xref: /linux/arch/arm/probes/kprobes/core.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35 
36 #include "../decode-arm.h"
37 #include "../decode-thumb.h"
38 #include "core.h"
39 
40 #define MIN_STACK_SIZE(addr) 				\
41 	min((unsigned long)MAX_STACK_SIZE,		\
42 	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
43 
44 #define flush_insns(addr, size)				\
45 	flush_icache_range((unsigned long)(addr),	\
46 			   (unsigned long)(addr) +	\
47 			   (size))
48 
49 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
50 #define JPROBE_MAGIC_ADDR		0xffffffff
51 
52 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
53 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
54 
55 
56 int __kprobes arch_prepare_kprobe(struct kprobe *p)
57 {
58 	kprobe_opcode_t insn;
59 	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
60 	unsigned long addr = (unsigned long)p->addr;
61 	bool thumb;
62 	kprobe_decode_insn_t *decode_insn;
63 	const union decode_action *actions;
64 	int is;
65 	const struct decode_checker **checkers;
66 
67 	if (in_exception_text(addr))
68 		return -EINVAL;
69 
70 #ifdef CONFIG_THUMB2_KERNEL
71 	thumb = true;
72 	addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
73 	insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
74 	if (is_wide_instruction(insn)) {
75 		u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
76 		insn = __opcode_thumb32_compose(insn, inst2);
77 		decode_insn = thumb32_probes_decode_insn;
78 		actions = kprobes_t32_actions;
79 		checkers = kprobes_t32_checkers;
80 	} else {
81 		decode_insn = thumb16_probes_decode_insn;
82 		actions = kprobes_t16_actions;
83 		checkers = kprobes_t16_checkers;
84 	}
85 #else /* !CONFIG_THUMB2_KERNEL */
86 	thumb = false;
87 	if (addr & 0x3)
88 		return -EINVAL;
89 	insn = __mem_to_opcode_arm(*p->addr);
90 	decode_insn = arm_probes_decode_insn;
91 	actions = kprobes_arm_actions;
92 	checkers = kprobes_arm_checkers;
93 #endif
94 
95 	p->opcode = insn;
96 	p->ainsn.insn = tmp_insn;
97 
98 	switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
99 	case INSN_REJECTED:	/* not supported */
100 		return -EINVAL;
101 
102 	case INSN_GOOD:		/* instruction uses slot */
103 		p->ainsn.insn = get_insn_slot();
104 		if (!p->ainsn.insn)
105 			return -ENOMEM;
106 		for (is = 0; is < MAX_INSN_SIZE; ++is)
107 			p->ainsn.insn[is] = tmp_insn[is];
108 		flush_insns(p->ainsn.insn,
109 				sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
110 		p->ainsn.insn_fn = (probes_insn_fn_t *)
111 					((uintptr_t)p->ainsn.insn | thumb);
112 		break;
113 
114 	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
115 		p->ainsn.insn = NULL;
116 		break;
117 	}
118 
119 	/*
120 	 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
121 	 * 'str r0, [sp, #-68]' should also be prohibited.
122 	 * See __und_svc.
123 	 */
124 	if ((p->ainsn.stack_space < 0) ||
125 			(p->ainsn.stack_space > MAX_STACK_SIZE))
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 
131 void __kprobes arch_arm_kprobe(struct kprobe *p)
132 {
133 	unsigned int brkp;
134 	void *addr;
135 
136 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
137 		/* Remove any Thumb flag */
138 		addr = (void *)((uintptr_t)p->addr & ~1);
139 
140 		if (is_wide_instruction(p->opcode))
141 			brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
142 		else
143 			brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
144 	} else {
145 		kprobe_opcode_t insn = p->opcode;
146 
147 		addr = p->addr;
148 		brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
149 
150 		if (insn >= 0xe0000000)
151 			brkp |= 0xe0000000;  /* Unconditional instruction */
152 		else
153 			brkp |= insn & 0xf0000000;  /* Copy condition from insn */
154 	}
155 
156 	patch_text(addr, brkp);
157 }
158 
159 /*
160  * The actual disarming is done here on each CPU and synchronized using
161  * stop_machine. This synchronization is necessary on SMP to avoid removing
162  * a probe between the moment the 'Undefined Instruction' exception is raised
163  * and the moment the exception handler reads the faulting instruction from
164  * memory. It is also needed to atomically set the two half-words of a 32-bit
165  * Thumb breakpoint.
