabled. */
576 	vfp_flush_hwstate(thread);
577 
578 	/*
579 	 * As per the PCS, clear the length and stride bits for function
580 	 * entry.
581 	 */
582 	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
583 	return 0;
584 }
585 
586 /* Sanitise and restore the current VFP state from the provided structures. */
587 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
588 {
589 	struct thread_info *thread = current_thread_info();
590 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
591 	unsigned long fpexc;
592 
593 	/* Disable VFP to avoid corrupting the new thread state. */
594 	vfp_flush_hwstate(thread);
595 
596 	/*
597 	 * Copy the floating point registers. There can be unused
598 	 * registers see asm/hwcap.h for details.
599 	 */
600 	memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
601 	/*
602 	 * Copy the status and control register.
603 	 */
604 	hwstate->fpscr = ufp->fpscr;
605 
606 	/*
607 	 * Sanitise and restore the exception registers.
608 	 */
609 	fpexc = ufp_exc->fpexc;
610 
611 	/* Ensure the VFP is enabled. */
612 	fpexc |= FPEXC_EN;
613 
614 	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
615 	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
616 	hwstate->fpexc = fpexc;
617 
618 	hwstate->fpinst = ufp_exc->fpinst;
619 	hwstate->fpinst2 = ufp_exc->fpinst2;
620 
621 	return 0;
622 }
623 
624 /*
625  * VFP hardware can lose all context when a CPU goes offline.
626  * As we will be running in SMP mode with CPU hotplug, we will save the
627  * hardware state at every thread switch.  We clear our held state when
628  * a CPU has been killed, indicating that the VFP hardware doesn't contain
629  * a threads VFP state.  When a CPU starts up, we re-enable access to the
630  * VFP hardware. The callbacks below are called on the CPU which
631  * is being offlined/onlined.
632  */
633 static int vfp_dying_cpu(unsigned int cpu)
634 {
635 	vfp_current_hw_state[cpu] = NULL;
636 	return 0;
637 }
638 
639 static int vfp_starting_cpu(unsigned int unused)
640 {
641 	vfp_enable(NULL);
642 	return 0;
643 }
644 
645 static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
646 {
647 	/*
648 	 * If we reach this point, a floating point exception has been raised
649 	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
650 	 * time, it means a VFP instruction has been issued that requires
651 	 * software assistance to complete, something which is not currently
652 	 * supported in kernel mode.
653 	 * If the NEON/VFP unit was disabled, and the location pointed to below
654 	 * is properly preceded by a call to kernel_neon_begin(), something has
655 	 * caused the task to be scheduled out and back in again. In this case,
656 	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
657 	 * be helpful in localizing the problem.
658 	 */
659 	if (fmrx(FPEXC) & FPEXC_EN)
660 		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
661 	else
662 		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
663 	pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
664 	return 1;
665 }
666 
667 /*
668  * vfp_support_entry - Handle VFP exception
669  *
670  * @regs:	pt_regs structure holding the register state at exception entry
671  * @trigger:	The opcode of the instruction that triggered the exception
672  *
673  * Returns 0 if the exception was handled, or an error code otherwise.
674  */
675 static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
676 {
677 	struct thread_info *ti = current_thread_info();
678 	u32 fpexc;
679 
680 	if (unlikely(!have_vfp))
681 		return -ENODEV;
682 
683 	if (!user_mode(regs))
684 		return vfp_kmode_exception(regs, trigger);
685 
686 	local_bh_disable();
687 	fpexc = fmrx(FPEXC);
688 
689 	/*
690 	 * If the VFP unit was not enabled yet, we have to check whether the
691 	 * VFP state in the CPU's registers is the most recent VFP state
692 	 * associated with the process. On UP systems, we don't save the VFP
693 	 * state eagerly on a context switch, so we may need to save the
694 	 * VFP state to memory first, as it may belong to another process.
695 	 */
696 	if (!(fpexc & FPEXC_EN)) {
697 		/*
698 		 * Enable the VFP unit but mask the FP exception flag for the
699 		 * time being, so we can access all the registers.
