xref: /linux/arch/arm/vfp/vfpdouble.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  *  linux/arch/arm/vfp/vfpdouble.c
3  *
4  * This code is derived in part from John R. Housers softfloat library, which
5  * carries the following notice:
6  *
7  * ===========================================================================
8  * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9  * Arithmetic Package, Release 2.
10  *
11  * Written by John R. Hauser.  This work was made possible in part by the
12  * International Computer Science Institute, located at Suite 600, 1947 Center
13  * Street, Berkeley, California 94704.  Funding was partially provided by the
14  * National Science Foundation under grant MIP-9311980.  The original version
15  * of this code was written as part of a project to build a fixed-point vector
16  * processor in collaboration with the University of California at Berkeley,
17  * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
18  * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19  * arithmetic/softfloat.html'.
20  *
21  * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
22  * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23  * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
24  * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25  * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26  *
27  * Derivative works are acceptable, even for commercial purposes, so long as
28  * (1) they include prominent notice that the work is derivative, and (2) they
29  * include prominent notice akin to these three paragraphs for those parts of
30  * this code that are retained.
31  * ===========================================================================
32  */
33 #include <linux/kernel.h>
34 #include <linux/bitops.h>
35 
36 #include <asm/div64.h>
37 #include <asm/ptrace.h>
38 #include <asm/vfp.h>
39 
40 #include "vfpinstr.h"
41 #include "vfp.h"
42 
43 static struct vfp_double vfp_double_default_qnan = {
44 	.exponent	= 2047,
45 	.sign		= 0,
46 	.significand	= VFP_DOUBLE_SIGNIFICAND_QNAN,
47 };
48 
49 static void vfp_double_dump(const char *str, struct vfp_double *d)
50 {
51 	pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
52 		 str, d->sign != 0, d->exponent, d->significand);
53 }
54 
55 static void vfp_double_normalise_denormal(struct vfp_double *vd)
56 {
57 	int bits = 31 - fls(vd->significand >> 32);
58 	if (bits == 31)
59 		bits = 62 - fls(vd->significand);
60 
61 	vfp_double_dump("normalise_denormal: in", vd);
62 
63 	if (bits) {
64 		vd->exponent -= bits - 1;
65 		vd->significand <<= bits;
66 	}
67 
68 	vfp_double_dump("normalise_denormal: out", vd);
69 }
70 
71 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
72 {
73 	u64 significand, incr;
74 	int exponent, shift, underflow;
75 	u32 rmode;
76 
77 	vfp_double_dump("pack: in", vd);
78 
79 	/*
80 	 * Infinities and NaNs are a special case.
81 	 */
82 	if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
83 		goto pack;
84 
85 	/*
86 	 * Special-case zero.
87 	 */
88 	if (vd->significand == 0) {
89 		vd->exponent = 0;
90 		goto pack;
91 	}
92 
93 	exponent = vd->exponent;
94 	significand = vd->significand;
95 
96 	shift = 32 - fls(significand >> 32);
97 	if (shift == 32)
98 		shift = 64 - fls(significand);
99 	if (shift) {
100 		exponent -= shift;
101 		significand <<= shift;
102 	}
103 
104 #ifdef DEBUG
105 	vd->exponent = exponent;
106 	vd->significand = significand;
107 	vfp_double_dump("pack: normalised", vd);
108 #endif
109 
110 	/*
111 	 * Tiny number?
112 	 */
113 	underflow = exponent < 0;
114 	if (underflow) {
115 		significand = vfp_shiftright64jamming(significand, -exponent);
116 		exponent = 0;
117 #ifdef DEBUG
118 		vd->exponent = exponent;
119 		vd->significand = significand;
120 		vfp_double_dump("pack: tiny number", vd);
121 #endif
122 		if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
123 			underflow = 0;
124 	}
125 
126 	/*
127 	 * Select rounding increment.
128 	 */
129 	incr = 0;
130 	rmode = fpscr & FPSCR_RMODE_MASK;
131 
132 	if (rmode == FPSCR_ROUND_NEAREST) {
133 		incr = 1ULL << VFP_DOUBLE_LOW_BITS;
134 		if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
135 			incr -= 1;
136 	} else if (rmode == FPSCR_ROUND_TOZERO) {
137 		incr = 0;
138 	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
139 		incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
140 
141 	pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
142 
143 	/*
144 	 * Is our rounding going to overflow?
145 	 */
146 	if ((significand + incr) < significand) {
147 		exponent += 1;
148 		significand = (significand >> 1) | (significand & 1);
149 		incr >>= 1;
150 #ifdef DEBUG
151 		vd->exponent = exponent;
152 		vd->significand = significand;
153 		vfp_double_dump("pack: overflow", vd);
154 #endif
155 	}
156 
157 	/*
158 	 * If any of the low bits (which will be shifted out of the
159 	 * number) are non-zero, the result is inexact.
