xref: /linux/arch/arm/vfp/vfpmodule.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/kernel.h>
15 #include <linux/notifier.h>
16 #include <linux/signal.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/init.h>
20 #include <linux/uaccess.h>
21 #include <linux/user.h>
22 
23 #include <asm/cp15.h>
24 #include <asm/cputype.h>
25 #include <asm/system_info.h>
26 #include <asm/thread_notify.h>
27 #include <asm/vfp.h>
28 
29 #include "vfpinstr.h"
30 #include "vfp.h"
31 
32 /*
33  * Our undef handlers (in entry.S)
34  */
35 void vfp_testing_entry(void);
36 void vfp_support_entry(void);
37 void vfp_null_entry(void);
38 
39 void (*vfp_vector)(void) = vfp_null_entry;
40 
41 /*
42  * Dual-use variable.
43  * Used in startup: set to non-zero if VFP checks fail
44  * After startup, holds VFP architecture
45  */
46 unsigned int VFP_arch;
47 
48 /*
49  * The pointer to the vfpstate structure of the thread which currently
50  * owns the context held in the VFP hardware, or NULL if the hardware
51  * context is invalid.
52  *
53  * For UP, this is sufficient to tell which thread owns the VFP context.
54  * However, for SMP, we also need to check the CPU number stored in the
55  * saved state too to catch migrations.
56  */
57 union vfp_state *vfp_current_hw_state[NR_CPUS];
58 
59 /*
60  * Is 'thread's most up to date state stored in this CPUs hardware?
61  * Must be called from non-preemptible context.
62  */
63 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
64 {
65 #ifdef CONFIG_SMP
66 	if (thread->vfpstate.hard.cpu != cpu)
67 		return false;
68 #endif
69 	return vfp_current_hw_state[cpu] == &thread->vfpstate;
70 }
71 
72 /*
73  * Force a reload of the VFP context from the thread structure.  We do
74  * this by ensuring that access to the VFP hardware is disabled, and
75  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
76  */
77 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
78 {
79 	if (vfp_state_in_hw(cpu, thread)) {
80 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
81 		vfp_current_hw_state[cpu] = NULL;
82 	}
83 #ifdef CONFIG_SMP
84 	thread->vfpstate.hard.cpu = NR_CPUS;
85 #endif
86 }
87 
88 /*
89  * Per-thread VFP initialization.
90  */
91 static void vfp_thread_flush(struct thread_info *thread)
92 {
93 	union vfp_state *vfp = &thread->vfpstate;
94 	unsigned int cpu;
95 
96 	/*
97 	 * Disable VFP to ensure we initialize it first.  We must ensure
98 	 * that the modification of vfp_current_hw_state[] and hardware
99 	 * disable are done for the same CPU and without preemption.
100 	 *
101 	 * Do this first to ensure that preemption won't overwrite our
102 	 * state saving should access to the VFP be enabled at this point.
103 	 */
104 	cpu = get_cpu();
105 	if (vfp_current_hw_state[cpu] == vfp)
106 		vfp_current_hw_state[cpu] = NULL;
107 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
108 	put_cpu();
109 
110 	memset(vfp, 0, sizeof(union vfp_state));
111 
112 	vfp->hard.fpexc = FPEXC_EN;
113 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
114 #ifdef CONFIG_SMP
115 	vfp->hard.cpu = NR_CPUS;
116 #endif
117 }
118 
119 static void vfp_thread_exit(struct thread_info *thread)
120 {
121 	/* release case: Per-thread VFP cleanup. */
122 	union vfp_state *vfp = &thread->vfpstate;
123 	unsigned int cpu = get_cpu();
124 
125 	if (vfp_current_hw_state[cpu] == vfp)
126 		vfp_current_hw_state[cpu] = NULL;
127 	put_cpu();
128 }
129 
130 static void vfp_thread_copy(struct thread_info *thread)
131 {
132 	struct thread_info *parent = current_thread_info();
133 
134 	vfp_sync_hwstate(parent);
135 	thread->vfpstate = parent->vfpstate;
136 #ifdef CONFIG_SMP
137 	thread->vfpstate.hard.cpu = NR_CPUS;
138 #endif
139 }
140 
141 /*
142  * When this function is called with the following 'cmd's, the following
143  * is true while this function is being run:
144  *  THREAD_NOFTIFY_SWTICH:
145  *   - the previously running thread will not be scheduled onto another CPU.
