xref: /linux/arch/arm/vfp/vfpmodule.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 
18 #include <asm/thread_notify.h>
19 #include <asm/vfp.h>
20 
21 #include "vfpinstr.h"
22 #include "vfp.h"
23 
24 /*
25  * Our undef handlers (in entry.S)
26  */
27 void vfp_testing_entry(void);
28 void vfp_support_entry(void);
29 
30 void (*vfp_vector)(void) = vfp_testing_entry;
31 union vfp_state *last_VFP_context[NR_CPUS];
32 
33 /*
34  * Dual-use variable.
35  * Used in startup: set to non-zero if VFP checks fail
36  * After startup, holds VFP architecture
37  */
38 unsigned int VFP_arch;
39 
40 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
41 {
42 	struct thread_info *thread = v;
43 	union vfp_state *vfp;
44 	__u32 cpu = thread->cpu;
45 
46 	if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
47 		u32 fpexc = fmrx(FPEXC);
48 
49 #ifdef CONFIG_SMP
50 		/*
51 		 * On SMP, if VFP is enabled, save the old state in
52 		 * case the thread migrates to a different CPU. The
53 		 * restoring is done lazily.
54 		 */
55 		if ((fpexc & FPEXC_ENABLE) && last_VFP_context[cpu]) {
56 			vfp_save_state(last_VFP_context[cpu], fpexc);
57 			last_VFP_context[cpu]->hard.cpu = cpu;
58 		}
59 		/*
60 		 * Thread migration, just force the reloading of the
61 		 * state on the new CPU in case the VFP registers
62 		 * contain stale data.
63 		 */
64 		if (thread->vfpstate.hard.cpu != cpu)
65 			last_VFP_context[cpu] = NULL;
66 #endif
67 
68 		/*
69 		 * Always disable VFP so we can lazily save/restore the
70 		 * old state.
71 		 */
72 		fmxr(FPEXC, fpexc & ~FPEXC_ENABLE);
73 		return NOTIFY_DONE;
74 	}
75 
76 	vfp = &thread->vfpstate;
77 	if (cmd == THREAD_NOTIFY_FLUSH) {
78 		/*
79 		 * Per-thread VFP initialisation.
80 		 */
81 		memset(vfp, 0, sizeof(union vfp_state));
82 
83 		vfp->hard.fpexc = FPEXC_ENABLE;
84 		vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
85 
86 		/*
87 		 * Disable VFP to ensure we initialise it first.
88 		 */
89 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
90 	}
91 
92 	/* flush and release case: Per-thread VFP cleanup. */
93 	if (last_VFP_context[cpu] == vfp)
94 		last_VFP_context[cpu] = NULL;
95 
96 	return NOTIFY_DONE;
97 }
98 
99 static struct notifier_block vfp_notifier_block = {
100 	.notifier_call	= vfp_notifier,
101 };
102 
103 /*
104  * Raise a SIGFPE for the current process.
105  * sicode describes the signal being raised.
106  */
107 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
108 {
109 	siginfo_t info;
110 
111 	memset(&info, 0, sizeof(info));
112 
113 	info.si_signo = SIGFPE;
114 	info.si_code = sicode;
115 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
116 
117 	/*
118 	 * This is the same as NWFPE, because it's not clear what
119 	 * this is used for
120 	 */
121 	current->thread.error_code = 0;
122 	current->thread.trap_no = 6;
123 
124 	send_sig_info(SIGFPE, &info, current);
125 }
126 
127 static void vfp_panic(char *reason)
128 {
129 	int i;
130 
131 	printk(KERN_ERR "VFP: Error: %s\n", reason);
132 	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
133 		fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
134 	for (i = 0; i < 32; i += 2)
135 		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
136 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
137 }
138 
139 /*
140  * Process bitmask of exception conditions.
141  */
142 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
143 {
144 	int si_code = 0;
145 
146 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
147 
148 	if (exceptions == VFP_EXCEPTION_ERROR) {
149 		vfp_panic("unhandled bounce");
150 		vfp_raise_sigfpe(0, regs);
151 		return;
152 	}
153 
154 	/*
155 	 * If any of the status flags are set, update the FPSCR.
156 	 * Comparison instructions always return at least one of
157 	 * these flags set.
158 	 */
159 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
160 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
161 
162 	fpscr |= exceptions;
163 
164 	fmxr(FPSCR, fpscr);
165 
166 #define RAISE(stat,en,sig)				\
167 	if (exceptions & stat && fpscr & en)		\
168 		si_code = sig;
169 
170 	/*
171 	 * These are arranged in priority order, least to highest.
172 	 */
173 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
174 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
175 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
176 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
177 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
178 
179 	if (si_code)
180 		vfp_raise_sigfpe(si_code, regs);
181 }
182 
183 /*
184  * Emulate a VFP instruction.