160 	 */
161 	if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
162 		exceptions |= FPSCR_IXC;
163 
164 	/*
165 	 * Do our rounding.
166 	 */
167 	significand += incr;
168 
169 	/*
170 	 * Infinity?
171 	 */
172 	if (exponent >= 2046) {
173 		exceptions |= FPSCR_OFC | FPSCR_IXC;
174 		if (incr == 0) {
175 			vd->exponent = 2045;
176 			vd->significand = 0x7fffffffffffffffULL;
177 		} else {
178 			vd->exponent = 2047;		/* infinity */
179 			vd->significand = 0;
180 		}
181 	} else {
182 		if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
183 			exponent = 0;
184 		if (exponent || significand > 0x8000000000000000ULL)
185 			underflow = 0;
186 		if (underflow)
187 			exceptions |= FPSCR_UFC;
188 		vd->exponent = exponent;
189 		vd->significand = significand >> 1;
190 	}
191 
192  pack:
193 	vfp_double_dump("pack: final", vd);
194 	{
195 		s64 d = vfp_double_pack(vd);
196 		pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
197 			 dd, d, exceptions);
198 		vfp_put_double(d, dd);
199 	}
200 	return exceptions;
201 }
202 
203 /*
204  * Propagate the NaN, setting exceptions if it is signalling.
205  * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
206  */
207 static u32
208 vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
209 		  struct vfp_double *vdm, u32 fpscr)
210 {
211 	struct vfp_double *nan;
212 	int tn, tm = 0;
213 
214 	tn = vfp_double_type(vdn);
215 
216 	if (vdm)
217 		tm = vfp_double_type(vdm);
218 
219 	if (fpscr & FPSCR_DEFAULT_NAN)
220 		/*
221 		 * Default NaN mode - always returns a quiet NaN
222 		 */
223 		nan = &vfp_double_default_qnan;
224 	else {
225 		/*
226 		 * Contemporary mode - select the first signalling
227 		 * NAN, or if neither are signalling, the first
228 		 * quiet NAN.
229 		 */
230 		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
231 			nan = vdn;
232 		else
233 			nan = vdm;
234 		/*
235 		 * Make the NaN quiet.
236 		 */
237 		nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
238 	}
239 
240 	*vdd = *nan;
241 
242 	/*
243 	 * If one was a signalling NAN, raise invalid operation.
244 	 */
245 	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
246 }
247 
248 /*
249  * Extended operations
250  */
251 static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
252 {
253 	vfp_put_double(vfp_double_packed_abs(vfp_get_double(dm)), dd);
254 	return 0;
255 }
256 
257 static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
258 {
259 	vfp_put_double(vfp_get_double(dm), dd);
260 	return 0;
261 }
262 
263 static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
264 {
265 	vfp_put_double(vfp_double_packed_negate(vfp_get_double(dm)), dd);
266 	return 0;
267 }
268 
269 static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
270 {
271 	struct vfp_double vdm, vdd;
272 	int ret, tm;
273 
274 	vfp_double_unpack(&vdm, vfp_get_double(dm));
275 	tm = vfp_double_type(&vdm);
276 	if (tm & (VFP_NAN|VFP_INFINITY)) {
277 		struct vfp_double *vdp = &vdd;
278 
279 		if (tm & VFP_NAN)
280 			ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
281 		else if (vdm.sign == 0) {
282  sqrt_copy:
283 			vdp = &vdm;
284 			ret = 0;
285 		} else {
286  sqrt_invalid:
287 			vdp = &vfp_double_default_qnan;
288 			ret = FPSCR_IOC;
289 		}
290 		vfp_put_double(vfp_double_pack(vdp), dd);
291 		return ret;
292 	}
293 
294 	/*
295 	 * sqrt(+/- 0) == +/- 0
296 	 */
297 	if (tm & VFP_ZERO)
298 		goto sqrt_copy;
299 
300 	/*
301 	 * Normalise a denormalised number
302 	 */
303 	if (tm & VFP_DENORMAL)
304 		vfp_double_normalise_denormal(&vdm);
305 
306 	/*
307 	 * sqrt(<0) = invalid
308 	 */
309 	if (vdm.sign)
310 		goto sqrt_invalid;
311 
312 	vfp_double_dump("sqrt", &vdm);
313 
314 	/*
315 	 * Estimate the square root.
316 	 */
317 	vdd.sign = 0;
318 	vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
319 	vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
320 
321 	vfp_double_dump("sqrt estimate1", &vdd);
322 
323 	vdm.significand >>= 1 + (vdm.exponent & 1);
324 	vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
325 
326 	vfp_double_dump("sqrt estimate2", &vdd);
327 
328 	/*
329 	 * And now adjust.
