1 /* 2 * arch/arm/kernel/kprobes.c 3 * 4 * Kprobes on ARM 5 * 6 * Abhishek Sagar <sagar.abhishek@gmail.com> 7 * Copyright (C) 2006, 2007 Motorola Inc. 8 * 9 * Nicolas Pitre <nico@marvell.com> 10 * Copyright (C) 2007 Marvell Ltd. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kprobes.h> 24 #include <linux/module.h> 25 #include <linux/slab.h> 26 #include <linux/stop_machine.h> 27 #include <linux/sched/debug.h> 28 #include <linux/stringify.h> 29 #include <asm/traps.h> 30 #include <asm/opcodes.h> 31 #include <asm/cacheflush.h> 32 #include <linux/percpu.h> 33 #include <linux/bug.h> 34 #include <asm/patch.h> 35 36 #include "../decode-arm.h" 37 #include "../decode-thumb.h" 38 #include "core.h" 39 40 #define MIN_STACK_SIZE(addr) \ 41 min((unsigned long)MAX_STACK_SIZE, \ 42 (unsigned long)current_thread_info() + THREAD_START_SP - (addr)) 43 44 #define flush_insns(addr, size) \ 45 flush_icache_range((unsigned long)(addr), \ 46 (unsigned long)(addr) + \ 47 (size)) 48 49 /* Used as a marker in ARM_pc to note when we're in a jprobe. */ 50 #define JPROBE_MAGIC_ADDR 0xffffffff 51 52 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 53 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 54 55 56 int __kprobes arch_prepare_kprobe(struct kprobe *p) 57 { 58 kprobe_opcode_t insn; 59 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE]; 60 unsigned long addr = (unsigned long)p->addr; 61 bool thumb; 62 kprobe_decode_insn_t *decode_insn; 63 const union decode_action *actions; 64 int is; 65 const struct decode_checker **checkers; 66 67 if (in_exception_text(addr)) 68 return -EINVAL; 69 70 #ifdef CONFIG_THUMB2_KERNEL 71 thumb = true; 72 addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */ 73 insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]); 74 if (is_wide_instruction(insn)) { 75 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]); 76 insn = __opcode_thumb32_compose(insn, inst2); 77 decode_insn = thumb32_probes_decode_insn; 78 actions = kprobes_t32_actions; 79 checkers = kprobes_t32_checkers; 80 } else { 81 decode_insn = thumb16_probes_decode_insn; 82 actions = kprobes_t16_actions; 83 checkers = kprobes_t16_checkers; 84 } 85 #else /* !CONFIG_THUMB2_KERNEL */ 86 thumb = false; 87 if (addr & 0x3) 88 return -EINVAL; 89 insn = __mem_to_opcode_arm(*p->addr); 90 decode_insn = arm_probes_decode_insn; 91 actions = kprobes_arm_actions; 92 checkers = kprobes_arm_checkers; 93 #endif 94 95 p->opcode = insn; 96 p->ainsn.insn = tmp_insn; 97 98 switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) { 99 case INSN_REJECTED: /* not supported */ 100 return -EINVAL; 101 102 case INSN_GOOD: /* instruction uses slot */ 103 p->ainsn.insn = get_insn_slot(); 104 if (!p->ainsn.insn) 105 return -ENOMEM; 106 for (is = 0; is < MAX_INSN_SIZE; ++is) 107 p->ainsn.insn[is] = tmp_insn[is]; 108 flush_insns(p->ainsn.insn, 109 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE); 110 p->ainsn.insn_fn = (probes_insn_fn_t *) 111 ((uintptr_t)p->ainsn.insn | thumb); 112 break; 113 114 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */ 115 p->ainsn.insn = NULL; 116 break; 117 } 118 119 /* 120 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes 121 * 'str r0, [sp, #-68]' should also be prohibited. 122 * See __und_svc. 123 */ 124 if ((p->ainsn.stack_space < 0) || 125 (p->ainsn.stack_space > MAX_STACK_SIZE)) 126 return -EINVAL; 127 128 return 0; 129 } 130 131 void __kprobes arch_arm_kprobe(struct kprobe *p) 132 { 133 unsigned int brkp; 134 void *addr; 135 136 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 137 /* Remove any Thumb flag */ 138 addr = (void *)((uintptr_t)p->addr & ~1); 139 140 if (is_wide_instruction(p->opcode)) 141 brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION; 142 else 143 brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION; 144 } else { 145 kprobe_opcode_t insn = p->opcode; 146 147 addr = p->addr; 148 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION; 149 150 if (insn >= 0xe0000000) 151 brkp |= 0xe0000000; /* Unconditional instruction */ 152 else 153 brkp |= insn & 0xf0000000; /* Copy condition from insn */ 154 } 155 156 patch_text(addr, brkp); 157 } 158 159 /* 160 * The actual disarming is done here on each CPU and synchronized using 161 * stop_machine. This synchronization is necessary on SMP to avoid removing 162 * a probe between the moment the 'Undefined Instruction' exception is raised 163 * and the moment the exception handler reads the faulting instruction from 164 * memory. It is also needed to atomically set the two half-words of a 32-bit 165 * Thumb breakpoint. 166 */ 167 struct patch { 168 void *addr; 169 unsigned int insn; 170 }; 171 172 static int __kprobes_remove_breakpoint(void *data) 173 { 174 struct patch *p = data; 175 __patch_text(p->addr, p->insn); 176 return 0; 177 } 178 179 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn) 180 { 181 struct patch p = { 182 .addr = addr, 183 .insn = insn, 184 }; 185 stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask); 186 } 187 188 void __kprobes arch_disarm_kprobe(struct kprobe *p) 189 { 190 kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1), 191 p->opcode); 192 } 193 194 void __kprobes arch_remove_kprobe(struct kprobe *p) 195 { 196 if (p->ainsn.insn) { 197 free_insn_slot(p->ainsn.insn, 0); 198 p->ainsn.insn = NULL; 199 } 200 } 201 202 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 203 { 204 kcb->prev_kprobe.kp = kprobe_running(); 205 kcb->prev_kprobe.status = kcb->kprobe_status; 206 } 207 208 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 209 { 210 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 211 kcb->kprobe_status = kcb->prev_kprobe.status; 212 } 213 214 static void __kprobes set_current_kprobe(struct kprobe *p) 215 { 216 __this_cpu_write(current_kprobe, p); 217 } 218 219 static void __kprobes 220 singlestep_skip(struct kprobe *p, struct pt_regs *regs) 221 { 222 #ifdef CONFIG_THUMB2_KERNEL 223 regs->ARM_cpsr = it_advance(regs->ARM_cpsr); 224 if (is_wide_instruction(p->opcode)) 225 regs->ARM_pc += 4; 226 else 227 regs->ARM_pc += 2; 228 #else 229 regs->ARM_pc += 4; 230 #endif 231 } 232 233 static inline void __kprobes 234 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) 235 { 236 p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs); 237 } 238 239 /* 240 * Called with IRQs disabled. IRQs must remain disabled from that point 241 * all the way until processing this kprobe is complete. The current 242 * kprobes implementation cannot process more than one nested level of 243 * kprobe, and that level is reserved for user kprobe handlers, so we can't 244 * risk encountering a new kprobe in an interrupt handler. 245 */ 246 void __kprobes kprobe_handler(struct pt_regs *regs) 247 { 248 struct kprobe *p, *cur; 249 struct kprobe_ctlblk *kcb; 250 251 kcb = get_kprobe_ctlblk(); 252 cur = kprobe_running(); 253 254 #ifdef CONFIG_THUMB2_KERNEL 255 /* 256 * First look for a probe which was registered using an address with 257 * bit 0 set, this is the usual situation for pointers to Thumb code. 258 * If not found, fallback to looking for one with bit 0 clear. 259 */ 260 p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1)); 261 if (!p) 262 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); 263 264 #else /* ! CONFIG_THUMB2_KERNEL */ 265 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); 266 #endif 267 268 if (p) { 269 if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) { 270 /* 271 * Probe hit but conditional execution check failed, 272 * so just skip the instruction and continue as if 273 * nothing had happened. 