166  */
167 struct patch {
168 	void *addr;
169 	unsigned int insn;
170 };
171 
172 static int __kprobes_remove_breakpoint(void *data)
173 {
174 	struct patch *p = data;
175 	__patch_text(p->addr, p->insn);
176 	return 0;
177 }
178 
179 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
180 {
181 	struct patch p = {
182 		.addr = addr,
183 		.insn = insn,
184 	};
185 	stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask);
186 }
187 
188 void __kprobes arch_disarm_kprobe(struct kprobe *p)
189 {
190 	kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
191 			p->opcode);
192 }
193 
194 void __kprobes arch_remove_kprobe(struct kprobe *p)
195 {
196 	if (p->ainsn.insn) {
197 		free_insn_slot(p->ainsn.insn, 0);
198 		p->ainsn.insn = NULL;
199 	}
200 }
201 
202 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
203 {
204 	kcb->prev_kprobe.kp = kprobe_running();
205 	kcb->prev_kprobe.status = kcb->kprobe_status;
206 }
207 
208 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
209 {
210 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
211 	kcb->kprobe_status = kcb->prev_kprobe.status;
212 }
213 
214 static void __kprobes set_current_kprobe(struct kprobe *p)
215 {
216 	__this_cpu_write(current_kprobe, p);
217 }
218 
219 static void __kprobes
220 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_THUMB2_KERNEL
223 	regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
224 	if (is_wide_instruction(p->opcode))
225 		regs->ARM_pc += 4;
226 	else
227 		regs->ARM_pc += 2;
228 #else
229 	regs->ARM_pc += 4;
230 #endif
231 }
232 
233 static inline void __kprobes
234 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
235 {
236 	p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
237 }
238 
239 /*
240  * Called with IRQs disabled. IRQs must remain disabled from that point
241  * all the way until processing this kprobe is complete.  The current
242  * kprobes implementation cannot process more than one nested level of
243  * kprobe, and that level is reserved for user kprobe handlers, so we can't
244  * risk encountering a new kprobe in an interrupt handler.
245  */
246 void __kprobes kprobe_handler(struct pt_regs *regs)
247 {
248 	struct kprobe *p, *cur;
249 	struct kprobe_ctlblk *kcb;
250 
251 	kcb = get_kprobe_ctlblk();
252 	cur = kprobe_running();
253 
254 #ifdef CONFIG_THUMB2_KERNEL
255 	/*
256 	 * First look for a probe which was registered using an address with
257 	 * bit 0 set, this is the usual situation for pointers to Thumb code.
258 	 * If not found, fallback to looking for one with bit 0 clear.
259 	 */
260 	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
261 	if (!p)
262 		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
263 
264 #else /* ! CONFIG_THUMB2_KERNEL */
265 	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
266 #endif
267 
268 	if (p) {
269 		if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
270 			/*
271 			 * Probe hit but conditional execution check failed,
272 			 * so just skip the instruction and continue as if
273 			 * nothing had happened.
274 			 * In this case, we can skip recursing check too.
275 			 */
276 			singlestep_skip(p, regs);
277 		} else if (cur) {
278 			/* Kprobe is pending, so we're recursing. */
279 			switch (kcb->kprobe_status) {
280 			case KPROBE_HIT_ACTIVE:
281 			case KPROBE_HIT_SSDONE:
282 			case KPROBE_HIT_SS:
283 				/* A pre- or post-handler probe got us here. */
284 				kprobes_inc_nmissed_count(p);
285 				save_previous_kprobe(kcb);
286 				set_current_kprobe(p);
287 				kcb->kprobe_status = KPROBE_REENTER;
288 				singlestep(p, regs, kcb);
289 				restore_previous_kprobe(kcb);
290 				break;
291 			case KPROBE_REENTER:
292 				/* A nested probe was hit in FIQ, it is a BUG */
293 				pr_warn("Unrecoverable kprobe detected at %p.\n",
294 					p->addr);
295 				/* fall through */
296 			default:
297 				/* impossible cases */
298 				BUG();
299 			}
300 		} else {
301 			/* Probe hit and conditional execution check ok. */
302 			set_current_kprobe(p);
303 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
304 
305 			/*
306 			 * If we have no pre-handler or it returned 0, we
307 			 * continue with normal processing.  If we have a
308 			 * pre-handler and it returned non-zero, it prepped
309 			 * for calling the break_handler below on re-entry,
310 			 * so get out doing nothing more here.