330 	 */
331 	if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
332 		if (vdd.significand < 2) {
333 			vdd.significand = ~0ULL;
334 		} else {
335 			u64 termh, terml, remh, reml;
336 			vdm.significand <<= 2;
337 			mul64to128(&termh, &terml, vdd.significand, vdd.significand);
338 			sub128(&remh, &reml, vdm.significand, 0, termh, terml);
339 			while ((s64)remh < 0) {
340 				vdd.significand -= 1;
341 				shift64left(&termh, &terml, vdd.significand);
342 				terml |= 1;
343 				add128(&remh, &reml, remh, reml, termh, terml);
344 			}
345 			vdd.significand |= (remh | reml) != 0;
346 		}
347 	}
348 	vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
349 
350 	return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
351 }
352 
353 /*
354  * Equal	:= ZC
355  * Less than	:= N
356  * Greater than	:= C
357  * Unordered	:= CV
358  */
359 static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
360 {
361 	s64 d, m;
362 	u32 ret = 0;
363 
364 	m = vfp_get_double(dm);
365 	if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
366 		ret |= FPSCR_C | FPSCR_V;
367 		if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
368 			/*
369 			 * Signalling NaN, or signalling on quiet NaN
370 			 */
371 			ret |= FPSCR_IOC;
372 	}
373 
374 	d = vfp_get_double(dd);
375 	if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
376 		ret |= FPSCR_C | FPSCR_V;
377 		if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
378 			/*
379 			 * Signalling NaN, or signalling on quiet NaN
380 			 */
381 			ret |= FPSCR_IOC;
382 	}
383 
384 	if (ret == 0) {
385 		if (d == m || vfp_double_packed_abs(d | m) == 0) {
386 			/*
387 			 * equal
388 			 */
389 			ret |= FPSCR_Z | FPSCR_C;
390 		} else if (vfp_double_packed_sign(d ^ m)) {
391 			/*
392 			 * different signs
393 			 */
394 			if (vfp_double_packed_sign(d))
395 				/*
396 				 * d is negative, so d < m
397 				 */
398 				ret |= FPSCR_N;
399 			else
400 				/*
401 				 * d is positive, so d > m
402 				 */
403 				ret |= FPSCR_C;
404 		} else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
405 			/*
406 			 * d < m
407 			 */
408 			ret |= FPSCR_N;
409 		} else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
410 			/*
411 			 * d > m
412 			 */
413 			ret |= FPSCR_C;
414 		}
415 	}
416 
417 	return ret;
418 }
419 
420 static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
421 {
422 	return vfp_compare(dd, 0, dm, fpscr);
423 }
424 
425 static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
426 {
427 	return vfp_compare(dd, 1, dm, fpscr);
428 }
429 
430 static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
431 {
432 	return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
433 }
434 
435 static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
436 {
437 	return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
438 }
439 
440 static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
441 {
442 	struct vfp_double vdm;
443 	struct vfp_single vsd;
444 	int tm;
445 	u32 exceptions = 0;
446 
447 	vfp_double_unpack(&vdm, vfp_get_double(dm));
448 
449 	tm = vfp_double_type(&vdm);
450 
451 	/*
452 	 * If we have a signalling NaN, signal invalid operation.
453 	 */
454 	if (tm == VFP_SNAN)
455 		exceptions = FPSCR_IOC;
456 
457 	if (tm & VFP_DENORMAL)
458 		vfp_double_normalise_denormal(&vdm);
459 
460 	vsd.sign = vdm.sign;
461 	vsd.significand = vfp_hi64to32jamming(vdm.significand);
462 
463 	/*
464 	 * If we have an infinity or a NaN, the exponent must be 255
465 	 */
466 	if (tm & (VFP_INFINITY|VFP_NAN)) {
467 		vsd.exponent = 255;
468 		if (tm == VFP_QNAN)
469 			vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
470 		goto pack_nan;
471 	} else if (tm & VFP_ZERO)
472 		vsd.exponent = 0;
473 	else
474 		vsd.exponent = vdm.exponent - (1023 - 127);
475 
476 	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
477 
478  pack_nan:
479 	vfp_put_float(vfp_single_pack(&vsd), sd);
480 	return exceptions;
481 }
482 
483 static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
484 {
485 	struct vfp_double vdm;
486 	u32 m = vfp_get_float(dm);
487 
488 	vdm.sign = 0;
489 	vdm.exponent = 1023 + 63 - 1;
490 	vdm.significand = (u64)m;
491 
492 	return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
493 }
494 
495 static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
496 {
497 	struct vfp_double vdm;
498 	u32 m = vfp_get_float(dm);
499 
500 	vdm.sign = (m & 0x80000000) >> 16;
501 	vdm.exponent = 1023 + 63 - 1;
502 	vdm.significand = vdm.sign ? -m : m;
503 
504 	return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
505 }
506 
507 static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
508 {
509 	struct vfp_double vdm;
510 	u32 d, exceptions = 0;
511 	int rmode = fpscr & FPSCR_RMODE_MASK;
512 	int tm;
513 
514 	vfp_double_unpack(&vdm, vfp_get_double(dm));
515 
516 	/*
517 	 * Do we have a denormalised number?