700 		 */
701 		fpexc |= FPEXC_EN;
702 		fmxr(FPEXC, fpexc & ~FPEXC_EX);
703 
704 		/*
705 		 * Check whether or not the VFP state in the CPU's registers is
706 		 * the most recent VFP state associated with this task. On SMP,
707 		 * migration may result in multiple CPUs holding VFP states
708 		 * that belong to the same task, but only the most recent one
709 		 * is valid.
710 		 */
711 		if (!vfp_state_in_hw(ti->cpu, ti)) {
712 			if (!IS_ENABLED(CONFIG_SMP) &&
713 			    vfp_current_hw_state[ti->cpu] != NULL) {
714 				/*
715 				 * This CPU is currently holding the most
716 				 * recent VFP state associated with another
717 				 * task, and we must save that to memory first.
718 				 */
719 				vfp_save_state(vfp_current_hw_state[ti->cpu],
720 					       fpexc);
721 			}
722 
723 			/*
724 			 * We can now proceed with loading the task's VFP state
725 			 * from memory into the CPU registers.
726 			 */
727 			fpexc = vfp_load_state(&ti->vfpstate);
728 			vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
729 #ifdef CONFIG_SMP
730 			/*
731 			 * Record that this CPU is now the one holding the most
732 			 * recent VFP state of the task.
733 			 */
734 			ti->vfpstate.hard.cpu = ti->cpu;
735 #endif
736 		}
737 
738 		if (fpexc & FPEXC_EX)
739 			/*
740 			 * Might as well handle the pending exception before
741 			 * retrying branch out before setting an FPEXC that
742 			 * stops us reading stuff.
743 			 */
744 			goto bounce;
745 
746 		/*
747 		 * No FP exception is pending: just enable the VFP and
748 		 * replay the instruction that trapped.
749 		 */
750 		fmxr(FPEXC, fpexc);
751 	} else {
752 		/* Check for synchronous or asynchronous exceptions */
753 		if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
754 			u32 fpscr = fmrx(FPSCR);
755 
756 			/*
757 			 * On some implementations of the VFP subarch 1,
758 			 * setting FPSCR.IXE causes all the CDP instructions to
759 			 * be bounced synchronously without setting the
760 			 * FPEXC.EX bit
761 			 */
762 			if (!(fpscr & FPSCR_IXE)) {
763 				if (!(fpscr & FPSCR_LENGTH_MASK)) {
764 					pr_debug("not VFP\n");
765 					local_bh_enable();
766 					return -ENOEXEC;
767 				}
768 				fpexc |= FPEXC_DEX;
769 			}
770 		}
771 bounce:		regs->ARM_pc += 4;
772 		VFP_bounce(trigger, fpexc, regs);
773 	}
774 
775 	local_bh_enable();
776 	return 0;
777 }
778 
779 static struct undef_hook neon_support_hook[] = {{
780 	.instr_mask	= 0xfe000000,
781 	.instr_val	= 0xf2000000,
782 	.cpsr_mask	= PSR_T_BIT,
783 	.cpsr_val	= 0,
784 	.fn		= vfp_support_entry,
785 }, {
786 	.instr_mask	= 0xff100000,
787 	.instr_val	= 0xf4000000,
788 	.cpsr_mask	= PSR_T_BIT,
789 	.cpsr_val	= 0,
790 	.fn		= vfp_support_entry,
791 }, {
792 	.instr_mask	= 0xef000000,
793 	.instr_val	= 0xef000000,
794 	.cpsr_mask	= PSR_T_BIT,
795 	.cpsr_val	= PSR_T_BIT,
796 	.fn		= vfp_support_entry,
797 }, {
798 	.instr_mask	= 0xff100000,
799 	.instr_val	= 0xf9000000,
800 	.cpsr_mask	= PSR_T_BIT,
