xref: /linux/arch/arm/vfp/vfpmodule.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 
18 #include <asm/cputype.h>
19 #include <asm/thread_notify.h>
20 #include <asm/vfp.h>
21 
22 #include "vfpinstr.h"
23 #include "vfp.h"
24 
25 /*
26  * Our undef handlers (in entry.S)
27  */
28 void vfp_testing_entry(void);
29 void vfp_support_entry(void);
30 void vfp_null_entry(void);
31 
32 void (*vfp_vector)(void) = vfp_null_entry;
33 union vfp_state *last_VFP_context[NR_CPUS];
34 
35 /*
36  * Dual-use variable.
37  * Used in startup: set to non-zero if VFP checks fail
38  * After startup, holds VFP architecture
39  */
40 unsigned int VFP_arch;
41 
42 /*
43  * Per-thread VFP initialization.
44  */
45 static void vfp_thread_flush(struct thread_info *thread)
46 {
47 	union vfp_state *vfp = &thread->vfpstate;
48 	unsigned int cpu;
49 
50 	memset(vfp, 0, sizeof(union vfp_state));
51 
52 	vfp->hard.fpexc = FPEXC_EN;
53 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
54 
55 	/*
56 	 * Disable VFP to ensure we initialize it first.  We must ensure
57 	 * that the modification of last_VFP_context[] and hardware disable
58 	 * are done for the same CPU and without preemption.
59 	 */
60 	cpu = get_cpu();
61 	if (last_VFP_context[cpu] == vfp)
62 		last_VFP_context[cpu] = NULL;
63 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
64 	put_cpu();
65 }
66 
67 static void vfp_thread_exit(struct thread_info *thread)
68 {
69 	/* release case: Per-thread VFP cleanup. */
70 	union vfp_state *vfp = &thread->vfpstate;
71 	unsigned int cpu = get_cpu();
72 
73 	if (last_VFP_context[cpu] == vfp)
74 		last_VFP_context[cpu] = NULL;
75 	put_cpu();
76 }
77 
78 /*
79  * When this function is called with the following 'cmd's, the following
80  * is true while this function is being run:
81  *  THREAD_NOFTIFY_SWTICH:
82  *   - the previously running thread will not be scheduled onto another CPU.
83  *   - the next thread to be run (v) will not be running on another CPU.
84  *   - thread->cpu is the local CPU number
85  *   - not preemptible as we're called in the middle of a thread switch
86  *  THREAD_NOTIFY_FLUSH:
87  *   - the thread (v) will be running on the local CPU, so
88  *	v === current_thread_info()
89  *   - thread->cpu is the local CPU number at the time it is accessed,
90  *	but may change at any time.
91  *   - we could be preempted if tree preempt rcu is enabled, so
92  *	it is unsafe to use thread->cpu.
93  *  THREAD_NOTIFY_EXIT
94  *   - the thread (v) will be running on the local CPU, so
95  *	v === current_thread_info()
96  *   - thread->cpu is the local CPU number at the time it is accessed,
97  *	but may change at any time.
98  *   - we could be preempted if tree preempt rcu is enabled, so
99  *	it is unsafe to use thread->cpu.
100  */
101 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
102 {
103 	struct thread_info *thread = v;
104 
105 	if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
106 		u32 fpexc = fmrx(FPEXC);
107 
108 #ifdef CONFIG_SMP
109 		unsigned int cpu = thread->cpu;
110 
111 		/*
112 		 * On SMP, if VFP is enabled, save the old state in
113 		 * case the thread migrates to a different CPU. The
114 		 * restoring is done lazily.
115 		 */
116 		if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
117 			vfp_save_state(last_VFP_context[cpu], fpexc);
118 			last_VFP_context[cpu]->hard.cpu = cpu;
119 		}
120 		/*
121 		 * Thread migration, just force the reloading of the
122 		 * state on the new CPU in case the VFP registers
123 		 * contain stale data.
124 		 */
125 		if (thread->vfpstate.hard.cpu != cpu)
126 			last_VFP_context[cpu] = NULL;
127 #endif
128 
129 		/*
130 		 * Always disable VFP so we can lazily save/restore the
131 		 * old state.