518 	 */
519 	tm = vfp_double_type(&vdm);
520 	if (tm & VFP_DENORMAL)
521 		exceptions |= FPSCR_IDC;
522 
523 	if (tm & VFP_NAN)
524 		vdm.sign = 0;
525 
526 	if (vdm.exponent >= 1023 + 32) {
527 		d = vdm.sign ? 0 : 0xffffffff;
528 		exceptions = FPSCR_IOC;
529 	} else if (vdm.exponent >= 1023 - 1) {
530 		int shift = 1023 + 63 - vdm.exponent;
531 		u64 rem, incr = 0;
532 
533 		/*
534 		 * 2^0 <= m < 2^32-2^8
535 		 */
536 		d = (vdm.significand << 1) >> shift;
537 		rem = vdm.significand << (65 - shift);
538 
539 		if (rmode == FPSCR_ROUND_NEAREST) {
540 			incr = 0x8000000000000000ULL;
541 			if ((d & 1) == 0)
542 				incr -= 1;
543 		} else if (rmode == FPSCR_ROUND_TOZERO) {
544 			incr = 0;
545 		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
546 			incr = ~0ULL;
547 		}
548 
549 		if ((rem + incr) < rem) {
550 			if (d < 0xffffffff)
551 				d += 1;
552 			else
553 				exceptions |= FPSCR_IOC;
554 		}
555 
556 		if (d && vdm.sign) {
557 			d = 0;
558 			exceptions |= FPSCR_IOC;
559 		} else if (rem)
560 			exceptions |= FPSCR_IXC;
561 	} else {
562 		d = 0;
563 		if (vdm.exponent | vdm.significand) {
564 			exceptions |= FPSCR_IXC;
565 			if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
566 				d = 1;
567 			else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
568 				d = 0;
569 				exceptions |= FPSCR_IOC;
570 			}
571 		}
572 	}
573 
574 	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
575 
576 	vfp_put_float(d, sd);
577 
578 	return exceptions;
579 }
580 
581 static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
582 {
583 	return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
584 }
585 
586 static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
587 {
588 	struct vfp_double vdm;
589 	u32 d, exceptions = 0;
590 	int rmode = fpscr & FPSCR_RMODE_MASK;
591 	int tm;
592 
593 	vfp_double_unpack(&vdm, vfp_get_double(dm));
594 	vfp_double_dump("VDM", &vdm);
595 
596 	/*
597 	 * Do we have denormalised number?
598 	 */
599 	tm = vfp_double_type(&vdm);
600 	if (tm & VFP_DENORMAL)
601 		exceptions |= FPSCR_IDC;
602 
603 	if (tm & VFP_NAN) {
604 		d = 0;
605 		exceptions |= FPSCR_IOC;
606 	} else if (vdm.exponent >= 1023 + 32) {
607 		d = 0x7fffffff;
608 		if (vdm.sign)
609 			d = ~d;
610 		exceptions |= FPSCR_IOC;
611 	} else if (vdm.exponent >= 1023 - 1) {
612 		int shift = 1023 + 63 - vdm.exponent;	/* 58 */
613 		u64 rem, incr = 0;
614 
615 		d = (vdm.significand << 1) >> shift;
616 		rem = vdm.significand << (65 - shift);
617 
618 		if (rmode == FPSCR_ROUND_NEAREST) {
619 			incr = 0x8000000000000000ULL;
620 			if ((d & 1) == 0)
621 				incr -= 1;
622 		} else if (rmode == FPSCR_ROUND_TOZERO) {
623 			incr = 0;
624 		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
625 			incr = ~0ULL;
626 		}
627 
628 		if ((rem + incr) < rem && d < 0xffffffff)
629 			d += 1;
630 		if (d > 0x7fffffff + (vdm.sign != 0)) {
631 			d = 0x7fffffff + (vdm.sign != 0);
632 			exceptions |= FPSCR_IOC;
633 		} else if (rem)
634 			exceptions |= FPSCR_IXC;
635 
636 		if (vdm.sign)
637 			d = -d;
638 	} else {
639 		d = 0;
640 		if (vdm.exponent | vdm.significand) {
641 			exceptions |= FPSCR_IXC;
642 			if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
643 				d = 1;
644 			else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
645 				d = -1;
646 		}
647 	}
648 
649 	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
650 
651 	vfp_put_float((s32)d, sd);
652 
653 	return exceptions;
654 }
655 
656 static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
657 {
658 	return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
659 }
660 
661 
662 static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = {
663 	[FEXT_TO_IDX(FEXT_FCPY)]	= vfp_double_fcpy,
664 	[FEXT_TO_IDX(FEXT_FABS)]	= vfp_double_fabs,
665 	[FEXT_TO_IDX(FEXT_FNEG)]	= vfp_double_fneg,
