xref: /linux/arch/arm/vfp/vfpmodule.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
23 #include <linux/export.h>
24 
25 #include <asm/cp15.h>
26 #include <asm/cputype.h>
27 #include <asm/system_info.h>
28 #include <asm/thread_notify.h>
29 #include <asm/vfp.h>
30 
31 #include "vfpinstr.h"
32 #include "vfp.h"
33 
34 /*
35  * Our undef handlers (in entry.S)
36  */
37 void vfp_testing_entry(void);
38 void vfp_support_entry(void);
39 void vfp_null_entry(void);
40 
41 void (*vfp_vector)(void) = vfp_null_entry;
42 
43 /*
44  * Dual-use variable.
45  * Used in startup: set to non-zero if VFP checks fail
46  * After startup, holds VFP architecture
47  */
48 unsigned int VFP_arch;
49 
50 /*
51  * The pointer to the vfpstate structure of the thread which currently
52  * owns the context held in the VFP hardware, or NULL if the hardware
53  * context is invalid.
54  *
55  * For UP, this is sufficient to tell which thread owns the VFP context.
56  * However, for SMP, we also need to check the CPU number stored in the
57  * saved state too to catch migrations.
58  */
59 union vfp_state *vfp_current_hw_state[NR_CPUS];
60 
61 /*
62  * Is 'thread's most up to date state stored in this CPUs hardware?
63  * Must be called from non-preemptible context.
64  */
65 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
66 {
67 #ifdef CONFIG_SMP
68 	if (thread->vfpstate.hard.cpu != cpu)
69 		return false;
70 #endif
71 	return vfp_current_hw_state[cpu] == &thread->vfpstate;
72 }
73 
74 /*
75  * Force a reload of the VFP context from the thread structure.  We do
76  * this by ensuring that access to the VFP hardware is disabled, and
77  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
78  */
79 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
80 {
81 	if (vfp_state_in_hw(cpu, thread)) {
82 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
83 		vfp_current_hw_state[cpu] = NULL;
84 	}
85 #ifdef CONFIG_SMP
86 	thread->vfpstate.hard.cpu = NR_CPUS;
87 #endif
88 }
89 
90 /*
91  * Per-thread VFP initialization.
92  */
93 static void vfp_thread_flush(struct thread_info *thread)
94 {
95 	union vfp_state *vfp = &thread->vfpstate;
96 	unsigned int cpu;
97 
98 	/*
99 	 * Disable VFP to ensure we initialize it first.  We must ensure
100 	 * that the modification of vfp_current_hw_state[] and hardware
101 	 * disable are done for the same CPU and without preemption.
102 	 *
103 	 * Do this first to ensure that preemption won't overwrite our
104 	 * state saving should access to the VFP be enabled at this point.
105 	 */
106 	cpu = get_cpu();
107 	if (vfp_current_hw_state[cpu] == vfp)
108 		vfp_current_hw_state[cpu] = NULL;
109 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
110 	put_cpu();
111 
112 	memset(vfp, 0, sizeof(union vfp_state));
113 
114 	vfp->hard.fpexc = FPEXC_EN;
115 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
116 #ifdef CONFIG_SMP
117 	vfp->hard.cpu = NR_CPUS;
118 #endif
119 }
120 
121 static void vfp_thread_exit(struct thread_info *thread)
122 {
123 	/* release case: Per-thread VFP cleanup. */
124 	union vfp_state *vfp = &thread->vfpstate;
125 	unsigned int cpu = get_cpu();
126 
127 	if (vfp_current_hw_state[cpu] == vfp)
128 		vfp_current_hw_state[cpu] = NULL;
129 	put_cpu();
130 }
131 
132 static void vfp_thread_copy(struct thread_info *thread)
133 {
134 	struct thread_info *parent = current_thread_info();
135 
136 	vfp_sync_hwstate(parent);
137 	thread->vfpstate = parent->vfpstate;
138 #ifdef CONFIG_SMP
139 	thread->vfpstate.hard.cpu = NR_CPUS;
140 #endif
141 }
142 
143 /*
144  * When this function is called with the following 'cmd's, the following
145  * is true while this function is being run:
146  *  THREAD_NOFTIFY_SWTICH:
147  *   - the previously running thread will not be scheduled onto another CPU.
