xref: /linux/arch/arm/vfp/vfpmodule.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/vfp/vfpmodule.c
4  *
5  *  Copyright (C) 2004 ARM Limited.
6  *  Written by Deep Blue Solutions Limited.
7  */
8 #include <linux/types.h>
9 #include <linux/cpu.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21 #include <linux/perf_event.h>
22 
23 #include <asm/cp15.h>
24 #include <asm/cputype.h>
25 #include <asm/system_info.h>
26 #include <asm/thread_notify.h>
27 #include <asm/traps.h>
28 #include <asm/vfp.h>
29 #include <asm/neon.h>
30 
31 #include "vfpinstr.h"
32 #include "vfp.h"
33 
34 static bool have_vfp __ro_after_init;
35 
36 /*
37  * Dual-use variable.
38  * Used in startup: set to non-zero if VFP checks fail
39  * After startup, holds VFP architecture
40  */
41 static unsigned int VFP_arch;
42 
43 #ifdef CONFIG_CPU_FEROCEON
44 extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
45 #endif
46 
47 /*
48  * The pointer to the vfpstate structure of the thread which currently
49  * owns the context held in the VFP hardware, or NULL if the hardware
50  * context is invalid.
51  *
52  * For UP, this is sufficient to tell which thread owns the VFP context.
53  * However, for SMP, we also need to check the CPU number stored in the
54  * saved state too to catch migrations.
55  */
56 union vfp_state *vfp_current_hw_state[NR_CPUS];
57 
58 /*
59  * Claim ownership of the VFP unit.
60  *
61  * The caller may change VFP registers until vfp_state_release() is called.
62  *
63  * local_bh_disable() is used to disable preemption and to disable VFP
64  * processing in softirq context. On PREEMPT_RT kernels local_bh_disable() is
65  * not sufficient because it only serializes soft interrupt related sections
66  * via a local lock, but stays preemptible. Disabling preemption is the right
67  * choice here as bottom half processing is always in thread context on RT
68  * kernels so it implicitly prevents bottom half processing as well.
69  */
70 static void vfp_state_hold(void)
71 {
72 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
73 		local_bh_disable();
74 	else
75 		preempt_disable();
76 }
77 
78 static void vfp_state_release(void)
79 {
80 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
81 		local_bh_enable();
82 	else
83 		preempt_enable();
84 }
85 
86 /*
87  * Is 'thread's most up to date state stored in this CPUs hardware?
88  * Must be called from non-preemptible context.
89  */
90 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
91 {
92 #ifdef CONFIG_SMP
93 	if (thread->vfpstate.hard.cpu != cpu)
94 		return false;
95 #endif
96 	return vfp_current_hw_state[cpu] == &thread->vfpstate;
97 }
98 
99 /*
100  * Force a reload of the VFP context from the thread structure.  We do
101  * this by ensuring that access to the VFP hardware is disabled, and
102  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
103  */
104 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
105 {
106 	if (vfp_state_in_hw(cpu, thread)) {
107 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
108 		vfp_current_hw_state[cpu] = NULL;
109 	}
110 #ifdef CONFIG_SMP
111 	thread->vfpstate.hard.cpu = NR_CPUS;
112 #endif
113 }
114 
115 /*
116  * Per-thread VFP initialization.
117  */
118 static void vfp_thread_flush(struct thread_info *thread)
119 {
120 	union vfp_state *vfp = &thread->vfpstate;
121 	unsigned int cpu;
122 
123 	/*
124 	 * Disable VFP to ensure we initialize it first.  We must ensure
125 	 * that the modification of vfp_current_hw_state[] and hardware
126 	 * disable are done for the same CPU and without preemption.
127 	 *
128 	 * Do this first to ensure that preemption won't overwrite our
129 	 * state saving should access to the VFP be enabled at this point.