666 	[FEXT_TO_IDX(FEXT_FSQRT)]	= vfp_double_fsqrt,
667 	[FEXT_TO_IDX(FEXT_FCMP)]	= vfp_double_fcmp,
668 	[FEXT_TO_IDX(FEXT_FCMPE)]	= vfp_double_fcmpe,
669 	[FEXT_TO_IDX(FEXT_FCMPZ)]	= vfp_double_fcmpz,
670 	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= vfp_double_fcmpez,
671 	[FEXT_TO_IDX(FEXT_FCVT)]	= vfp_double_fcvts,
672 	[FEXT_TO_IDX(FEXT_FUITO)]	= vfp_double_fuito,
673 	[FEXT_TO_IDX(FEXT_FSITO)]	= vfp_double_fsito,
674 	[FEXT_TO_IDX(FEXT_FTOUI)]	= vfp_double_ftoui,
675 	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= vfp_double_ftouiz,
676 	[FEXT_TO_IDX(FEXT_FTOSI)]	= vfp_double_ftosi,
677 	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= vfp_double_ftosiz,
678 };
679 
680 
681 
682 
683 static u32
684 vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
685 			  struct vfp_double *vdm, u32 fpscr)
686 {
687 	struct vfp_double *vdp;
688 	u32 exceptions = 0;
689 	int tn, tm;
690 
691 	tn = vfp_double_type(vdn);
692 	tm = vfp_double_type(vdm);
693 
694 	if (tn & tm & VFP_INFINITY) {
695 		/*
696 		 * Two infinities.  Are they different signs?
697 		 */
698 		if (vdn->sign ^ vdm->sign) {
699 			/*
700 			 * different signs -> invalid
701 			 */
702 			exceptions = FPSCR_IOC;
703 			vdp = &vfp_double_default_qnan;
704 		} else {
705 			/*
706 			 * same signs -> valid
707 			 */
708 			vdp = vdn;
709 		}
710 	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
711 		/*
712 		 * One infinity and one number -> infinity
713 		 */
714 		vdp = vdn;
715 	} else {
716 		/*
717 		 * 'n' is a NaN of some type
718 		 */
719 		return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
720 	}
721 	*vdd = *vdp;
722 	return exceptions;
723 }
724 
725 static u32
726 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
727 	       struct vfp_double *vdm, u32 fpscr)
728 {
729 	u32 exp_diff;
730 	u64 m_sig;
731 
732 	if (vdn->significand & (1ULL << 63) ||
733 	    vdm->significand & (1ULL << 63)) {
734 		pr_info("VFP: bad FP values in %s\n", __func__);
735 		vfp_double_dump("VDN", vdn);
736 		vfp_double_dump("VDM", vdm);
737 	}
738 
739 	/*
740 	 * Ensure that 'n' is the largest magnitude number.  Note that
741 	 * if 'n' and 'm' have equal exponents, we do not swap them.
742 	 * This ensures that NaN propagation works correctly.
743 	 */
744 	if (vdn->exponent < vdm->exponent) {
745 		struct vfp_double *t = vdn;
746 		vdn = vdm;
747 		vdm = t;
748 	}
749 
750 	/*
751 	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
752 	 * infinity or a NaN here.
753 	 */
754 	if (vdn->exponent == 2047)
755 		return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
756 
757 	/*
758 	 * We have two proper numbers, where 'vdn' is the larger magnitude.
759 	 *
760 	 * Copy 'n' to 'd' before doing the arithmetic.
761 	 */
762 	*vdd = *vdn;
763 
764 	/*
765 	 * Align 'm' with the result.
766 	 */
767 	exp_diff = vdn->exponent - vdm->exponent;
768 	m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
769 
770 	/*
771 	 * If the signs are different, we are really subtracting.
772 	 */
773 	if (vdn->sign ^ vdm->sign) {
774 		m_sig = vdn->significand - m_sig;
775 		if ((s64)m_sig < 0) {
776 			vdd->sign = vfp_sign_negate(vdd->sign);
777 			m_sig = -m_sig;
778 		} else if (m_sig == 0) {
779 			vdd->sign = (fpscr & FPSCR_RMODE_MASK) ==
780 				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
781 		}
782 	} else {
783 		m_sig += vdn->significand;
784 	}
785 	vdd->significand = m_sig;
786 
787 	return 0;
788 }
789 
790 static u32
791 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
792 		    struct vfp_double *vdm, u32 fpscr)
793 {
794 	vfp_double_dump("VDN", vdn);
795 	vfp_double_dump("VDM", vdm);
796 
797 	/*
798 	 * Ensure that 'n' is the largest magnitude number.  Note that
799 	 * if 'n' and 'm' have equal exponents, we do not swap them.