148  *   - the next thread to be run (v) will not be running on another CPU.
149  *   - thread->cpu is the local CPU number
150  *   - not preemptible as we're called in the middle of a thread switch
151  *  THREAD_NOTIFY_FLUSH:
152  *   - the thread (v) will be running on the local CPU, so
153  *	v === current_thread_info()
154  *   - thread->cpu is the local CPU number at the time it is accessed,
155  *	but may change at any time.
156  *   - we could be preempted if tree preempt rcu is enabled, so
157  *	it is unsafe to use thread->cpu.
158  *  THREAD_NOTIFY_EXIT
159  *   - we could be preempted if tree preempt rcu is enabled, so
160  *	it is unsafe to use thread->cpu.
161  */
162 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
163 {
164 	struct thread_info *thread = v;
165 	u32 fpexc;
166 #ifdef CONFIG_SMP
167 	unsigned int cpu;
168 #endif
169 
170 	switch (cmd) {
171 	case THREAD_NOTIFY_SWITCH:
172 		fpexc = fmrx(FPEXC);
173 
174 #ifdef CONFIG_SMP
175 		cpu = thread->cpu;
176 
177 		/*
178 		 * On SMP, if VFP is enabled, save the old state in
179 		 * case the thread migrates to a different CPU. The
180 		 * restoring is done lazily.
181 		 */
182 		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
183 			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
184 #endif
185 
186 		/*
187 		 * Always disable VFP so we can lazily save/restore the
188 		 * old state.
189 		 */
190 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
191 		break;
192 
193 	case THREAD_NOTIFY_FLUSH:
194 		vfp_thread_flush(thread);
195 		break;
196 
197 	case THREAD_NOTIFY_EXIT:
198 		vfp_thread_exit(thread);
199 		break;
200 
201 	case THREAD_NOTIFY_COPY:
202 		vfp_thread_copy(thread);
203 		break;
204 	}
205 
206 	return NOTIFY_DONE;
207 }
208 
209 static struct notifier_block vfp_notifier_block = {
210 	.notifier_call	= vfp_notifier,
211 };
212 
213 /*
214  * Raise a SIGFPE for the current process.
215  * sicode describes the signal being raised.
216  */
217 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
218 {
219 	siginfo_t info;
220 
221 	memset(&info, 0, sizeof(info));
222 
223 	info.si_signo = SIGFPE;
224 	info.si_code = sicode;
225 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
226 
227 	/*
228 	 * This is the same as NWFPE, because it's not clear what
229 	 * this is used for
230 	 */
231 	current->thread.error_code = 0;
232 	current->thread.trap_no = 6;
233 
234 	send_sig_info(SIGFPE, &info, current);
235 }
236 
237 static void vfp_panic(char *reason, u32 inst)
238 {
239 	int i;
240 
241 	pr_err("VFP: Error: %s\n", reason);
242 	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
243 		fmrx(FPEXC), fmrx(FPSCR), inst);
244 	for (i = 0; i < 32; i += 2)
245 		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
246 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
247 }
248 
249 /*
250  * Process bitmask of exception conditions.
251  */
252 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
253 {
254 	int si_code = 0;
255 
256 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
257 
258 	if (exceptions == VFP_EXCEPTION_ERROR) {
259 		vfp_panic("unhandled bounce", inst);
260 		vfp_raise_sigfpe(0, regs);
261 		return;
262 	}
263 
264 	/*
265 	 * If any of the status flags are set, update the FPSCR.
266 	 * Comparison instructions always return at least one of
267 	 * these flags set.
268 	 */
269 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
270 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
271 
272 	fpscr |= exceptions;
273 
274 	fmxr(FPSCR, fpscr);
275 
276 #define RAISE(stat,en,sig)				\
277 	if (exceptions & stat && fpscr & en)		\
278 		si_code = sig;
279 
280 	/*
281 	 * These are arranged in priority order, least to highest.