130 	 */
131 	cpu = get_cpu();
132 	if (vfp_current_hw_state[cpu] == vfp)
133 		vfp_current_hw_state[cpu] = NULL;
134 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
135 	put_cpu();
136 
137 	memset(vfp, 0, sizeof(union vfp_state));
138 
139 	vfp->hard.fpexc = FPEXC_EN;
140 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
141 #ifdef CONFIG_SMP
142 	vfp->hard.cpu = NR_CPUS;
143 #endif
144 }
145 
146 static void vfp_thread_exit(struct thread_info *thread)
147 {
148 	/* release case: Per-thread VFP cleanup. */
149 	union vfp_state *vfp = &thread->vfpstate;
150 	unsigned int cpu = get_cpu();
151 
152 	if (vfp_current_hw_state[cpu] == vfp)
153 		vfp_current_hw_state[cpu] = NULL;
154 	put_cpu();
155 }
156 
157 static void vfp_thread_copy(struct thread_info *thread)
158 {
159 	struct thread_info *parent = current_thread_info();
160 
161 	vfp_sync_hwstate(parent);
162 	thread->vfpstate = parent->vfpstate;
163 #ifdef CONFIG_SMP
164 	thread->vfpstate.hard.cpu = NR_CPUS;
165 #endif
166 }
167 
168 /*
169  * When this function is called with the following 'cmd's, the following
170  * is true while this function is being run:
171  *  THREAD_NOFTIFY_SWTICH:
172  *   - the previously running thread will not be scheduled onto another CPU.
173  *   - the next thread to be run (v) will not be running on another CPU.
174  *   - thread->cpu is the local CPU number
175  *   - not preemptible as we're called in the middle of a thread switch
176  *  THREAD_NOTIFY_FLUSH:
177  *   - the thread (v) will be running on the local CPU, so
178  *	v === current_thread_info()
179  *   - thread->cpu is the local CPU number at the time it is accessed,
180  *	but may change at any time.
181  *   - we could be preempted if tree preempt rcu is enabled, so
182  *	it is unsafe to use thread->cpu.
183  *  THREAD_NOTIFY_EXIT
184  *   - we could be preempted if tree preempt rcu is enabled, so
185  *	it is unsafe to use thread->cpu.
186  */
187 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
188 {
189 	struct thread_info *thread = v;
190 	u32 fpexc;
191 #ifdef CONFIG_SMP
192 	unsigned int cpu;
193 #endif
194 
195 	switch (cmd) {
196 	case THREAD_NOTIFY_SWITCH:
197 		fpexc = fmrx(FPEXC);
198 
199 #ifdef CONFIG_SMP
200 		cpu = thread->cpu;
201 
202 		/*
203 		 * On SMP, if VFP is enabled, save the old state in
204 		 * case the thread migrates to a different CPU. The
205 		 * restoring is done lazily.
206 		 */
207 		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
208 			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
209 #endif
210 
211 		/*
212 		 * Always disable VFP so we can lazily save/restore the
213 		 * old state.
214 		 */
215 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
216 		break;
217 
218 	case THREAD_NOTIFY_FLUSH:
219 		vfp_thread_flush(thread);
220 		break;
221 
222 	case THREAD_NOTIFY_EXIT:
223 		vfp_thread_exit(thread);
224 		break;
225 
226 	case THREAD_NOTIFY_COPY:
227 		vfp_thread_copy(thread);
228 		break;
229 	}
230 
231 	return NOTIFY_DONE;
232 }
233 
234 static struct notifier_block vfp_notifier_block = {
235 	.notifier_call	= vfp_notifier,
236 };
237 
238 /*
239  * Raise a SIGFPE for the current process.
240  * sicode describes the signal being raised.
241  */
242 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
243 {
244 	/*
245 	 * This is the same as NWFPE, because it's not clear what
246 	 * this is used for
247 	 */
248 	current->thread.error_code = 0;
249 	current->thread.trap_no = 6;
250 
251 	send_sig_fault(SIGFPE, sicode,
252 		       (void __user *)(instruction_pointer(regs) - 4),
253 		       current);
254 }
255 
256 static void vfp_panic(char *reason, u32 inst)
257 {
258 	int i;
259 
260 	pr_err("VFP: Error: %s\n", reason);
261 	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
262 		fmrx(FPEXC), fmrx(FPSCR), inst);
263 	for (i = 0; i < 32; i += 2)
264 		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
265 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
266 }
267 
268 /*
269  * Process bitmask of exception conditions.
270  */
271 static int vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr)
272 {
273 	int si_code = 0;
274 
275 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
276 
277 	if (exceptions == VFP_EXCEPTION_ERROR) {
278 		vfp_panic("unhandled bounce", inst);
279 		return FPE_FLTINV;
280 	}
281 
282 	/*
283 	 * If any of the status flags are set, update the FPSCR.