146  *   - the next thread to be run (v) will not be running on another CPU.
147  *   - thread->cpu is the local CPU number
148  *   - not preemptible as we're called in the middle of a thread switch
149  *  THREAD_NOTIFY_FLUSH:
150  *   - the thread (v) will be running on the local CPU, so
151  *	v === current_thread_info()
152  *   - thread->cpu is the local CPU number at the time it is accessed,
153  *	but may change at any time.
154  *   - we could be preempted if tree preempt rcu is enabled, so
155  *	it is unsafe to use thread->cpu.
156  *  THREAD_NOTIFY_EXIT
157  *   - the thread (v) will be running on the local CPU, so
158  *	v === current_thread_info()
159  *   - thread->cpu is the local CPU number at the time it is accessed,
160  *	but may change at any time.
161  *   - we could be preempted if tree preempt rcu is enabled, so
162  *	it is unsafe to use thread->cpu.
163  */
164 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
165 {
166 	struct thread_info *thread = v;
167 	u32 fpexc;
168 #ifdef CONFIG_SMP
169 	unsigned int cpu;
170 #endif
171 
172 	switch (cmd) {
173 	case THREAD_NOTIFY_SWITCH:
174 		fpexc = fmrx(FPEXC);
175 
176 #ifdef CONFIG_SMP
177 		cpu = thread->cpu;
178 
179 		/*
180 		 * On SMP, if VFP is enabled, save the old state in
181 		 * case the thread migrates to a different CPU. The
182 		 * restoring is done lazily.
183 		 */
184 		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
185 			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
186 #endif
187 
188 		/*
189 		 * Always disable VFP so we can lazily save/restore the
190 		 * old state.
191 		 */
192 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
193 		break;
194 
195 	case THREAD_NOTIFY_FLUSH:
196 		vfp_thread_flush(thread);
197 		break;
198 
199 	case THREAD_NOTIFY_EXIT:
200 		vfp_thread_exit(thread);
201 		break;
202 
203 	case THREAD_NOTIFY_COPY:
204 		vfp_thread_copy(thread);
205 		break;
206 	}
207 
208 	return NOTIFY_DONE;
209 }
210 
211 static struct notifier_block vfp_notifier_block = {
212 	.notifier_call	= vfp_notifier,
213 };
214 
215 /*
216  * Raise a SIGFPE for the current process.
217  * sicode describes the signal being raised.
218  */
219 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
220 {
221 	siginfo_t info;
222 
223 	memset(&info, 0, sizeof(info));
224 
225 	info.si_signo = SIGFPE;
226 	info.si_code = sicode;
227 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
228 
229 	/*
230 	 * This is the same as NWFPE, because it's not clear what
231 	 * this is used for
232 	 */
233 	current->thread.error_code = 0;
234 	current->thread.trap_no = 6;
235 
236 	send_sig_info(SIGFPE, &info, current);
237 }
238 
239 static void vfp_panic(char *reason, u32 inst)
240 {
241 	int i;
242 
243 	printk(KERN_ERR "VFP: Error: %s\n", reason);
244 	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
245 		fmrx(FPEXC), fmrx(FPSCR), inst);
246 	for (i = 0; i < 32; i += 2)
247 		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
248 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
249 }
250 
251 /*
252  * Process bitmask of exception conditions.
253  */
254 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
255 {
256 	int si_code = 0;
257 
258 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
259 
260 	if (exceptions == VFP_EXCEPTION_ERROR) {
261 		vfp_panic("unhandled bounce", inst);
262 		vfp_raise_sigfpe(0, regs);
263 		return;
264 	}
265 
266 	/*
267 	 * If any of the status flags are set, update the FPSCR.
268 	 * Comparison instructions always return at least one of
269 	 * these flags set.
270 	 */
271 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
272 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
273 
274 	fpscr |= exceptions;
275 
276 	fmxr(FPSCR, fpscr);
277 
278 #define RAISE(stat,en,sig)				\
279 	if (exceptions & stat && fpscr & en)		\
280 		si_code = sig;
281 
282 	/*
283 	 * These are arranged in priority order, least to highest.