800 	 * This ensures that NaN propagation works correctly.
801 	 */
802 	if (vdn->exponent < vdm->exponent) {
803 		struct vfp_double *t = vdn;
804 		vdn = vdm;
805 		vdm = t;
806 		pr_debug("VFP: swapping M <-> N\n");
807 	}
808 
809 	vdd->sign = vdn->sign ^ vdm->sign;
810 
811 	/*
812 	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
813 	 */
814 	if (vdn->exponent == 2047) {
815 		if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
816 			return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
817 		if ((vdm->exponent | vdm->significand) == 0) {
818 			*vdd = vfp_double_default_qnan;
819 			return FPSCR_IOC;
820 		}
821 		vdd->exponent = vdn->exponent;
822 		vdd->significand = 0;
823 		return 0;
824 	}
825 
826 	/*
827 	 * If 'm' is zero, the result is always zero.  In this case,
828 	 * 'n' may be zero or a number, but it doesn't matter which.
829 	 */
830 	if ((vdm->exponent | vdm->significand) == 0) {
831 		vdd->exponent = 0;
832 		vdd->significand = 0;
833 		return 0;
834 	}
835 
836 	/*
837 	 * We add 2 to the destination exponent for the same reason
838 	 * as the addition case - though this time we have +1 from
839 	 * each input operand.
840 	 */
841 	vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
842 	vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
843 
844 	vfp_double_dump("VDD", vdd);
845 	return 0;
846 }
847 
848 #define NEG_MULTIPLY	(1 << 0)
849 #define NEG_SUBTRACT	(1 << 1)
850 
851 static u32
852 vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
853 {
854 	struct vfp_double vdd, vdp, vdn, vdm;
855 	u32 exceptions;
856 
857 	vfp_double_unpack(&vdn, vfp_get_double(dn));
858 	if (vdn.exponent == 0 && vdn.significand)
859 		vfp_double_normalise_denormal(&vdn);
860 
861 	vfp_double_unpack(&vdm, vfp_get_double(dm));
862 	if (vdm.exponent == 0 && vdm.significand)
863 		vfp_double_normalise_denormal(&vdm);
864 
865 	exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
866 	if (negate & NEG_MULTIPLY)
867 		vdp.sign = vfp_sign_negate(vdp.sign);
868 
869 	vfp_double_unpack(&vdn, vfp_get_double(dd));
870 	if (negate & NEG_SUBTRACT)
871 		vdn.sign = vfp_sign_negate(vdn.sign);
872 
873 	exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
874 
875 	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
876 }
877 
878 /*
879  * Standard operations
880  */
881 
882 /*
883  * sd = sd + (sn * sm)
884  */
885 static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
886 {
887 	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
888 }
889 
890 /*
891  * sd = sd - (sn * sm)
892  */
893 static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
894 {
895 	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
896 }
897 
898 /*
899  * sd = -sd + (sn * sm)
900  */
901 static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
902 {
903 	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
904 }
905 
906 /*
907  * sd = -sd - (sn * sm)
908  */
909 static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
910 {
911 	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
912 }
913 
914 /*
915  * sd = sn * sm
916  */
917 static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
918 {
919 	struct vfp_double vdd, vdn, vdm;
920 	u32 exceptions;
921 
922 	vfp_double_unpack(&vdn, vfp_get_double(dn));
923 	if (vdn.exponent == 0 && vdn.significand)
924 		vfp_double_normalise_denormal(&vdn);
925 
926 	vfp_double_unpack(&vdm, vfp_get_double(dm));
927 	if (vdm.exponent == 0 && vdm.significand)
928 		vfp_double_normalise_denormal(&vdm);
929 
930 	exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
931 	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
932 }
933 
934 /*
935  * sd = -(sn * sm)
936  */
937 static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
938 {
939 	struct vfp_double vdd, vdn, vdm;
940 	u32 exceptions;
941 
942 	vfp_double_unpack(&vdn, vfp_get_double(dn));
943 	if (vdn.exponent == 0 && vdn.significand)
944 		vfp_double_normalise_denormal(&vdn);
945 
946 	vfp_double_unpack(&vdm, vfp_get_double(dm));
947 	if (vdm.exponent == 0 && vdm.significand)
948 		vfp_double_normalise_denormal(&vdm);
949 
950 	exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
951 	vdd.sign = vfp_sign_negate(vdd.sign);
952 
953 	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
954 }
955 
956 /*
957  * sd = sn + sm
958  */
959 static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
960 {
961 	struct vfp_double vdd, vdn, vdm;
962 	u32 exceptions;
963 
964 	vfp_double_unpack(&vdn, vfp_get_double(dn));
965 	if (vdn.exponent == 0 && vdn.significand)
966 		vfp_double_normalise_denormal(&vdn);
967 
968 	vfp_double_unpack(&vdm, vfp_get_double(dm));
969 	if (vdm.exponent == 0 && vdm.significand)
970 		vfp_double_normalise_denormal(&vdm);
971 
972 	exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
973 
974 	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
975 }
976 
977 /*
978  * sd = sn - sm
979  */
980 static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
981 {
982 	struct vfp_double vdd, vdn, vdm;
983 	u32 exceptions;
984 
985 	vfp_double_unpack(&vdn, vfp_get_double(dn));
986 	if (vdn.exponent == 0 && vdn.significand)
987 		vfp_double_normalise_denormal(&vdn);
988 
989 	vfp_double_unpack(&vdm, vfp_get_double(dm));
990 	if (vdm.exponent == 0 && vdm.significand)
991 		vfp_double_normalise_denormal(&vdm);
992 
993 	/*
994 	 * Subtraction is like addition, but with a negated operand.