801 	.cpsr_val	= PSR_T_BIT,
802 	.fn		= vfp_support_entry,
803 }, {
804 	.instr_mask	= 0xff000800,
805 	.instr_val	= 0xfc000800,
806 	.cpsr_mask	= 0,
807 	.cpsr_val	= 0,
808 	.fn		= vfp_support_entry,
809 }, {
810 	.instr_mask	= 0xff000800,
811 	.instr_val	= 0xfd000800,
812 	.cpsr_mask	= 0,
813 	.cpsr_val	= 0,
814 	.fn		= vfp_support_entry,
815 }, {
816 	.instr_mask	= 0xff000800,
817 	.instr_val	= 0xfe000800,
818 	.cpsr_mask	= 0,
819 	.cpsr_val	= 0,
820 	.fn		= vfp_support_entry,
821 }};
822 
823 static struct undef_hook vfp_support_hook = {
824 	.instr_mask	= 0x0c000e00,
825 	.instr_val	= 0x0c000a00,
826 	.fn		= vfp_support_entry,
827 };
828 
829 #ifdef CONFIG_KERNEL_MODE_NEON
830 
831 /*
832  * Kernel-side NEON support functions
833  */
834 void kernel_neon_begin(void)
835 {
836 	struct thread_info *thread = current_thread_info();
837 	unsigned int cpu;
838 	u32 fpexc;
839 
840 	local_bh_disable();
841 
842 	/*
843 	 * Kernel mode NEON is only allowed outside of hardirq context with
844 	 * preemption and softirq processing disabled. This will make sure that
845 	 * the kernel mode NEON register contents never need to be preserved.
846 	 */
847 	BUG_ON(in_hardirq());
848 	cpu = __smp_processor_id();
849 
850 	fpexc = fmrx(FPEXC) | FPEXC_EN;
851 	fmxr(FPEXC, fpexc);
852 
853 	/*
854 	 * Save the userland NEON/VFP state. Under UP,
855 	 * the owner could be a task other than 'current'
856 	 */
857 	if (vfp_state_in_hw(cpu, thread))
858 		vfp_save_state(&thread->vfpstate, fpexc);
859 #ifndef CONFIG_SMP
860 	else if (vfp_current_hw_state[cpu] != NULL)
861 		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
862 #endif
863 	vfp_current_hw_state[cpu] = NULL;
864 }
865 EXPORT_SYMBOL(kernel_neon_begin);
866 
867 void kernel_neon_end(void)
868 {
869 	/* Disable the NEON/VFP unit. */
870 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
871 	local_bh_enable();
872 }
873 EXPORT_SYMBOL(kernel_neon_end);
874 
875 #endif /* CONFIG_KERNEL_MODE_NEON */
876 
877 static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
878 {
879 	VFP_arch = UINT_MAX;	/* mark as not present */
880 	regs->ARM_pc += 4;
881 	return 0;
882 }
883 
884 static struct undef_hook vfp_detect_hook __initdata = {
885 	.instr_mask	= 0x0c000e00,
886 	.instr_val	= 0x0c000a00,
887 	.cpsr_mask	= MODE_MASK,
888 	.cpsr_val	= SVC_MODE,
889 	.fn		= vfp_detect,
890 };
891 
892 /*
893  * VFP support code initialisation.
894  */
895 static int __init vfp_init(void)
896 {
897 	unsigned int vfpsid;
898 	unsigned int cpu_arch = cpu_architecture();
899 	unsigned int isar6;
900 
901 	/*
902 	 * Enable the access to the VFP on all online CPUs so the
903 	 * following test on FPSID will succeed.
904 	 */
905 	if (cpu_arch >= CPU_ARCH_ARMv6)
906 		on_each_cpu(vfp_enable, NULL, 1);
907 
908 	/*
909 	 * First check that there is a VFP that we can use.
910 	 * The handler is already setup to just log calls, so
911 	 * we just need to read the VFPSID register.