284 	 * Comparison instructions always return at least one of
285 	 * these flags set.
286 	 */
287 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
288 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
289 
290 	fpscr |= exceptions;
291 
292 	fmxr(FPSCR, fpscr);
293 
294 #define RAISE(stat,en,sig)				\
295 	if (exceptions & stat && fpscr & en)		\
296 		si_code = sig;
297 
298 	/*
299 	 * These are arranged in priority order, least to highest.
300 	 */
301 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
302 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
303 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
304 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
305 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
306 
307 	return si_code;
308 }
309 
310 /*
311  * Emulate a VFP instruction.
312  */
313 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
314 {
315 	u32 exceptions = VFP_EXCEPTION_ERROR;
316 
317 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
318 
319 	if (INST_CPRTDO(inst)) {
320 		if (!INST_CPRT(inst)) {
321 			/*
322 			 * CPDO
323 			 */
324 			if (vfp_single(inst)) {
325 				exceptions = vfp_single_cpdo(inst, fpscr);
326 			} else {
327 				exceptions = vfp_double_cpdo(inst, fpscr);
328 			}
329 		} else {
330 			/*
331 			 * A CPRT instruction can not appear in FPINST2, nor
332 			 * can it cause an exception.  Therefore, we do not
333 			 * have to emulate it.
334 			 */
335 		}
336 	} else {
337 		/*
338 		 * A CPDT instruction can not appear in FPINST2, nor can
339 		 * it cause an exception.  Therefore, we do not have to
340 		 * emulate it.
341 		 */
342 	}
343 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
344 	return exceptions & ~VFP_NAN_FLAG;
345 }
346 
347 /*
348  * Package up a bounce condition.
349  */
350 static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
351 {
352 	u32 fpscr, orig_fpscr, fpsid, exceptions;
353 	int si_code2 = 0;
354 	int si_code = 0;
355 
356 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
357 
358 	/*
359 	 * At this point, FPEXC can have the following configuration:
360 	 *
361 	 *  EX DEX IXE
362 	 *  0   1   x   - synchronous exception
363 	 *  1   x   0   - asynchronous exception
364 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
365 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
366 	 *                implementation), undefined otherwise
367 	 *
368 	 * Clear various bits and enable access to the VFP so we can
369 	 * handle the bounce.
370 	 */
371 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
372 
373 	fpsid = fmrx(FPSID);
374 	orig_fpscr = fpscr = fmrx(FPSCR);
375 
376 	/*
377 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
378 	 */
379 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
380 	    && (fpscr & FPSCR_IXE)) {
381 		/*
382 		 * Synchronous exception, emulate the trigger instruction
383 		 */
384 		goto emulate;
385 	}
386 
387 	if (fpexc & FPEXC_EX) {
388 		/*
389 		 * Asynchronous exception. The instruction is read from FPINST
390 		 * and the interrupted instruction has to be restarted.
391 		 */
392 		trigger = fmrx(FPINST);
393 		regs->ARM_pc -= 4;
394 	} else if (!(fpexc & FPEXC_DEX)) {
395 		/*
396 		 * Illegal combination of bits. It can be caused by an
397 		 * unallocated VFP instruction but with FPSCR.IXE set and not
398 		 * on VFP subarch 1.
399 		 */
400 		si_code = vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr);
401 		goto exit;
402 	}
403 
404 	/*
405 	 * Modify fpscr to indicate the number of iterations remaining.
406 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
407 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
408 	 */
409 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
410 		u32 len;
411 
412 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
413 
414 		fpscr &= ~FPSCR_LENGTH_MASK;
415 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
416 	}
417 
418 	/*
419 	 * Handle the first FP instruction.  We used to take note of the
420 	 * FPEXC bounce reason, but this appears to be unreliable.
421 	 * Emulate the bounced instruction instead.
422 	 */
423 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
424 	if (exceptions)
425 		si_code2 = vfp_raise_exceptions(exceptions, trigger, orig_fpscr);
426 
427 	/*
428 	 * If there isn't a second FP instruction, exit now. Note that
429 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
430 	 */
431 	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
432 		goto exit;
433 
434 	/*
435 	 * The barrier() here prevents fpinst2 being read
436 	 * before the condition above.