282 	 */
283 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
284 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
285 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
286 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
287 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
288 
289 	if (si_code)
290 		vfp_raise_sigfpe(si_code, regs);
291 }
292 
293 /*
294  * Emulate a VFP instruction.
295  */
296 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
297 {
298 	u32 exceptions = VFP_EXCEPTION_ERROR;
299 
300 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
301 
302 	if (INST_CPRTDO(inst)) {
303 		if (!INST_CPRT(inst)) {
304 			/*
305 			 * CPDO
306 			 */
307 			if (vfp_single(inst)) {
308 				exceptions = vfp_single_cpdo(inst, fpscr);
309 			} else {
310 				exceptions = vfp_double_cpdo(inst, fpscr);
311 			}
312 		} else {
313 			/*
314 			 * A CPRT instruction can not appear in FPINST2, nor
315 			 * can it cause an exception.  Therefore, we do not
316 			 * have to emulate it.
317 			 */
318 		}
319 	} else {
320 		/*
321 		 * A CPDT instruction can not appear in FPINST2, nor can
322 		 * it cause an exception.  Therefore, we do not have to
323 		 * emulate it.
324 		 */
325 	}
326 	return exceptions & ~VFP_NAN_FLAG;
327 }
328 
329 /*
330  * Package up a bounce condition.
331  */
332 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
333 {
334 	u32 fpscr, orig_fpscr, fpsid, exceptions;
335 
336 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
337 
338 	/*
339 	 * At this point, FPEXC can have the following configuration:
340 	 *
341 	 *  EX DEX IXE
342 	 *  0   1   x   - synchronous exception
343 	 *  1   x   0   - asynchronous exception
344 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
345 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
346 	 *                implementation), undefined otherwise
347 	 *
348 	 * Clear various bits and enable access to the VFP so we can
349 	 * handle the bounce.
350 	 */
351 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
352 
353 	fpsid = fmrx(FPSID);
354 	orig_fpscr = fpscr = fmrx(FPSCR);
355 
356 	/*
357 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
358 	 */
359 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
360 	    && (fpscr & FPSCR_IXE)) {
361 		/*
362 		 * Synchronous exception, emulate the trigger instruction
363 		 */
364 		goto emulate;
365 	}
366 
367 	if (fpexc & FPEXC_EX) {
368 #ifndef CONFIG_CPU_FEROCEON
369 		/*
370 		 * Asynchronous exception. The instruction is read from FPINST
371 		 * and the interrupted instruction has to be restarted.
372 		 */
373 		trigger = fmrx(FPINST);
374 		regs->ARM_pc -= 4;
375 #endif
376 	} else if (!(fpexc & FPEXC_DEX)) {
377 		/*
378 		 * Illegal combination of bits. It can be caused by an
379 		 * unallocated VFP instruction but with FPSCR.IXE set and not
380 		 * on VFP subarch 1.
381 		 */
382 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
383 		goto exit;
384 	}
385 
386 	/*
387 	 * Modify fpscr to indicate the number of iterations remaining.
388 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
389 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
390 	 */
391 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
392 		u32 len;
393 
394 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
395 
396 		fpscr &= ~FPSCR_LENGTH_MASK;
397 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
398 	}
399 
400 	/*
401 	 * Handle the first FP instruction.  We used to take note of the
402 	 * FPEXC bounce reason, but this appears to be unreliable.
403 	 * Emulate the bounced instruction instead.
404 	 */
405 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
406 	if (exceptions)
407 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
408 
409 	/*
410 	 * If there isn't a second FP instruction, exit now. Note that
411 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
412 	 */
413 	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
414 		goto exit;
415 
416 	/*
417 	 * The barrier() here prevents fpinst2 being read
418 	 * before the condition above.