995 	 */
996 	vdm.sign = vfp_sign_negate(vdm.sign);
997 
998 	exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
999 
1000 	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
1001 }
1002 
1003 /*
1004  * sd = sn / sm
1005  */
1006 static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
1007 {
1008 	struct vfp_double vdd, vdn, vdm;
1009 	u32 exceptions = 0;
1010 	int tm, tn;
1011 
1012 	vfp_double_unpack(&vdn, vfp_get_double(dn));
1013 	vfp_double_unpack(&vdm, vfp_get_double(dm));
1014 
1015 	vdd.sign = vdn.sign ^ vdm.sign;
1016 
1017 	tn = vfp_double_type(&vdn);
1018 	tm = vfp_double_type(&vdm);
1019 
1020 	/*
1021 	 * Is n a NAN?
1022 	 */
1023 	if (tn & VFP_NAN)
1024 		goto vdn_nan;
1025 
1026 	/*
1027 	 * Is m a NAN?
1028 	 */
1029 	if (tm & VFP_NAN)
1030 		goto vdm_nan;
1031 
1032 	/*
1033 	 * If n and m are infinity, the result is invalid
1034 	 * If n and m are zero, the result is invalid
1035 	 */
1036 	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1037 		goto invalid;
1038 
1039 	/*
1040 	 * If n is infinity, the result is infinity
1041 	 */
1042 	if (tn & VFP_INFINITY)
1043 		goto infinity;
1044 
1045 	/*
1046 	 * If m is zero, raise div0 exceptions
1047 	 */
1048 	if (tm & VFP_ZERO)
1049 		goto divzero;
1050 
1051 	/*
1052 	 * If m is infinity, or n is zero, the result is zero
1053 	 */
1054 	if (tm & VFP_INFINITY || tn & VFP_ZERO)
1055 		goto zero;
1056 
1057 	if (tn & VFP_DENORMAL)
1058 		vfp_double_normalise_denormal(&vdn);
1059 	if (tm & VFP_DENORMAL)
1060 		vfp_double_normalise_denormal(&vdm);
1061 
1062 	/*
1063 	 * Ok, we have two numbers, we can perform division.