437 	 */
438 	barrier();
439 	trigger = fmrx(FPINST2);
440 
441  emulate:
442 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
443 	if (exceptions)
444 		si_code = vfp_raise_exceptions(exceptions, trigger, orig_fpscr);
445 exit:
446 	vfp_state_release();
447 	if (si_code2)
448 		vfp_raise_sigfpe(si_code2, regs);
449 	if (si_code)
450 		vfp_raise_sigfpe(si_code, regs);
451 }
452 
453 static void vfp_enable(void *unused)
454 {
455 	u32 access;
456 
457 	BUG_ON(preemptible());
458 	access = get_copro_access();
459 
460 	/*
461 	 * Enable full access to VFP (cp10 and cp11)
462 	 */
463 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
464 }
465 
466 /* Called by platforms on which we want to disable VFP because it may not be
467  * present on all CPUs within a SMP complex. Needs to be called prior to
468  * vfp_init().
469  */
470 void __init vfp_disable(void)
471 {
472 	if (VFP_arch) {
473 		pr_debug("%s: should be called prior to vfp_init\n", __func__);
474 		return;
475 	}
476 	VFP_arch = 1;
477 }
478 
479 #ifdef CONFIG_CPU_PM
480 static int vfp_pm_suspend(void)
481 {
482 	struct thread_info *ti = current_thread_info();
483 	u32 fpexc = fmrx(FPEXC);
484 
485 	/* if vfp is on, then save state for resumption */
486 	if (fpexc & FPEXC_EN) {
487 		pr_debug("%s: saving vfp state\n", __func__);
488 		vfp_save_state(&ti->vfpstate, fpexc);
489 
490 		/* disable, just in case */
491 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
492 	} else if (vfp_current_hw_state[ti->cpu]) {
493 #ifndef CONFIG_SMP
494 		fmxr(FPEXC, fpexc | FPEXC_EN);
495 		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
496 		fmxr(FPEXC, fpexc);
497 #endif
498 	}
499 
500 	/* clear any information we had about last context state */
501 	vfp_current_hw_state[ti->cpu] = NULL;
502 
503 	return 0;
504 }
505 
506 static void vfp_pm_resume(void)
507 {
508 	/* ensure we have access to the vfp */
509 	vfp_enable(NULL);
510 
511 	/* and disable it to ensure the next usage restores the state */
512 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
513 }
514 
515 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
516 	void *v)
517 {
518 	switch (cmd) {
519 	case CPU_PM_ENTER:
520 		vfp_pm_suspend();
521 		break;
522 	case CPU_PM_ENTER_FAILED:
523 	case CPU_PM_EXIT:
524 		vfp_pm_resume();
525 		break;
526 	}
527 	return NOTIFY_OK;
528 }
529 
530 static struct notifier_block vfp_cpu_pm_notifier_block = {
531 	.notifier_call = vfp_cpu_pm_notifier,
532 };
533 
534 static void vfp_pm_init(void)
535 {
536 	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
537 }
538 
539 #else
540 static inline void vfp_pm_init(void) { }
541 #endif /* CONFIG_CPU_PM */
542 
543 /*
544  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
545  * with the hardware state.
546  */
547 void vfp_sync_hwstate(struct thread_info *thread)
548 {
549 	vfp_state_hold();
550 
551 	if (vfp_state_in_hw(raw_smp_processor_id(), thread)) {
552 		u32 fpexc = fmrx(FPEXC);
553 
554 		/*
555 		 * Save the last VFP state on this CPU.
556 		 */
557 		fmxr(FPEXC, fpexc | FPEXC_EN);
558 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
559 		fmxr(FPEXC, fpexc);
560 	}
561 
562 	vfp_state_release();
563 }
564 
565 /* Ensure that the thread reloads the hardware VFP state on the next use. */
566 void vfp_flush_hwstate(struct thread_info *thread)
567 {
568 	unsigned int cpu = get_cpu();
569 
570 	vfp_force_reload(cpu, thread);
571 
572 	put_cpu();
573 }
574 
575 /*
576  * Save the current VFP state into the provided structures and prepare
577  * for entry into a new function (signal handler).