419 	 */
420 	barrier();
421 	trigger = fmrx(FPINST2);
422 
423  emulate:
424 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
425 	if (exceptions)
426 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
427  exit:
428 	preempt_enable();
429 }
430 
431 static void vfp_enable(void *unused)
432 {
433 	u32 access;
434 
435 	BUG_ON(preemptible());
436 	access = get_copro_access();
437 
438 	/*
439 	 * Enable full access to VFP (cp10 and cp11)
440 	 */
441 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
442 }
443 
444 /* Called by platforms on which we want to disable VFP because it may not be
445  * present on all CPUs within a SMP complex. Needs to be called prior to
446  * vfp_init().
447  */
448 void vfp_disable(void)
449 {
450 	if (VFP_arch) {
451 		pr_debug("%s: should be called prior to vfp_init\n", __func__);
452 		return;
453 	}
454 	VFP_arch = 1;
455 }
456 
457 #ifdef CONFIG_CPU_PM
458 static int vfp_pm_suspend(void)
459 {
460 	struct thread_info *ti = current_thread_info();
461 	u32 fpexc = fmrx(FPEXC);
462 
463 	/* if vfp is on, then save state for resumption */
464 	if (fpexc & FPEXC_EN) {
465 		pr_debug("%s: saving vfp state\n", __func__);
466 		vfp_save_state(&ti->vfpstate, fpexc);
467 
468 		/* disable, just in case */
469 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
470 	} else if (vfp_current_hw_state[ti->cpu]) {
471 #ifndef CONFIG_SMP
472 		fmxr(FPEXC, fpexc | FPEXC_EN);
473 		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
474 		fmxr(FPEXC, fpexc);
475 #endif
476 	}
477 
478 	/* clear any information we had about last context state */
479 	vfp_current_hw_state[ti->cpu] = NULL;
480 
481 	return 0;
482 }
483 
484 static void vfp_pm_resume(void)
485 {
486 	/* ensure we have access to the vfp */
487 	vfp_enable(NULL);
488 
489 	/* and disable it to ensure the next usage restores the state */
490 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
491 }
492 
493 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
494 	void *v)
495 {
496 	switch (cmd) {
497 	case CPU_PM_ENTER:
498 		vfp_pm_suspend();
499 		break;
500 	case CPU_PM_ENTER_FAILED:
501 	case CPU_PM_EXIT:
502 		vfp_pm_resume();
503 		break;
504 	}
505 	return NOTIFY_OK;
506 }
507 
508 static struct notifier_block vfp_cpu_pm_notifier_block = {
509 	.notifier_call = vfp_cpu_pm_notifier,
510 };
511 
512 static void vfp_pm_init(void)
513 {
514 	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
515 }
516 
517 #else
518 static inline void vfp_pm_init(void) { }
519 #endif /* CONFIG_CPU_PM */
520 
521 /*
522  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
523  * with the hardware state.
524  */
525 void vfp_sync_hwstate(struct thread_info *thread)
526 {
527 	unsigned int cpu = get_cpu();
528 
529 	if (vfp_state_in_hw(cpu, thread)) {
530 		u32 fpexc = fmrx(FPEXC);
531 
532 		/*
533 		 * Save the last VFP state on this CPU.
534 		 */
535 		fmxr(FPEXC, fpexc | FPEXC_EN);
536 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
537 		fmxr(FPEXC, fpexc);
538 	}
539 
540 	put_cpu();
541 }
542 
543 /* Ensure that the thread reloads the hardware VFP state on the next use. */
544 void vfp_flush_hwstate(struct thread_info *thread)
545 {
546 	unsigned int cpu = get_cpu();
547 
548 	vfp_force_reload(cpu, thread);
549 
550 	put_cpu();
551 }
552 
553 /*
554  * Save the current VFP state into the provided structures and prepare
555  * for entry into a new function (signal handler).
556  */
557 int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
558 				    struct user_vfp_exc __user *ufp_exc)
559 {
560 	struct thread_info *thread = current_thread_info();
561 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
562 	int err = 0;
563 
564 	/* Ensure that the saved hwstate is up-to-date. */
565 	vfp_sync_hwstate(thread);
566 
567 	/*
568 	 * Copy the floating point registers. There can be unused
569 	 * registers see asm/hwcap.h for details.