1064 	 */
1065 	vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
1066 	vdm.significand <<= 1;
1067 	if (vdm.significand <= (2 * vdn.significand)) {
1068 		vdn.significand >>= 1;
1069 		vdd.exponent++;
1070 	}
1071 	vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
1072 	if ((vdd.significand & 0x1ff) <= 2) {
1073 		u64 termh, terml, remh, reml;
1074 		mul64to128(&termh, &terml, vdm.significand, vdd.significand);
1075 		sub128(&remh, &reml, vdn.significand, 0, termh, terml);
1076 		while ((s64)remh < 0) {
1077 			vdd.significand -= 1;
1078 			add128(&remh, &reml, remh, reml, 0, vdm.significand);
1079 		}
1080 		vdd.significand |= (reml != 0);
1081 	}
1082 	return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
1083 
1084  vdn_nan:
1085 	exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
1086  pack:
1087 	vfp_put_double(vfp_double_pack(&vdd), dd);
1088 	return exceptions;
1089 
1090  vdm_nan:
1091 	exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
1092 	goto pack;
1093 
1094  zero:
1095 	vdd.exponent = 0;
1096 	vdd.significand = 0;
1097 	goto pack;
1098 
1099  divzero:
1100 	exceptions = FPSCR_DZC;
1101  infinity:
1102 	vdd.exponent = 2047;
1103 	vdd.significand = 0;
1104 	goto pack;
1105 
1106  invalid:
1107 	vfp_put_double(vfp_double_pack(&vfp_double_default_qnan), dd);
1108 	return FPSCR_IOC;
1109 }
1110 
1111 static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = {
1112 	[FOP_TO_IDX(FOP_FMAC)]	= vfp_double_fmac,
1113 	[FOP_TO_IDX(FOP_FNMAC)]	= vfp_double_fnmac,
1114 	[FOP_TO_IDX(FOP_FMSC)]	= vfp_double_fmsc,
1115 	[FOP_TO_IDX(FOP_FNMSC)]	= vfp_double_fnmsc,
1116 	[FOP_TO_IDX(FOP_FMUL)]	= vfp_double_fmul,
1117 	[FOP_TO_IDX(FOP_FNMUL)]	= vfp_double_fnmul,
1118 	[FOP_TO_IDX(FOP_FADD)]	= vfp_double_fadd,
1119 	[FOP_TO_IDX(FOP_FSUB)]	= vfp_double_fsub,
1120 	[FOP_TO_IDX(FOP_FDIV)]	= vfp_double_fdiv,
1121 };
1122 
1123 #define FREG_BANK(x)	((x) & 0x0c)
1124 #define FREG_IDX(x)	((x) & 3)
1125 
1126 u32 vfp_double_cpdo(u32 inst, u32 fpscr)
1127 {
1128 	u32 op = inst & FOP_MASK;
1129 	u32 exceptions = 0;
1130 	unsigned int dest;
1131 	unsigned int dn = vfp_get_dn(inst);
1132 	unsigned int dm = vfp_get_dm(inst);
1133 	unsigned int vecitr, veclen, vecstride;
1134 	u32 (*fop)(int, int, s32, u32);
1135 
1136 	veclen = fpscr & FPSCR_LENGTH_MASK;
1137 	vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2;
1138 
1139 	/*
1140 	 * fcvtds takes an sN register number as destination, not dN.
1141 	 * It also always operates on scalars.
1142 	 */
1143 	if ((inst & FEXT_MASK) == FEXT_FCVT) {
1144 		veclen = 0;
1145 		dest = vfp_get_sd(inst);
1146 	} else
1147 		dest = vfp_get_dd(inst);
1148 
1149 	/*
1150 	 * If destination bank is zero, vector length is always '1'.
1151 	 * ARM DDI0100F C5.1.3, C5.3.2.
1152 	 */
1153 	if (FREG_BANK(dest) == 0)
1154 		veclen = 0;
1155 
1156 	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1157 		 (veclen >> FPSCR_LENGTH_BIT) + 1);
1158 
1159 	fop = (op == FOP_EXT) ? fop_extfns[FEXT_TO_IDX(inst)] : fop_fns[FOP_TO_IDX(op)];
1160 	if (!fop)
1161 		goto invalid;
1162 
1163 	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1164 		u32 except;
1165 
1166 		if (op == FOP_EXT && (inst & FEXT_MASK) == FEXT_FCVT)
1167 			pr_debug("VFP: itr%d (s%u) = op[%u] (d%u)\n",
1168 				 vecitr >> FPSCR_LENGTH_BIT,
1169 				 dest, dn, dm);
1170 		else if (op == FOP_EXT)
1171 			pr_debug("VFP: itr%d (d%u) = op[%u] (d%u)\n",
1172 				 vecitr >> FPSCR_LENGTH_BIT,
1173 				 dest, dn, dm);
1174 		else
1175 			pr_debug("VFP: itr%d (d%u) = (d%u) op[%u] (d%u)\n",
1176 				 vecitr >> FPSCR_LENGTH_BIT,
1177 				 dest, dn, FOP_TO_IDX(op), dm);
1178 
1179 		except = fop(dest, dn, dm, fpscr);
1180 		pr_debug("VFP: itr%d: exceptions=%08x\n",
1181 			 vecitr >> FPSCR_LENGTH_BIT, except);
1182 
1183 		exceptions |= except;
1184 
1185 		/*
1186 		 * This ensures that comparisons only operate on scalars;
1187 		 * comparisons always return with one FPSCR status bit set.
1188 		 */
1189 		if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
1190 			break;
1191 
1192 		/*
1193 		 * CHECK: It appears to be undefined whether we stop when
1194 		 * we encounter an exception.  We continue.
1195 		 */
1196 
1197 		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 6);
1198 		dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6);
1199 		if (FREG_BANK(dm) != 0)
1200 			dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6);
1201 	}
1202 	return exceptions;
1203 
1204  invalid:
1205 	return ~0;
1206 }
1207