284 	 */
285 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
286 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
287 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
288 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
289 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
290 
291 	if (si_code)
292 		vfp_raise_sigfpe(si_code, regs);
293 }
294 
295 /*
296  * Emulate a VFP instruction.
297  */
298 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
299 {
300 	u32 exceptions = VFP_EXCEPTION_ERROR;
301 
302 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
303 
304 	if (INST_CPRTDO(inst)) {
305 		if (!INST_CPRT(inst)) {
306 			/*
307 			 * CPDO
308 			 */
309 			if (vfp_single(inst)) {
310 				exceptions = vfp_single_cpdo(inst, fpscr);
311 			} else {
312 				exceptions = vfp_double_cpdo(inst, fpscr);
313 			}
314 		} else {
315 			/*
316 			 * A CPRT instruction can not appear in FPINST2, nor
317 			 * can it cause an exception.  Therefore, we do not
318 			 * have to emulate it.
319 			 */
320 		}
321 	} else {
322 		/*
323 		 * A CPDT instruction can not appear in FPINST2, nor can
324 		 * it cause an exception.  Therefore, we do not have to
325 		 * emulate it.
326 		 */
327 	}
328 	return exceptions & ~VFP_NAN_FLAG;
329 }
330 
331 /*
332  * Package up a bounce condition.
333  */
334 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
335 {
336 	u32 fpscr, orig_fpscr, fpsid, exceptions;
337 
338 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
339 
340 	/*
341 	 * At this point, FPEXC can have the following configuration:
342 	 *
343 	 *  EX DEX IXE
344 	 *  0   1   x   - synchronous exception
345 	 *  1   x   0   - asynchronous exception
346 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
347 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
348 	 *                implementation), undefined otherwise
349 	 *
350 	 * Clear various bits and enable access to the VFP so we can
351 	 * handle the bounce.
352 	 */
353 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
354 
355 	fpsid = fmrx(FPSID);
356 	orig_fpscr = fpscr = fmrx(FPSCR);
357 
358 	/*
359 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
360 	 */
361 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
362 	    && (fpscr & FPSCR_IXE)) {
363 		/*
364 		 * Synchronous exception, emulate the trigger instruction
365 		 */
366 		goto emulate;
367 	}
368 
369 	if (fpexc & FPEXC_EX) {
370 #ifndef CONFIG_CPU_FEROCEON
371 		/*
372 		 * Asynchronous exception. The instruction is read from FPINST
373 		 * and the interrupted instruction has to be restarted.
374 		 */
375 		trigger = fmrx(FPINST);
376 		regs->ARM_pc -= 4;
377 #endif
378 	} else if (!(fpexc & FPEXC_DEX)) {
379 		/*
380 		 * Illegal combination of bits. It can be caused by an
381 		 * unallocated VFP instruction but with FPSCR.IXE set and not
382 		 * on VFP subarch 1.
383 		 */
384 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
385 		goto exit;
386 	}
387 
388 	/*
389 	 * Modify fpscr to indicate the number of iterations remaining.
390 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
391 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
392 	 */
393 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
394 		u32 len;
395 
396 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
397 
398 		fpscr &= ~FPSCR_LENGTH_MASK;
399 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
400 	}
401 
402 	/*
403 	 * Handle the first FP instruction.  We used to take note of the
404 	 * FPEXC bounce reason, but this appears to be unreliable.
405 	 * Emulate the bounced instruction instead.
406 	 */
407 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
408 	if (exceptions)
409 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
410 
411 	/*
412 	 * If there isn't a second FP instruction, exit now. Note that
413 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
414 	 */
415 	if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
416 		goto exit;
417 
418 	/*
419 	 * The barrier() here prevents fpinst2 being read
420 	 * before the condition above.