570 	 */
571 	err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
572 			      sizeof(hwstate->fpregs));
573 	/*
574 	 * Copy the status and control register.
575 	 */
576 	__put_user_error(hwstate->fpscr, &ufp->fpscr, err);
577 
578 	/*
579 	 * Copy the exception registers.
580 	 */
581 	__put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
582 	__put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
583 	__put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
584 
585 	if (err)
586 		return -EFAULT;
587 
588 	/* Ensure that VFP is disabled. */
589 	vfp_flush_hwstate(thread);
590 
591 	/*
592 	 * As per the PCS, clear the length and stride bits for function
593 	 * entry.
594 	 */
595 	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
596 	return 0;
597 }
598 
599 /* Sanitise and restore the current VFP state from the provided structures. */
600 int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
601 			     struct user_vfp_exc __user *ufp_exc)
602 {
603 	struct thread_info *thread = current_thread_info();
604 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
605 	unsigned long fpexc;
606 	int err = 0;
607 
608 	/* Disable VFP to avoid corrupting the new thread state. */
609 	vfp_flush_hwstate(thread);
610 
611 	/*
612 	 * Copy the floating point registers. There can be unused
613 	 * registers see asm/hwcap.h for details.
614 	 */
615 	err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
616 				sizeof(hwstate->fpregs));
617 	/*
618 	 * Copy the status and control register.
619 	 */
620 	__get_user_error(hwstate->fpscr, &ufp->fpscr, err);
621 
622 	/*
623 	 * Sanitise and restore the exception registers.
624 	 */
625 	__get_user_error(fpexc, &ufp_exc->fpexc, err);
626 
627 	/* Ensure the VFP is enabled. */
628 	fpexc |= FPEXC_EN;
629 
630 	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
631 	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
632 	hwstate->fpexc = fpexc;
633 
634 	__get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
635 	__get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
636 
637 	return err ? -EFAULT : 0;
638 }
639 
640 /*
641  * VFP hardware can lose all context when a CPU goes offline.
642  * As we will be running in SMP mode with CPU hotplug, we will save the
643  * hardware state at every thread switch.  We clear our held state when
644  * a CPU has been killed, indicating that the VFP hardware doesn't contain
645  * a threads VFP state.  When a CPU starts up, we re-enable access to the
646  * VFP hardware.
647  *
648  * Both CPU_DYING and CPU_STARTING are called on the CPU which
649  * is being offlined/onlined.
650  */
651 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
652 	void *hcpu)
653 {
654 	if (action == CPU_DYING || action == CPU_DYING_FROZEN)
655 		vfp_current_hw_state[(long)hcpu] = NULL;
656 	else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
657 		vfp_enable(NULL);
658 	return NOTIFY_OK;
659 }
660 
661 void vfp_kmode_exception(void)
662 {
663 	/*
664 	 * If we reach this point, a floating point exception has been raised
665 	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
666 	 * time, it means a VFP instruction has been issued that requires
667 	 * software assistance to complete, something which is not currently
668 	 * supported in kernel mode.
669 	 * If the NEON/VFP unit was disabled, and the location pointed to below
670 	 * is properly preceded by a call to kernel_neon_begin(), something has
671 	 * caused the task to be scheduled out and back in again. In this case,
672 	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
673 	 * be helpful in localizing the problem.
674 	 */
675 	if (fmrx(FPEXC) & FPEXC_EN)
676 		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
677 	else
678 		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
679 }
680 
681 #ifdef CONFIG_KERNEL_MODE_NEON
682 
683 /*
684  * Kernel-side NEON support functions
685  */
686 void kernel_neon_begin(void)
687 {
688 	struct thread_info *thread = current_thread_info();
689 	unsigned int cpu;
690 	u32 fpexc;
691 
692 	/*
693 	 * Kernel mode NEON is only allowed outside of interrupt context
694 	 * with preemption disabled. This will make sure that the kernel
695 	 * mode NEON register contents never need to be preserved.