274 * In this case, we can skip recursing check too. 275 */ 276 singlestep_skip(p, regs); 277 } else if (cur) { 278 /* Kprobe is pending, so we're recursing. */ 279 switch (kcb->kprobe_status) { 280 case KPROBE_HIT_ACTIVE: 281 case KPROBE_HIT_SSDONE: 282 case KPROBE_HIT_SS: 283 /* A pre- or post-handler probe got us here. */ 284 kprobes_inc_nmissed_count(p); 285 save_previous_kprobe(kcb); 286 set_current_kprobe(p); 287 kcb->kprobe_status = KPROBE_REENTER; 288 singlestep(p, regs, kcb); 289 restore_previous_kprobe(kcb); 290 break; 291 case KPROBE_REENTER: 292 /* A nested probe was hit in FIQ, it is a BUG */ 293 pr_warn("Unrecoverable kprobe detected at %p.\n", 294 p->addr); 295 /* fall through */ 296 default: 297 /* impossible cases */ 298 BUG(); 299 } 300 } else { 301 /* Probe hit and conditional execution check ok. */ 302 set_current_kprobe(p); 303 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 304 305 /* 306 * If we have no pre-handler or it returned 0, we 307 * continue with normal processing. If we have a 308 * pre-handler and it returned non-zero, it prepped 309 * for calling the break_handler below on re-entry, 310 * so get out doing nothing more here. 311 */ 312 if (!p->pre_handler || !p->pre_handler(p, regs)) { 313 kcb->kprobe_status = KPROBE_HIT_SS; 314 singlestep(p, regs, kcb); 315 if (p->post_handler) { 316 kcb->kprobe_status = KPROBE_HIT_SSDONE; 317 p->post_handler(p, regs, 0); 318 } 319 reset_current_kprobe(); 320 } 321 } 322 } else if (cur) { 323 /* We probably hit a jprobe. Call its break handler. */ 324 if (cur->break_handler && cur->break_handler(cur, regs)) { 325 kcb->kprobe_status = KPROBE_HIT_SS; 326 singlestep(cur, regs, kcb); 327 if (cur->post_handler) { 328 kcb->kprobe_status = KPROBE_HIT_SSDONE; 329 cur->post_handler(cur, regs, 0); 330 } 331 } 332 reset_current_kprobe(); 333 } else { 334 /* 335 * The probe was removed and a race is in progress. 336 * There is nothing we can do about it. Let's restart 337 * the instruction. By the time we can restart, the 338 * real instruction will be there. 339 */ 340 } 341 } 342 343 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr) 344 { 345 unsigned long flags; 346 local_irq_save(flags); 347 kprobe_handler(regs); 348 local_irq_restore(flags); 349 return 0; 350 } 351 352 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 353 { 354 struct kprobe *cur = kprobe_running(); 355 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 356 357 switch (kcb->kprobe_status) { 358 case KPROBE_HIT_SS: 359 case KPROBE_REENTER: 360 /* 361 * We are here because the instruction being single 362 * stepped caused a page fault. We reset the current 363 * kprobe and the PC to point back to the probe address 364 * and allow the page fault handler to continue as a 365 * normal page fault. 366 */ 367 regs->ARM_pc = (long)cur->addr; 368 if (kcb->kprobe_status == KPROBE_REENTER) { 369 restore_previous_kprobe(kcb); 370 } else { 371 reset_current_kprobe(); 372 } 373 break; 374 375 case KPROBE_HIT_ACTIVE: 376 case KPROBE_HIT_SSDONE: 377 /* 378 * We increment the nmissed count for accounting, 379 * we can also use npre/npostfault count for accounting 380 * these specific fault cases. 381 */ 382 kprobes_inc_nmissed_count(cur); 383 384 /* 385 * We come here because instructions in the pre/post 386 * handler caused the page_fault, this could happen 387 * if handler tries to access user space by 388 * copy_from_user(), get_user() etc. Let the 389 * user-specified handler try to fix it. 390 */ 391 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 392 return 1; 393 break; 394 395 default: 396 break; 397 } 398 399 return 0; 400 } 401 402 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 403 unsigned long val, void *data) 404 { 405 /* 406 * notify_die() is currently never called on ARM, 407 * so this callback is currently empty. 