132 		 */
133 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
134 		return NOTIFY_DONE;
135 	}
136 
137 	if (cmd == THREAD_NOTIFY_FLUSH)
138 		vfp_thread_flush(thread);
139 	else
140 		vfp_thread_exit(thread);
141 
142 	return NOTIFY_DONE;
143 }
144 
145 static struct notifier_block vfp_notifier_block = {
146 	.notifier_call	= vfp_notifier,
147 };
148 
149 /*
150  * Raise a SIGFPE for the current process.
151  * sicode describes the signal being raised.
152  */
153 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
154 {
155 	siginfo_t info;
156 
157 	memset(&info, 0, sizeof(info));
158 
159 	info.si_signo = SIGFPE;
160 	info.si_code = sicode;
161 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
162 
163 	/*
164 	 * This is the same as NWFPE, because it's not clear what
165 	 * this is used for
166 	 */
167 	current->thread.error_code = 0;
168 	current->thread.trap_no = 6;
169 
170 	send_sig_info(SIGFPE, &info, current);
171 }
172 
173 static void vfp_panic(char *reason, u32 inst)
174 {
175 	int i;
176 
177 	printk(KERN_ERR "VFP: Error: %s\n", reason);
178 	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
179 		fmrx(FPEXC), fmrx(FPSCR), inst);
180 	for (i = 0; i < 32; i += 2)
181 		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
182 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
183 }
184 
185 /*
186  * Process bitmask of exception conditions.
187  */
188 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
189 {
190 	int si_code = 0;
191 
192 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
193 
194 	if (exceptions == VFP_EXCEPTION_ERROR) {
195 		vfp_panic("unhandled bounce", inst);
196 		vfp_raise_sigfpe(0, regs);
197 		return;
198 	}
199 
200 	/*
201 	 * If any of the status flags are set, update the FPSCR.
202 	 * Comparison instructions always return at least one of
203 	 * these flags set.
204 	 */
205 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
206 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
207 
208 	fpscr |= exceptions;
209 
210 	fmxr(FPSCR, fpscr);
211 
212 #define RAISE(stat,en,sig)				\
213 	if (exceptions & stat && fpscr & en)		\
214 		si_code = sig;
215 
216 	/*
217 	 * These are arranged in priority order, least to highest.
218 	 */
219 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
220 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
221 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
222 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
223 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
224 
225 	if (si_code)
226 		vfp_raise_sigfpe(si_code, regs);
227 }
228 
229 /*
230  * Emulate a VFP instruction.
231  */
232 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
233 {
234 	u32 exceptions = VFP_EXCEPTION_ERROR;
235 
236 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
237 
238 	if (INST_CPRTDO(inst)) {
239 		if (!INST_CPRT(inst)) {
240 			/*
241 			 * CPDO
242 			 */
243 			if (vfp_single(inst)) {
244 				exceptions = vfp_single_cpdo(inst, fpscr);
245 			} else {
246 				exceptions = vfp_double_cpdo(inst, fpscr);
247 			}
248 		} else {
249 			/*
250 			 * A CPRT instruction can not appear in FPINST2, nor
251 			 * can it cause an exception.  Therefore, we do not
252 			 * have to emulate it.
253 			 */
254 		}
255 	} else {
256 		/*
257 		 * A CPDT instruction can not appear in FPINST2, nor can
258 		 * it cause an exception.  Therefore, we do not have to
259 		 * emulate it.
260 		 */
261 	}
262 	return exceptions & ~VFP_NAN_FLAG;
263 }
264 
265 /*
266  * Package up a bounce condition.
267  */
268 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
269 {
270 	u32 fpscr, orig_fpscr, fpsid, exceptions;
271 
272 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
273 
274 	/*
275 	 * At this point, FPEXC can have the following configuration:
276 	 *
277 	 *  EX DEX IXE
278 	 *  0   1   x   - synchronous exception
279 	 *  1   x   0   - asynchronous exception
280 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
281 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
282 	 *                implementation), undefined otherwise
283 	 *
284 	 * Clear various bits and enable access to the VFP so we can
285 	 * handle the bounce.