578  */
579 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
580 				    struct user_vfp_exc *ufp_exc)
581 {
582 	struct thread_info *thread = current_thread_info();
583 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
584 
585 	/* Ensure that the saved hwstate is up-to-date. */
586 	vfp_sync_hwstate(thread);
587 
588 	/*
589 	 * Copy the floating point registers. There can be unused
590 	 * registers see asm/hwcap.h for details.
591 	 */
592 	memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
593 
594 	/*
595 	 * Copy the status and control register.
596 	 */
597 	ufp->fpscr = hwstate->fpscr;
598 
599 	/*
600 	 * Copy the exception registers.
601 	 */
602 	ufp_exc->fpexc = hwstate->fpexc;
603 	ufp_exc->fpinst = hwstate->fpinst;
604 	ufp_exc->fpinst2 = hwstate->fpinst2;
605 
606 	/* Ensure that VFP is disabled. */
607 	vfp_flush_hwstate(thread);
608 
609 	/*
610 	 * As per the PCS, clear the length and stride bits for function
611 	 * entry.
612 	 */
613 	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
614 	return 0;
615 }
616 
617 /* Sanitise and restore the current VFP state from the provided structures. */
618 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
619 {
620 	struct thread_info *thread = current_thread_info();
621 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
622 	unsigned long fpexc;
623 
624 	/* Disable VFP to avoid corrupting the new thread state. */
625 	vfp_flush_hwstate(thread);
626 
627 	/*
628 	 * Copy the floating point registers. There can be unused
629 	 * registers see asm/hwcap.h for details.
630 	 */
631 	memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
632 	/*
633 	 * Copy the status and control register.
634 	 */
635 	hwstate->fpscr = ufp->fpscr;
636 
637 	/*
638 	 * Sanitise and restore the exception registers.
639 	 */
640 	fpexc = ufp_exc->fpexc;
641 
642 	/* Ensure the VFP is enabled. */
643 	fpexc |= FPEXC_EN;
644 
645 	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
646 	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
647 	hwstate->fpexc = fpexc;
648 
649 	hwstate->fpinst = ufp_exc->fpinst;
650 	hwstate->fpinst2 = ufp_exc->fpinst2;
651 
652 	return 0;
653 }
654 
655 /*
656  * VFP hardware can lose all context when a CPU goes offline.
657  * As we will be running in SMP mode with CPU hotplug, we will save the
658  * hardware state at every thread switch.  We clear our held state when
659  * a CPU has been killed, indicating that the VFP hardware doesn't contain
660  * a threads VFP state.  When a CPU starts up, we re-enable access to the
661  * VFP hardware. The callbacks below are called on the CPU which
662  * is being offlined/onlined.
663  */
664 static int vfp_dying_cpu(unsigned int cpu)
665 {
666 	vfp_current_hw_state[cpu] = NULL;
667 	return 0;
668 }
669 
670 static int vfp_starting_cpu(unsigned int unused)
671 {
672 	vfp_enable(NULL);
673 	return 0;
674 }
675 
676 static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
677 {
678 	/*
679 	 * If we reach this point, a floating point exception has been raised
680 	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
681 	 * time, it means a VFP instruction has been issued that requires
682 	 * software assistance to complete, something which is not currently
683 	 * supported in kernel mode.
684 	 * If the NEON/VFP unit was disabled, and the location pointed to below
685 	 * is properly preceded by a call to kernel_neon_begin(), something has
686 	 * caused the task to be scheduled out and back in again. In this case,
687 	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
688 	 * be helpful in localizing the problem.
689 	 */
690 	if (fmrx(FPEXC) & FPEXC_EN)
691 		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
692 	else
693 		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
694 	pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
695 	return 1;
696 }
697 
698 /*
699  * vfp_support_entry - Handle VFP exception
700  *
701  * @regs:	pt_regs structure holding the register state at exception entry
702  * @trigger:	The opcode of the instruction that triggered the exception
703  *
704  * Returns 0 if the exception was handled, or an error code otherwise.