311 			 */
312 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
313 				kcb->kprobe_status = KPROBE_HIT_SS;
314 				singlestep(p, regs, kcb);
315 				if (p->post_handler) {
316 					kcb->kprobe_status = KPROBE_HIT_SSDONE;
317 					p->post_handler(p, regs, 0);
318 				}
319 				reset_current_kprobe();
320 			}
321 		}
322 	} else if (cur) {
323 		/* We probably hit a jprobe.  Call its break handler. */
324 		if (cur->break_handler && cur->break_handler(cur, regs)) {
325 			kcb->kprobe_status = KPROBE_HIT_SS;
326 			singlestep(cur, regs, kcb);
327 			if (cur->post_handler) {
328 				kcb->kprobe_status = KPROBE_HIT_SSDONE;
329 				cur->post_handler(cur, regs, 0);
330 			}
331 		}
332 		reset_current_kprobe();
333 	} else {
334 		/*
335 		 * The probe was removed and a race is in progress.
336 		 * There is nothing we can do about it.  Let's restart
337 		 * the instruction.  By the time we can restart, the
338 		 * real instruction will be there.
339 		 */
340 	}
341 }
342 
343 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
344 {
345 	unsigned long flags;
346 	local_irq_save(flags);
347 	kprobe_handler(regs);
348 	local_irq_restore(flags);
349 	return 0;
350 }
351 
352 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
353 {
354 	struct kprobe *cur = kprobe_running();
355 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
356 
357 	switch (kcb->kprobe_status) {
358 	case KPROBE_HIT_SS:
359 	case KPROBE_REENTER:
360 		/*
361 		 * We are here because the instruction being single
362 		 * stepped caused a page fault. We reset the current
363 		 * kprobe and the PC to point back to the probe address
364 		 * and allow the page fault handler to continue as a
365 		 * normal page fault.
366 		 */
367 		regs->ARM_pc = (long)cur->addr;
368 		if (kcb->kprobe_status == KPROBE_REENTER) {
369 			restore_previous_kprobe(kcb);
370 		} else {
371 			reset_current_kprobe();
372 		}
373 		break;
374 
375 	case KPROBE_HIT_ACTIVE:
376 	case KPROBE_HIT_SSDONE:
377 		/*
378 		 * We increment the nmissed count for accounting,
379 		 * we can also use npre/npostfault count for accounting
380 		 * these specific fault cases.
381 		 */
382 		kprobes_inc_nmissed_count(cur);
383 
384 		/*
385 		 * We come here because instructions in the pre/post
386 		 * handler caused the page_fault, this could happen
387 		 * if handler tries to access user space by
388 		 * copy_from_user(), get_user() etc. Let the
389 		 * user-specified handler try to fix it.
390 		 */
391 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
392 			return 1;
393 		break;
394 
395 	default:
396 		break;
397 	}
398 
399 	return 0;
400 }
401 
402 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
403 				       unsigned long val, void *data)
404 {
405 	/*
406 	 * notify_die() is currently never called on ARM,
407 	 * so this callback is currently empty.
408 	 */
409 	return NOTIFY_DONE;
410 }
411 
412 /*
413  * When a retprobed function returns, trampoline_handler() is called,
414  * calling the kretprobe's handler. We construct a struct pt_regs to
415  * give a view of registers r0-r11 to the user return-handler.  This is
416  * not a complete pt_regs structure, but that should be plenty sufficient
417  * for kretprobe handlers which should normally be interested in r0 only
418  * anyway.
419  */
420 void __naked __kprobes kretprobe_trampoline(void)
421 {
422 	__asm__ __volatile__ (
423 		"stmdb	sp!, {r0 - r11}		\n\t"
424 		"mov	r0, sp			\n\t"
425 		"bl	trampoline_handler	\n\t"
426 		"mov	lr, r0			\n\t"
427 		"ldmia	sp!, {r0 - r11}		\n\t"
428 #ifdef CONFIG_THUMB2_KERNEL
429 		"bx	lr			\n\t"
430 #else
431 		"mov	pc, lr			\n\t"
432 #endif
433 		: : : "memory");
434 }
435 
436 /* Called from kretprobe_trampoline */
437 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
438 {
439 	struct kretprobe_instance *ri = NULL;
440 	struct hlist_head *head, empty_rp;
441 	struct hlist_node *tmp;
442 	unsigned long flags, orig_ret_address = 0;
443 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
444 	kprobe_opcode_t *correct_ret_addr = NULL;
445 
446 	INIT_HLIST_HEAD(&empty_rp);
447 	kretprobe_hash_lock(current, &head, &flags);
448 
449 	/*
450 	 * It is possible to have multiple instances associated with a given
451 	 * task either because multiple functions in the call path have
452 	 * a return probe installed on them, and/or more than one return
453 	 * probe was registered for a target function.