421 	 */
422 	barrier();
423 	trigger = fmrx(FPINST2);
424 
425  emulate:
426 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
427 	if (exceptions)
428 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
429  exit:
430 	preempt_enable();
431 }
432 
433 static void vfp_enable(void *unused)
434 {
435 	u32 access = get_copro_access();
436 
437 	/*
438 	 * Enable full access to VFP (cp10 and cp11)
439 	 */
440 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
441 }
442 
443 #ifdef CONFIG_CPU_PM
444 static int vfp_pm_suspend(void)
445 {
446 	struct thread_info *ti = current_thread_info();
447 	u32 fpexc = fmrx(FPEXC);
448 
449 	/* if vfp is on, then save state for resumption */
450 	if (fpexc & FPEXC_EN) {
451 		printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
452 		vfp_save_state(&ti->vfpstate, fpexc);
453 
454 		/* disable, just in case */
455 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
456 	}
457 
458 	/* clear any information we had about last context state */
459 	memset(vfp_current_hw_state, 0, sizeof(vfp_current_hw_state));
460 
461 	return 0;
462 }
463 
464 static void vfp_pm_resume(void)
465 {
466 	/* ensure we have access to the vfp */
467 	vfp_enable(NULL);
468 
469 	/* and disable it to ensure the next usage restores the state */
470 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
471 }
472 
473 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
474 	void *v)
475 {
476 	switch (cmd) {
477 	case CPU_PM_ENTER:
478 		vfp_pm_suspend();
479 		break;
480 	case CPU_PM_ENTER_FAILED:
481 	case CPU_PM_EXIT:
482 		vfp_pm_resume();
483 		break;
484 	}
485 	return NOTIFY_OK;
486 }
487 
488 static struct notifier_block vfp_cpu_pm_notifier_block = {
489 	.notifier_call = vfp_cpu_pm_notifier,
490 };
491 
492 static void vfp_pm_init(void)
493 {
494 	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
495 }
496 
497 #else
498 static inline void vfp_pm_init(void) { }
499 #endif /* CONFIG_CPU_PM */
500 
501 /*
502  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
503  * with the hardware state.
504  */
505 void vfp_sync_hwstate(struct thread_info *thread)
506 {
507 	unsigned int cpu = get_cpu();
508 
509 	if (vfp_state_in_hw(cpu, thread)) {
510 		u32 fpexc = fmrx(FPEXC);
511 
512 		/*
513 		 * Save the last VFP state on this CPU.
514 		 */
515 		fmxr(FPEXC, fpexc | FPEXC_EN);
516 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
517 		fmxr(FPEXC, fpexc);
518 	}
519 
520 	put_cpu();
521 }
522 
523 /* Ensure that the thread reloads the hardware VFP state on the next use. */
524 void vfp_flush_hwstate(struct thread_info *thread)
525 {
526 	unsigned int cpu = get_cpu();
527 
528 	vfp_force_reload(cpu, thread);
529 
530 	put_cpu();
531 }
532 
533 /*
534  * Save the current VFP state into the provided structures and prepare
535  * for entry into a new function (signal handler).
536  */
537 int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
538 				    struct user_vfp_exc __user *ufp_exc)
539 {
540 	struct thread_info *thread = current_thread_info();
541 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
542 	int err = 0;
543 
544 	/* Ensure that the saved hwstate is up-to-date. */
545 	vfp_sync_hwstate(thread);
546 
547 	/*
548 	 * Copy the floating point registers. There can be unused
549 	 * registers see asm/hwcap.h for details.
550 	 */
551 	err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
552 			      sizeof(hwstate->fpregs));
553 	/*
554 	 * Copy the status and control register.
555 	 */
556 	__put_user_error(hwstate->fpscr, &ufp->fpscr, err);
557 
558 	/*
559 	 * Copy the exception registers.
560 	 */
561 	__put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
562 	__put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
563 	__put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
564 
565 	if (err)
566 		return -EFAULT;
567 
568 	/* Ensure that VFP is disabled. */
569 	vfp_flush_hwstate(thread);
570 
571 	/*
572 	 * As per the PCS, clear the length and stride bits for function
573 	 * entry.
574 	 */
575 	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
576 
577 	/*
578 	 * Disable VFP in the hwstate so that we can detect if it gets
579 	 * used.
580 	 */
581 	hwstate->fpexc &= ~FPEXC_EN;
582 	return 0;
583 }
584 
585 /* Sanitise and restore the current VFP state from the provided structures. */
586 int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
587 			     struct user_vfp_exc __user *ufp_exc)
588 {
589 	struct thread_info *thread = current_thread_info();
590 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
591 	unsigned long fpexc;
592 	int err = 0;
593 
594 	/*
595 	 * If VFP has been used, then disable it to avoid corrupting
596 	 * the new thread state.