705  */
706 static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
707 {
708 	struct thread_info *ti = current_thread_info();
709 	u32 fpexc;
710 
711 	if (unlikely(!have_vfp))
712 		return -ENODEV;
713 
714 	if (!user_mode(regs))
715 		return vfp_kmode_exception(regs, trigger);
716 
717 	vfp_state_hold();
718 	fpexc = fmrx(FPEXC);
719 
720 	/*
721 	 * If the VFP unit was not enabled yet, we have to check whether the
722 	 * VFP state in the CPU's registers is the most recent VFP state
723 	 * associated with the process. On UP systems, we don't save the VFP
724 	 * state eagerly on a context switch, so we may need to save the
725 	 * VFP state to memory first, as it may belong to another process.
726 	 */
727 	if (!(fpexc & FPEXC_EN)) {
728 		/*
729 		 * Enable the VFP unit but mask the FP exception flag for the
730 		 * time being, so we can access all the registers.
731 		 */
732 		fpexc |= FPEXC_EN;
733 		fmxr(FPEXC, fpexc & ~FPEXC_EX);
734 
735 		/*
736 		 * Check whether or not the VFP state in the CPU's registers is
737 		 * the most recent VFP state associated with this task. On SMP,
738 		 * migration may result in multiple CPUs holding VFP states
739 		 * that belong to the same task, but only the most recent one
740 		 * is valid.
741 		 */
742 		if (!vfp_state_in_hw(ti->cpu, ti)) {
743 			if (!IS_ENABLED(CONFIG_SMP) &&
744 			    vfp_current_hw_state[ti->cpu] != NULL) {
745 				/*
746 				 * This CPU is currently holding the most
747 				 * recent VFP state associated with another
748 				 * task, and we must save that to memory first.
749 				 */
750 				vfp_save_state(vfp_current_hw_state[ti->cpu],
751 					       fpexc);
752 			}
753 
754 			/*
755 			 * We can now proceed with loading the task's VFP state
756 			 * from memory into the CPU registers.
757 			 */
758 			fpexc = vfp_load_state(&ti->vfpstate);
759 			vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
760 #ifdef CONFIG_SMP
761 			/*
762 			 * Record that this CPU is now the one holding the most
763 			 * recent VFP state of the task.
764 			 */
765 			ti->vfpstate.hard.cpu = ti->cpu;
766 #endif
767 		}
768 
769 		if (fpexc & FPEXC_EX)
770 			/*
771 			 * Might as well handle the pending exception before
772 			 * retrying branch out before setting an FPEXC that
773 			 * stops us reading stuff.
774 			 */
775 			goto bounce;
776 
777 		/*
778 		 * No FP exception is pending: just enable the VFP and
779 		 * replay the instruction that trapped.
780 		 */
781 		fmxr(FPEXC, fpexc);
782 		vfp_state_release();
783 	} else {
784 		/* Check for synchronous or asynchronous exceptions */
785 		if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
786 			u32 fpscr = fmrx(FPSCR);
787 
788 			/*
789 			 * On some implementations of the VFP subarch 1,
790 			 * setting FPSCR.IXE causes all the CDP instructions to
791 			 * be bounced synchronously without setting the
792 			 * FPEXC.EX bit
793 			 */
794 			if (!(fpscr & FPSCR_IXE)) {
795 				if (!(fpscr & FPSCR_LENGTH_MASK)) {
796 					pr_debug("not VFP\n");
797 					vfp_state_release();
798 					return -ENOEXEC;
799 				}
800 				fpexc |= FPEXC_DEX;
801 			}
802 		}
803 bounce:		regs->ARM_pc += 4;
804 		/* VFP_bounce() will invoke vfp_state_release() */
805 		VFP_bounce(trigger, fpexc, regs);
806 	}
807 
808 	return 0;
809 }
810 
811 static struct undef_hook neon_support_hook[] = {{
812 	.instr_mask	= 0xfe000000,
813 	.instr_val	= 0xf2000000,