286 	 */
287 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
288 
289 	fpsid = fmrx(FPSID);
290 	orig_fpscr = fpscr = fmrx(FPSCR);
291 
292 	/*
293 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
294 	 */
295 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
296 	    && (fpscr & FPSCR_IXE)) {
297 		/*
298 		 * Synchronous exception, emulate the trigger instruction
299 		 */
300 		goto emulate;
301 	}
302 
303 	if (fpexc & FPEXC_EX) {
304 #ifndef CONFIG_CPU_FEROCEON
305 		/*
306 		 * Asynchronous exception. The instruction is read from FPINST
307 		 * and the interrupted instruction has to be restarted.
308 		 */
309 		trigger = fmrx(FPINST);
310 		regs->ARM_pc -= 4;
311 #endif
312 	} else if (!(fpexc & FPEXC_DEX)) {
313 		/*
314 		 * Illegal combination of bits. It can be caused by an
315 		 * unallocated VFP instruction but with FPSCR.IXE set and not
316 		 * on VFP subarch 1.
317 		 */
318 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
319 		goto exit;
320 	}
321 
322 	/*
323 	 * Modify fpscr to indicate the number of iterations remaining.
324 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
325 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
326 	 */
327 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
328 		u32 len;
329 
330 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
331 
332 		fpscr &= ~FPSCR_LENGTH_MASK;
333 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
334 	}
335 
336 	/*
337 	 * Handle the first FP instruction.  We used to take note of the
338 	 * FPEXC bounce reason, but this appears to be unreliable.
339 	 * Emulate the bounced instruction instead.
340 	 */
341 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
342 	if (exceptions)
343 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
344 
345 	/*
346 	 * If there isn't a second FP instruction, exit now. Note that
347 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
348 	 */
349 	if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
350 		goto exit;
351 
352 	/*
353 	 * The barrier() here prevents fpinst2 being read
354 	 * before the condition above.
355 	 */
356 	barrier();
357 	trigger = fmrx(FPINST2);
358 
359  emulate:
360 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
361 	if (exceptions)
362 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
363  exit:
364 	preempt_enable();
365 }
366 
367 static void vfp_enable(void *unused)
368 {
369 	u32 access = get_copro_access();
370 
371 	/*
372 	 * Enable full access to VFP (cp10 and cp11)
373 	 */
374 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
375 }
376 
377 #ifdef CONFIG_PM
378 #include <linux/sysdev.h>
379 
380 static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state)
381 {
382 	struct thread_info *ti = current_thread_info();
383 	u32 fpexc = fmrx(FPEXC);
384 
385 	/* if vfp is on, then save state for resumption */
386 	if (fpexc & FPEXC_EN) {
387 		printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
388 		vfp_save_state(&ti->vfpstate, fpexc);
389 
390 		/* disable, just in case */
391 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
392 	}
393 
394 	/* clear any information we had about last context state */
395 	memset(last_VFP_context, 0, sizeof(last_VFP_context));
396 
397 	return 0;
398 }
399 
400 static int vfp_pm_resume(struct sys_device *dev)
401 {
402 	/* ensure we have access to the vfp */
403 	vfp_enable(NULL);
404 
405 	/* and disable it to ensure the next usage restores the state */
406 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
407 
408 	return 0;
409 }
410 
411 static struct sysdev_class vfp_pm_sysclass = {
412 	.name		= "vfp",
413 	.suspend	= vfp_pm_suspend,
414 	.resume		= vfp_pm_resume,
415 };
416 
417 static struct sys_device vfp_pm_sysdev = {
418 	.cls	= &vfp_pm_sysclass,
419 };
420 
421 static void vfp_pm_init(void)
422 {
423 	sysdev_class_register(&vfp_pm_sysclass);
424 	sysdev_register(&vfp_pm_sysdev);
425 }
426 
427 
428 #else
429 static inline void vfp_pm_init(void) { }
430 #endif /* CONFIG_PM */
431 
432 void vfp_sync_hwstate(struct thread_info *thread)
433 {
434 	unsigned int cpu = get_cpu();
435 
436 	/*
437 	 * If the thread we're interested in is the current owner of the
438 	 * hardware VFP state, then we need to save its state.