454 	 *
455 	 * We can handle this because:
456 	 *     - instances are always inserted at the head of the list
457 	 *     - when multiple return probes are registered for the same
458 	 *       function, the first instance's ret_addr will point to the
459 	 *       real return address, and all the rest will point to
460 	 *       kretprobe_trampoline
461 	 */
462 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
463 		if (ri->task != current)
464 			/* another task is sharing our hash bucket */
465 			continue;
466 
467 		orig_ret_address = (unsigned long)ri->ret_addr;
468 
469 		if (orig_ret_address != trampoline_address)
470 			/*
471 			 * This is the real return address. Any other
472 			 * instances associated with this task are for
473 			 * other calls deeper on the call stack
474 			 */
475 			break;
476 	}
477 
478 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
479 
480 	correct_ret_addr = ri->ret_addr;
481 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
482 		if (ri->task != current)
483 			/* another task is sharing our hash bucket */
484 			continue;
485 
486 		orig_ret_address = (unsigned long)ri->ret_addr;
487 		if (ri->rp && ri->rp->handler) {
488 			__this_cpu_write(current_kprobe, &ri->rp->kp);
489 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
490 			ri->ret_addr = correct_ret_addr;
491 			ri->rp->handler(ri, regs);
492 			__this_cpu_write(current_kprobe, NULL);
493 		}
494 
495 		recycle_rp_inst(ri, &empty_rp);
496 
497 		if (orig_ret_address != trampoline_address)
498 			/*
499 			 * This is the real return address. Any other
500 			 * instances associated with this task are for
501 			 * other calls deeper on the call stack
502 			 */
503 			break;
504 	}
505 
506 	kretprobe_hash_unlock(current, &flags);
507 
508 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
509 		hlist_del(&ri->hlist);
510 		kfree(ri);
511 	}
512 
513 	return (void *)orig_ret_address;
514 }
515 
516 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
517 				      struct pt_regs *regs)
518 {
519 	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
520 
521 	/* Replace the return addr with trampoline addr. */
522 	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
523 }
524 
525 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
526 {
527 	struct jprobe *jp = container_of(p, struct jprobe, kp);
528 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
529 	long sp_addr = regs->ARM_sp;
530 	long cpsr;
531 
532 	kcb->jprobe_saved_regs = *regs;
533 	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
534 	regs->ARM_pc = (long)jp->entry;
535 
536 	cpsr = regs->ARM_cpsr | PSR_I_BIT;
537 #ifdef CONFIG_THUMB2_KERNEL
538 	/* Set correct Thumb state in cpsr */
539 	if (regs->ARM_pc & 1)
540 		cpsr |= PSR_T_BIT;
541 	else
542 		cpsr &= ~PSR_T_BIT;
543 #endif
544 	regs->ARM_cpsr = cpsr;
545 
546 	preempt_disable();
547 	return 1;
548 }
549 
550 void __kprobes jprobe_return(void)
551 {
552 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
553 
554 	__asm__ __volatile__ (
555 		/*
556 		 * Setup an empty pt_regs. Fill SP and PC fields as
557 		 * they're needed by longjmp_break_handler.
558 		 *
559 		 * We allocate some slack between the original SP and start of
560 		 * our fabricated regs. To be precise we want to have worst case
561 		 * covered which is STMFD with all 16 regs so we allocate 2 *
562 		 * sizeof(struct_pt_regs)).
563 		 *
564 		 * This is to prevent any simulated instruction from writing
565 		 * over the regs when they are accessing the stack.
566 		 */
567 #ifdef CONFIG_THUMB2_KERNEL
568 		"sub    r0, %0, %1		\n\t"
569 		"mov    sp, r0			\n\t"
570 #else
571 		"sub    sp, %0, %1		\n\t"
572 #endif
573 		"ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
574 		"str    %0, [sp, %2]		\n\t"
575 		"str    r0, [sp, %3]		\n\t"
576 		"mov    r0, sp			\n\t"
577 		"bl     kprobe_handler		\n\t"
578 
579 		/*
580 		 * Return to the context saved by setjmp_pre_handler
581 		 * and restored by longjmp_break_handler.