696 	 */
697 	BUG_ON(in_interrupt());
698 	cpu = get_cpu();
699 
700 	fpexc = fmrx(FPEXC) | FPEXC_EN;
701 	fmxr(FPEXC, fpexc);
702 
703 	/*
704 	 * Save the userland NEON/VFP state. Under UP,
705 	 * the owner could be a task other than 'current'
706 	 */
707 	if (vfp_state_in_hw(cpu, thread))
708 		vfp_save_state(&thread->vfpstate, fpexc);
709 #ifndef CONFIG_SMP
710 	else if (vfp_current_hw_state[cpu] != NULL)
711 		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
712 #endif
713 	vfp_current_hw_state[cpu] = NULL;
714 }
715 EXPORT_SYMBOL(kernel_neon_begin);
716 
717 void kernel_neon_end(void)
718 {
719 	/* Disable the NEON/VFP unit. */
720 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
721 	put_cpu();
722 }
723 EXPORT_SYMBOL(kernel_neon_end);
724 
725 #endif /* CONFIG_KERNEL_MODE_NEON */
726 
727 /*
728  * VFP support code initialisation.
729  */
730 static int __init vfp_init(void)
731 {
732 	unsigned int vfpsid;
733 	unsigned int cpu_arch = cpu_architecture();
734 
735 	if (cpu_arch >= CPU_ARCH_ARMv6)
736 		on_each_cpu(vfp_enable, NULL, 1);
737 
738 	/*
739 	 * First check that there is a VFP that we can use.
740 	 * The handler is already setup to just log calls, so
741 	 * we just need to read the VFPSID register.
742 	 */
743 	vfp_vector = vfp_testing_entry;
744 	barrier();
745 	vfpsid = fmrx(FPSID);
746 	barrier();
747 	vfp_vector = vfp_null_entry;
748 
749 	pr_info("VFP support v0.3: ");
750 	if (VFP_arch) {
751 		pr_cont("not present\n");
752 		return 0;
753 	/* Extract the architecture on CPUID scheme */
754 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
755 		VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
756 		VFP_arch >>= FPSID_ARCH_BIT;
757 		/*
758 		 * Check for the presence of the Advanced SIMD
759 		 * load/store instructions, integer and single
760 		 * precision floating point operations. Only check
761 		 * for NEON if the hardware has the MVFR registers.
762 		 */
763 		if (IS_ENABLED(CONFIG_NEON) &&
764 		   (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
765 			elf_hwcap |= HWCAP_NEON;
766 
767 		if (IS_ENABLED(CONFIG_VFPv3)) {
768 			u32 mvfr0 = fmrx(MVFR0);
769 			if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
770 			    ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
771 				elf_hwcap |= HWCAP_VFPv3;
772 				/*
773 				 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
774 				 * this configuration only have 16 x 64bit
775 				 * registers.
776 				 */
777 				if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
778 					/* also v4-D16 */
779 					elf_hwcap |= HWCAP_VFPv3D16;
780 				else
781 					elf_hwcap |= HWCAP_VFPD32;
782 			}
783 
784 			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
785 				elf_hwcap |= HWCAP_VFPv4;
786 		}
787 	/* Extract the architecture version on pre-cpuid scheme */
788 	} else {
789 		if (vfpsid & FPSID_NODOUBLE) {
790 			pr_cont("no double precision support\n");
791 			return 0;
792 		}
793 
794 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
795 	}
796 
797 	hotcpu_notifier(vfp_hotplug, 0);
798 
799 	vfp_vector = vfp_support_entry;
800 
801 	thread_register_notifier(&vfp_notifier_block);
802 	vfp_pm_init();
803 
804 	/*
805 	 * We detected VFP, and the support code is
806 	 * in place; report VFP support to userspace.
807 	 */
808 	elf_hwcap |= HWCAP_VFP;
809 
810 	pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
811 		(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
812 		VFP_arch,
813 		(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
814 		(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
815 		(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
816 
817 	return 0;
818 }
819 
820 core_initcall(vfp_init);
821