597 	 */
598 	if (hwstate->fpexc & FPEXC_EN)
599 		vfp_flush_hwstate(thread);
600 
601 	/*
602 	 * Copy the floating point registers. There can be unused
603 	 * registers see asm/hwcap.h for details.
604 	 */
605 	err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
606 				sizeof(hwstate->fpregs));
607 	/*
608 	 * Copy the status and control register.
609 	 */
610 	__get_user_error(hwstate->fpscr, &ufp->fpscr, err);
611 
612 	/*
613 	 * Sanitise and restore the exception registers.
614 	 */
615 	__get_user_error(fpexc, &ufp_exc->fpexc, err);
616 
617 	/* Ensure the VFP is enabled. */
618 	fpexc |= FPEXC_EN;
619 
620 	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
621 	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
622 	hwstate->fpexc = fpexc;
623 
624 	__get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
625 	__get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
626 
627 	return err ? -EFAULT : 0;
628 }
629 
630 /*
631  * VFP hardware can lose all context when a CPU goes offline.
632  * As we will be running in SMP mode with CPU hotplug, we will save the
633  * hardware state at every thread switch.  We clear our held state when
634  * a CPU has been killed, indicating that the VFP hardware doesn't contain
635  * a threads VFP state.  When a CPU starts up, we re-enable access to the
636  * VFP hardware.
637  *
638  * Both CPU_DYING and CPU_STARTING are called on the CPU which
639  * is being offlined/onlined.
640  */
641 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
642 	void *hcpu)
643 {
644 	if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
645 		vfp_force_reload((long)hcpu, current_thread_info());
646 	} else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
647 		vfp_enable(NULL);
648 	return NOTIFY_OK;
649 }
650 
651 /*
652  * VFP support code initialisation.
653  */
654 static int __init vfp_init(void)
655 {
656 	unsigned int vfpsid;
657 	unsigned int cpu_arch = cpu_architecture();
658 
659 	if (cpu_arch >= CPU_ARCH_ARMv6)
660 		vfp_enable(NULL);
661 
662 	/*
663 	 * First check that there is a VFP that we can use.
664 	 * The handler is already setup to just log calls, so
665 	 * we just need to read the VFPSID register.
666 	 */
667 	vfp_vector = vfp_testing_entry;
668 	barrier();
669 	vfpsid = fmrx(FPSID);
670 	barrier();
671 	vfp_vector = vfp_null_entry;
672 
673 	printk(KERN_INFO "VFP support v0.3: ");
674 	if (VFP_arch)
675 		printk("not present\n");
676 	else if (vfpsid & FPSID_NODOUBLE) {
677 		printk("no double precision support\n");
678 	} else {
679 		hotcpu_notifier(vfp_hotplug, 0);
680 
681 		smp_call_function(vfp_enable, NULL, 1);
682 
683 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
684 		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
685 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
686 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
687 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
688 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
689 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
690 
691 		vfp_vector = vfp_support_entry;
692 
693 		thread_register_notifier(&vfp_notifier_block);
694 		vfp_pm_init();
695 
696 		/*
697 		 * We detected VFP, and the support code is
698 		 * in place; report VFP support to userspace.
699 		 */
700 		elf_hwcap |= HWCAP_VFP;
701 #ifdef CONFIG_VFPv3
702 		if (VFP_arch >= 2) {
703 			elf_hwcap |= HWCAP_VFPv3;
704 
705 			/*
706 			 * Check for VFPv3 D16. CPUs in this configuration
707 			 * only have 16 x 64bit registers.
708 			 */
709 			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
710 				elf_hwcap |= HWCAP_VFPv3D16;
711 		}
712 #endif
713 		/*
714 		 * Check for the presence of the Advanced SIMD
715 		 * load/store instructions, integer and single
716 		 * precision floating point operations. Only check
717 		 * for NEON if the hardware has the MVFR registers.
718 		 */
719 		if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
720 #ifdef CONFIG_NEON
721 			if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
722 				elf_hwcap |= HWCAP_NEON;
723 #endif
724 			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
725 				elf_hwcap |= HWCAP_VFPv4;
726 		}
727 	}
728 	return 0;
729 }
730 
731 late_initcall(vfp_init);
732