582 		 */
583 #ifdef CONFIG_THUMB2_KERNEL
584 		"ldr	lr, [sp, %2]		\n\t" /* lr = saved sp */
585 		"ldrd	r0, r1, [sp, %5]	\n\t" /* r0,r1 = saved lr,pc */
586 		"ldr	r2, [sp, %4]		\n\t" /* r2 = saved psr */
587 		"stmdb	lr!, {r0, r1, r2}	\n\t" /* push saved lr and */
588 						      /* rfe context */
589 		"ldmia	sp, {r0 - r12}		\n\t"
590 		"mov	sp, lr			\n\t"
591 		"ldr	lr, [sp], #4		\n\t"
592 		"rfeia	sp!			\n\t"
593 #else
594 		"ldr	r0, [sp, %4]		\n\t"
595 		"msr	cpsr_cxsf, r0		\n\t"
596 		"ldmia	sp, {r0 - pc}		\n\t"
597 #endif
598 		:
599 		: "r" (kcb->jprobe_saved_regs.ARM_sp),
600 		  "I" (sizeof(struct pt_regs) * 2),
601 		  "J" (offsetof(struct pt_regs, ARM_sp)),
602 		  "J" (offsetof(struct pt_regs, ARM_pc)),
603 		  "J" (offsetof(struct pt_regs, ARM_cpsr)),
604 		  "J" (offsetof(struct pt_regs, ARM_lr))
605 		: "memory", "cc");
606 }
607 
608 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
609 {
610 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
611 	long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
612 	long orig_sp = regs->ARM_sp;
613 	struct jprobe *jp = container_of(p, struct jprobe, kp);
614 
615 	if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
616 		if (orig_sp != stack_addr) {
617 			struct pt_regs *saved_regs =
618 				(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
619 			printk("current sp %lx does not match saved sp %lx\n",
620 			       orig_sp, stack_addr);
621 			printk("Saved registers for jprobe %p\n", jp);
622 			show_regs(saved_regs);
623 			printk("Current registers\n");
624 			show_regs(regs);
625 			BUG();
626 		}
627 		*regs = kcb->jprobe_saved_regs;
628 		memcpy((void *)stack_addr, kcb->jprobes_stack,
629 		       MIN_STACK_SIZE(stack_addr));
630 		preempt_enable_no_resched();
631 		return 1;
632 	}
633 	return 0;
634 }
635 
636 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
637 {
638 	return 0;
639 }
640 
641 #ifdef CONFIG_THUMB2_KERNEL
642 
643 static struct undef_hook kprobes_thumb16_break_hook = {
644 	.instr_mask	= 0xffff,
645 	.instr_val	= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
646 	.cpsr_mask	= MODE_MASK,
647 	.cpsr_val	= SVC_MODE,
648 	.fn		= kprobe_trap_handler,
649 };
650 
651 static struct undef_hook kprobes_thumb32_break_hook = {
652 	.instr_mask	= 0xffffffff,
653 	.instr_val	= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
654 	.cpsr_mask	= MODE_MASK,
655 	.cpsr_val	= SVC_MODE,
656 	.fn		= kprobe_trap_handler,
657 };
658 
659 #else  /* !CONFIG_THUMB2_KERNEL */
660 
661 static struct undef_hook kprobes_arm_break_hook = {
662 	.instr_mask	= 0x0fffffff,
663 	.instr_val	= KPROBE_ARM_BREAKPOINT_INSTRUCTION,
664 	.cpsr_mask	= MODE_MASK,
665 	.cpsr_val	= SVC_MODE,
666 	.fn		= kprobe_trap_handler,
667 };
668 
669 #endif /* !CONFIG_THUMB2_KERNEL */
670 
671 int __init arch_init_kprobes()
672 {
673 	arm_probes_decode_init();
674 #ifdef CONFIG_THUMB2_KERNEL
675 	register_undef_hook(&kprobes_thumb16_break_hook);
676 	register_undef_hook(&kprobes_thumb32_break_hook);
677 #else
678 	register_undef_hook(&kprobes_arm_break_hook);
679 #endif
680 	return 0;
681 }
682