439 	 */
440 	if (last_VFP_context[cpu] == &thread->vfpstate) {
441 		u32 fpexc = fmrx(FPEXC);
442 
443 		/*
444 		 * Save the last VFP state on this CPU.
445 		 */
446 		fmxr(FPEXC, fpexc | FPEXC_EN);
447 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
448 		fmxr(FPEXC, fpexc);
449 	}
450 
451 	put_cpu();
452 }
453 
454 void vfp_flush_hwstate(struct thread_info *thread)
455 {
456 	unsigned int cpu = get_cpu();
457 
458 	/*
459 	 * If the thread we're interested in is the current owner of the
460 	 * hardware VFP state, then we need to save its state.
461 	 */
462 	if (last_VFP_context[cpu] == &thread->vfpstate) {
463 		u32 fpexc = fmrx(FPEXC);
464 
465 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
466 
467 		/*
468 		 * Set the context to NULL to force a reload the next time
469 		 * the thread uses the VFP.
470 		 */
471 		last_VFP_context[cpu] = NULL;
472 	}
473 
474 #ifdef CONFIG_SMP
475 	/*
476 	 * For SMP we still have to take care of the case where the thread
477 	 * migrates to another CPU and then back to the original CPU on which
478 	 * the last VFP user is still the same thread. Mark the thread VFP
479 	 * state as belonging to a non-existent CPU so that the saved one will
480 	 * be reloaded in the above case.
481 	 */
482 	thread->vfpstate.hard.cpu = NR_CPUS;
483 #endif
484 	put_cpu();
485 }
486 
487 #include <linux/smp.h>
488 
489 /*
490  * VFP support code initialisation.
491  */
492 static int __init vfp_init(void)
493 {
494 	unsigned int vfpsid;
495 	unsigned int cpu_arch = cpu_architecture();
496 
497 	if (cpu_arch >= CPU_ARCH_ARMv6)
498 		vfp_enable(NULL);
499 
500 	/*
501 	 * First check that there is a VFP that we can use.
502 	 * The handler is already setup to just log calls, so
503 	 * we just need to read the VFPSID register.
504 	 */
505 	vfp_vector = vfp_testing_entry;
506 	barrier();
507 	vfpsid = fmrx(FPSID);
508 	barrier();
509 	vfp_vector = vfp_null_entry;
510 
511 	printk(KERN_INFO "VFP support v0.3: ");
512 	if (VFP_arch)
513 		printk("not present\n");
514 	else if (vfpsid & FPSID_NODOUBLE) {
515 		printk("no double precision support\n");
516 	} else {
517 		smp_call_function(vfp_enable, NULL, 1);
518 
519 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
520 		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
521 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
522 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
523 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
524 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
525 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
526 
527 		vfp_vector = vfp_support_entry;
528 
529 		thread_register_notifier(&vfp_notifier_block);
530 		vfp_pm_init();
531 
532 		/*
533 		 * We detected VFP, and the support code is
534 		 * in place; report VFP support to userspace.
535 		 */
536 		elf_hwcap |= HWCAP_VFP;
537 #ifdef CONFIG_VFPv3
538 		if (VFP_arch >= 2) {
539 			elf_hwcap |= HWCAP_VFPv3;
540 
541 			/*
542 			 * Check for VFPv3 D16. CPUs in this configuration
543 			 * only have 16 x 64bit registers.
544 			 */
545 			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
546 				elf_hwcap |= HWCAP_VFPv3D16;
547 		}
548 #endif
549 #ifdef CONFIG_NEON
550 		/*
551 		 * Check for the presence of the Advanced SIMD
552 		 * load/store instructions, integer and single
553 		 * precision floating point operations. Only check
554 		 * for NEON if the hardware has the MVFR registers.
555 		 */
556 		if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
557 			if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
558 				elf_hwcap |= HWCAP_NEON;
559 		}
560 #endif
561 	}
562 	return 0;
563 }
564 
565 late_initcall(vfp_init);
566