912 	 */
913 	register_undef_hook(&vfp_detect_hook);
914 	barrier();
915 	vfpsid = fmrx(FPSID);
916 	barrier();
917 	unregister_undef_hook(&vfp_detect_hook);
918 
919 	pr_info("VFP support v0.3: ");
920 	if (VFP_arch) {
921 		pr_cont("not present\n");
922 		return 0;
923 	/* Extract the architecture on CPUID scheme */
924 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
925 		VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
926 		VFP_arch >>= FPSID_ARCH_BIT;
927 		/*
928 		 * Check for the presence of the Advanced SIMD
929 		 * load/store instructions, integer and single
930 		 * precision floating point operations. Only check
931 		 * for NEON if the hardware has the MVFR registers.
932 		 */
933 		if (IS_ENABLED(CONFIG_NEON) &&
934 		    (fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
935 			elf_hwcap |= HWCAP_NEON;
936 			for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
937 				register_undef_hook(&neon_support_hook[i]);
938 		}
939 
940 		if (IS_ENABLED(CONFIG_VFPv3)) {
941 			u32 mvfr0 = fmrx(MVFR0);
942 			if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
943 			    ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
944 				elf_hwcap |= HWCAP_VFPv3;
945 				/*
946 				 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
947 				 * this configuration only have 16 x 64bit
948 				 * registers.
949 				 */
950 				if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
951 					/* also v4-D16 */
952 					elf_hwcap |= HWCAP_VFPv3D16;
953 				else
954 					elf_hwcap |= HWCAP_VFPD32;
955 			}
956 
957 			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
958 				elf_hwcap |= HWCAP_VFPv4;
959 			if (((fmrx(MVFR1) & MVFR1_ASIMDHP_MASK) >> MVFR1_ASIMDHP_BIT) == 0x2)
960 				elf_hwcap |= HWCAP_ASIMDHP;
961 			if (((fmrx(MVFR1) & MVFR1_FPHP_MASK) >> MVFR1_FPHP_BIT) == 0x3)
962 				elf_hwcap |= HWCAP_FPHP;
963 		}
964 
965 		/*
966 		 * Check for the presence of Advanced SIMD Dot Product
967 		 * instructions.
968 		 */
969 		isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
970 		if (cpuid_feature_extract_field(isar6, 4) == 0x1)
971 			elf_hwcap |= HWCAP_ASIMDDP;
972 		/*
973 		 * Check for the presence of Advanced SIMD Floating point
974 		 * half-precision multiplication instructions.
975 		 */
976 		if (cpuid_feature_extract_field(isar6, 8) == 0x1)
977 			elf_hwcap |= HWCAP_ASIMDFHM;
978 		/*
979 		 * Check for the presence of Advanced SIMD Bfloat16
980 		 * floating point instructions.
981 		 */
982 		if (cpuid_feature_extract_field(isar6, 20) == 0x1)
983 			elf_hwcap |= HWCAP_ASIMDBF16;
984 		/*
985 		 * Check for the presence of Advanced SIMD and floating point
986 		 * Int8 matrix multiplication instructions instructions.
987 		 */
988 		if (cpuid_feature_extract_field(isar6, 24) == 0x1)
989 			elf_hwcap |= HWCAP_I8MM;
990 
991 	/* Extract the architecture version on pre-cpuid scheme */
992 	} else {
993 		if (vfpsid & FPSID_NODOUBLE) {
994 			pr_cont("no double precision support\n");
995 			return 0;
996 		}
997 
998 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
999 	}
1000 
1001 	cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
1002 				  "arm/vfp:starting", vfp_starting_cpu,
1003 				  vfp_dying_cpu);
1004 
1005 	have_vfp = true;
1006 
1007 	register_undef_hook(&vfp_support_hook);
1008 	thread_register_notifier(&vfp_notifier_block);
1009 	vfp_pm_init();
1010 
1011 	/*
1012 	 * We detected VFP, and the support code is
1013 	 * in place; report VFP support to userspace.
1014 	 */
1015 	elf_hwcap |= HWCAP_VFP;
1016 
1017 	pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
1018 		(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
1019 		VFP_arch,
1020 		(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
1021 		(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
1022 		(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
1023 
1024 	return 0;
1025 }
1026 
1027 core_initcall(vfp_init);
1028