185  */
186 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
187 {
188 	u32 exceptions = VFP_EXCEPTION_ERROR;
189 
190 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
191 
192 	if (INST_CPRTDO(inst)) {
193 		if (!INST_CPRT(inst)) {
194 			/*
195 			 * CPDO
196 			 */
197 			if (vfp_single(inst)) {
198 				exceptions = vfp_single_cpdo(inst, fpscr);
199 			} else {
200 				exceptions = vfp_double_cpdo(inst, fpscr);
201 			}
202 		} else {
203 			/*
204 			 * A CPRT instruction can not appear in FPINST2, nor
205 			 * can it cause an exception.  Therefore, we do not
206 			 * have to emulate it.
207 			 */
208 		}
209 	} else {
210 		/*
211 		 * A CPDT instruction can not appear in FPINST2, nor can
212 		 * it cause an exception.  Therefore, we do not have to
213 		 * emulate it.
214 		 */
215 	}
216 	return exceptions & ~VFP_NAN_FLAG;
217 }
218 
219 /*
220  * Package up a bounce condition.
221  */
222 void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
223 {
224 	u32 fpscr, orig_fpscr, exceptions, inst;
225 
226 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
227 
228 	/*
229 	 * Enable access to the VFP so we can handle the bounce.
230 	 */
231 	fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
232 
233 	orig_fpscr = fpscr = fmrx(FPSCR);
234 
235 	/*
236 	 * If we are running with inexact exceptions enabled, we need to
237 	 * emulate the trigger instruction.  Note that as we're emulating
238 	 * the trigger instruction, we need to increment PC.
239 	 */
240 	if (fpscr & FPSCR_IXE) {
241 		regs->ARM_pc += 4;
242 		goto emulate;
243 	}
244 
245 	barrier();
246 
247 	/*
248 	 * Modify fpscr to indicate the number of iterations remaining
249 	 */
250 	if (fpexc & FPEXC_EXCEPTION) {
251 		u32 len;
252 
253 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
254 
255 		fpscr &= ~FPSCR_LENGTH_MASK;
256 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
257 	}
258 
259 	/*
260 	 * Handle the first FP instruction.  We used to take note of the
261 	 * FPEXC bounce reason, but this appears to be unreliable.
262 	 * Emulate the bounced instruction instead.
263 	 */
264 	inst = fmrx(FPINST);
265 	exceptions = vfp_emulate_instruction(inst, fpscr, regs);
266 	if (exceptions)
267 		vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
268 
269 	/*
270 	 * If there isn't a second FP instruction, exit now.
271 	 */
272 	if (!(fpexc & FPEXC_FPV2))
273 		return;
274 
275 	/*
276 	 * The barrier() here prevents fpinst2 being read
277 	 * before the condition above.
278 	 */
279 	barrier();
280 	trigger = fmrx(FPINST2);
281 	orig_fpscr = fpscr = fmrx(FPSCR);
282 
283  emulate:
284 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
285 	if (exceptions)
286 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
287 }
288 
289 static void vfp_enable(void *unused)
290 {
291 	u32 access = get_copro_access();
292 
293 	/*
294 	 * Enable full access to VFP (cp10 and cp11)
295 	 */
296 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
297 }
298 
299 #include <linux/smp.h>
300 
301 /*
302  * VFP support code initialisation.
303  */
304 static int __init vfp_init(void)
305 {
306 	unsigned int vfpsid;
307 	unsigned int cpu_arch = cpu_architecture();
308 	u32 access = 0;
309 
310 	if (cpu_arch >= CPU_ARCH_ARMv6) {
311 		access = get_copro_access();
312 
313 		/*
314 		 * Enable full access to VFP (cp10 and cp11)
315 		 */
316 		set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
317 	}
318 
319 	/*
320 	 * First check that there is a VFP that we can use.
321 	 * The handler is already setup to just log calls, so
322 	 * we just need to read the VFPSID register.
323 	 */
324 	vfpsid = fmrx(FPSID);
325 	barrier();
326 
327 	printk(KERN_INFO "VFP support v0.3: ");
328 	if (VFP_arch) {
329 		printk("not present\n");
330 
331 		/*
332 		 * Restore the copro access register.
333 		 */
334 		if (cpu_arch >= CPU_ARCH_ARMv6)
335 			set_copro_access(access);
336 	} else if (vfpsid & FPSID_NODOUBLE) {
337 		printk("no double precision support\n");
338 	} else {
339 		smp_call_function(vfp_enable, NULL, 1, 1);
340 
341 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
342 		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
343 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
344 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
345 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
346 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
347 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
348 
349 		vfp_vector = vfp_support_entry;
350 
351 		thread_register_notifier(&vfp_notifier_block);
352 
353 		/*
354 		 * We detected VFP, and the support code is
355 		 * in place; report VFP support to userspace.
356 		 */
357 		elf_hwcap |= HWCAP_VFP;
358 	}
359 	return 0;
360 }
361 
362 late_initcall(vfp_init);
363