814 	.cpsr_mask	= PSR_T_BIT,
815 	.cpsr_val	= 0,
816 	.fn		= vfp_support_entry,
817 }, {
818 	.instr_mask	= 0xff100000,
819 	.instr_val	= 0xf4000000,
820 	.cpsr_mask	= PSR_T_BIT,
821 	.cpsr_val	= 0,
822 	.fn		= vfp_support_entry,
823 }, {
824 	.instr_mask	= 0xef000000,
825 	.instr_val	= 0xef000000,
826 	.cpsr_mask	= PSR_T_BIT,
827 	.cpsr_val	= PSR_T_BIT,
828 	.fn		= vfp_support_entry,
829 }, {
830 	.instr_mask	= 0xff100000,
831 	.instr_val	= 0xf9000000,
832 	.cpsr_mask	= PSR_T_BIT,
833 	.cpsr_val	= PSR_T_BIT,
834 	.fn		= vfp_support_entry,
835 }, {
836 	.instr_mask	= 0xff000800,
837 	.instr_val	= 0xfc000800,
838 	.cpsr_mask	= 0,
839 	.cpsr_val	= 0,
840 	.fn		= vfp_support_entry,
841 }, {
842 	.instr_mask	= 0xff000800,
843 	.instr_val	= 0xfd000800,
844 	.cpsr_mask	= 0,
845 	.cpsr_val	= 0,
846 	.fn		= vfp_support_entry,
847 }, {
848 	.instr_mask	= 0xff000800,
849 	.instr_val	= 0xfe000800,
850 	.cpsr_mask	= 0,
851 	.cpsr_val	= 0,
852 	.fn		= vfp_support_entry,
853 }};
854 
855 static struct undef_hook vfp_support_hook = {
856 	.instr_mask	= 0x0c000e00,
857 	.instr_val	= 0x0c000a00,
858 	.fn		= vfp_support_entry,
859 };
860 
861 #ifdef CONFIG_KERNEL_MODE_NEON
862 
863 /*
864  * Kernel-side NEON support functions
865  */
866 void kernel_neon_begin(void)
867 {
868 	struct thread_info *thread = current_thread_info();
869 	unsigned int cpu;
870 	u32 fpexc;
871 
872 	vfp_state_hold();
873 
874 	/*
875 	 * Kernel mode NEON is only allowed outside of hardirq context with
876 	 * preemption and softirq processing disabled. This will make sure that
877 	 * the kernel mode NEON register contents never need to be preserved.
878 	 */
879 	BUG_ON(in_hardirq());
880 	cpu = __smp_processor_id();
881 
882 	fpexc = fmrx(FPEXC) | FPEXC_EN;
883 	fmxr(FPEXC, fpexc);
884 
885 	/*
886 	 * Save the userland NEON/VFP state. Under UP,
887 	 * the owner could be a task other than 'current'
888 	 */
889 	if (vfp_state_in_hw(cpu, thread))
890 		vfp_save_state(&thread->vfpstate, fpexc);
891 #ifndef CONFIG_SMP
892 	else if (vfp_current_hw_state[cpu] != NULL)
893 		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
894 #endif
895 	vfp_current_hw_state[cpu] = NULL;
896 }
897 EXPORT_SYMBOL(kernel_neon_begin);
898 
899 void kernel_neon_end(void)
900 {
901 	/* Disable the NEON/VFP unit. */
902 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
903 	vfp_state_release();
904 }
905 EXPORT_SYMBOL(kernel_neon_end);
906 
907 #endif /* CONFIG_KERNEL_MODE_NEON */
908 
909 static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
910 {
911 	VFP_arch = UINT_MAX;	/* mark as not present */
912 	regs->ARM_pc += 4;
913 	return 0;
914 }
915 
916 static struct undef_hook vfp_detect_hook __initdata = {
917 	.instr_mask	= 0x0c000e00,
918 	.instr_val	= 0x0c000a00,
919 	.cpsr_mask	= MODE_MASK,
920 	.cpsr_val	= SVC_MODE,
921 	.fn		= vfp_detect,
922 };
923 
924 /*
925  * VFP support code initialisation.
926  */
927 static int __init vfp_init(void)
928 {
929 	unsigned int vfpsid;
930 	unsigned int cpu_arch = cpu_architecture();
931 	unsigned int isar6;
932 
933 	/*
934 	 * Enable the access to the VFP on all online CPUs so the
935 	 * following test on FPSID will succeed.
936 	 */
937 	if (cpu_arch >= CPU_ARCH_ARMv6)
938 		on_each_cpu(vfp_enable, NULL, 1);
939 
940 	/*
941 	 * First check that there is a VFP that we can use.
942 	 * The handler is already setup to just log calls, so
943 	 * we just need to read the VFPSID register.
944 	 */
945 	register_undef_hook(&vfp_detect_hook);
946 	barrier();
947 	vfpsid = fmrx(FPSID);
948 	barrier();
949 	unregister_undef_hook(&vfp_detect_hook);
950 
951 	pr_info("VFP support v0.3: ");
952 	if (VFP_arch) {
953 		pr_cont("not present\n");
954 		return 0;
955 	/* Extract the architecture on CPUID scheme */
956 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
957 		VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
958 		VFP_arch >>= FPSID_ARCH_BIT;
959 		/*
960 		 * Check for the presence of the Advanced SIMD
961 		 * load/store instructions, integer and single
962 		 * precision floating point operations. Only check
963 		 * for NEON if the hardware has the MVFR registers.
964 		 */
965 		if (IS_ENABLED(CONFIG_NEON) &&
966 		    (fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
967 			elf_hwcap |= HWCAP_NEON;
968 			for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
969 				register_undef_hook(&neon_support_hook[i]);
970 		}
971 
972 		if (IS_ENABLED(CONFIG_VFPv3)) {
973 			u32 mvfr0 = fmrx(MVFR0);
974 			if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
975 			    ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
976 				elf_hwcap |= HWCAP_VFPv3;
977 				/*
978 				 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
979 				 * this configuration only have 16 x 64bit
980 				 * registers.
981 				 */
982 				if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
983 					/* also v4-D16 */
984 					elf_hwcap |= HWCAP_VFPv3D16;
985 				else
986 					elf_hwcap |= HWCAP_VFPD32;
987 			}
988 
989 			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
990 				elf_hwcap |= HWCAP_VFPv4;
991 			if (((fmrx(MVFR1) & MVFR1_ASIMDHP_MASK) >> MVFR1_ASIMDHP_BIT) == 0x2)
992 				elf_hwcap |= HWCAP_ASIMDHP;
993 			if (((fmrx(MVFR1) & MVFR1_FPHP_MASK) >> MVFR1_FPHP_BIT) == 0x3)
994 				elf_hwcap |= HWCAP_FPHP;
995 		}
996 
997 		/*
998 		 * Check for the presence of Advanced SIMD Dot Product
999 		 * instructions.
1000 		 */
1001 		isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
1002 		if (cpuid_feature_extract_field(isar6, 4) == 0x1)
1003 			elf_hwcap |= HWCAP_ASIMDDP;
1004 		/*
1005 		 * Check for the presence of Advanced SIMD Floating point
1006 		 * half-precision multiplication instructions.
1007 		 */
1008 		if (cpuid_feature_extract_field(isar6, 8) == 0x1)
1009 			elf_hwcap |= HWCAP_ASIMDFHM;
1010 		/*
1011 		 * Check for the presence of Advanced SIMD Bfloat16
1012 		 * floating point instructions.
1013 		 */
1014 		if (cpuid_feature_extract_field(isar6, 20) == 0x1)
1015 			elf_hwcap |= HWCAP_ASIMDBF16;
1016 		/*
1017 		 * Check for the presence of Advanced SIMD and floating point
1018 		 * Int8 matrix multiplication instructions instructions.
1019 		 */
1020 		if (cpuid_feature_extract_field(isar6, 24) == 0x1)
1021 			elf_hwcap |= HWCAP_I8MM;
1022 
1023 	/* Extract the architecture version on pre-cpuid scheme */
1024 	} else {
1025 		if (vfpsid & FPSID_NODOUBLE) {
1026 			pr_cont("no double precision support\n");
1027 			return 0;
1028 		}
1029 
1030 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
1031 	}
1032 
1033 	cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
1034 				  "arm/vfp:starting", vfp_starting_cpu,
1035 				  vfp_dying_cpu);
1036 
1037 	have_vfp = true;
1038 
1039 	register_undef_hook(&vfp_support_hook);
1040 	thread_register_notifier(&vfp_notifier_block);
1041 	vfp_pm_init();
1042 
1043 	/*
1044 	 * We detected VFP, and the support code is
1045 	 * in place; report VFP support to userspace.
1046 	 */
1047 	elf_hwcap |= HWCAP_VFP;
1048 
1049 	pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
1050 		(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
1051 		VFP_arch,
1052 		(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
1053 		(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
1054 		(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
1055 
1056 	return 0;
1057 }
1058 
1059 core_initcall(vfp_init);
1060