408 */ 409 return NOTIFY_DONE; 410 } 411 412 /* 413 * When a retprobed function returns, trampoline_handler() is called, 414 * calling the kretprobe's handler. We construct a struct pt_regs to 415 * give a view of registers r0-r11 to the user return-handler. This is 416 * not a complete pt_regs structure, but that should be plenty sufficient 417 * for kretprobe handlers which should normally be interested in r0 only 418 * anyway. 419 */ 420 void __naked __kprobes kretprobe_trampoline(void) 421 { 422 __asm__ __volatile__ ( 423 "stmdb sp!, {r0 - r11} \n\t" 424 "mov r0, sp \n\t" 425 "bl trampoline_handler \n\t" 426 "mov lr, r0 \n\t" 427 "ldmia sp!, {r0 - r11} \n\t" 428 #ifdef CONFIG_THUMB2_KERNEL 429 "bx lr \n\t" 430 #else 431 "mov pc, lr \n\t" 432 #endif 433 : : : "memory"); 434 } 435 436 /* Called from kretprobe_trampoline */ 437 static __used __kprobes void *trampoline_handler(struct pt_regs *regs) 438 { 439 struct kretprobe_instance *ri = NULL; 440 struct hlist_head *head, empty_rp; 441 struct hlist_node *tmp; 442 unsigned long flags, orig_ret_address = 0; 443 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 444 kprobe_opcode_t *correct_ret_addr = NULL; 445 446 INIT_HLIST_HEAD(&empty_rp); 447 kretprobe_hash_lock(current, &head, &flags); 448 449 /* 450 * It is possible to have multiple instances associated with a given 451 * task either because multiple functions in the call path have 452 * a return probe installed on them, and/or more than one return 453 * probe was registered for a target function. 454 * 455 * We can handle this because: 456 * - instances are always inserted at the head of the list 457 * - when multiple return probes are registered for the same 458 * function, the first instance's ret_addr will point to the 459 * real return address, and all the rest will point to 460 * kretprobe_trampoline 461 */ 462 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 463 if (ri->task != current) 464 /* another task is sharing our hash bucket */ 465 continue; 466 467 orig_ret_address = (unsigned long)ri->ret_addr; 468 469 if (orig_ret_address != trampoline_address) 470 /* 471 * This is the real return address. Any other 472 * instances associated with this task are for 473 * other calls deeper on the call stack 474 */ 475 break; 476 } 477 478 kretprobe_assert(ri, orig_ret_address, trampoline_address); 479 480 correct_ret_addr = ri->ret_addr; 481 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 482 if (ri->task != current) 483 /* another task is sharing our hash bucket */ 484 continue; 485 486 orig_ret_address = (unsigned long)ri->ret_addr; 487 if (ri->rp && ri->rp->handler) { 488 __this_cpu_write(current_kprobe, &ri->rp->kp); 489 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 490 ri->ret_addr = correct_ret_addr; 491 ri->rp->handler(ri, regs); 492 __this_cpu_write(current_kprobe, NULL); 493 } 494 495 recycle_rp_inst(ri, &empty_rp); 496 497 if (orig_ret_address != trampoline_address) 498 /* 499 * This is the real return address. Any other 500 * instances associated with this task are for 501 * other calls deeper on the call stack 502 */ 503 break; 504 } 505 506 kretprobe_hash_unlock(current, &flags); 507 508 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 509 hlist_del(&ri->hlist); 510 kfree(ri); 511 } 512 513 return (void *)orig_ret_address; 514 } 515 516 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 517 struct pt_regs *regs) 518 { 519 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr; 520 521 /* Replace the return addr with trampoline addr. */ 522 regs->ARM_lr = (unsigned long)&kretprobe_trampoline; 523 } 524 525 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 526 { 527 struct jprobe *jp = container_of(p, struct jprobe, kp); 528 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 529 long sp_addr = regs->ARM_sp; 530 long cpsr; 531 532 kcb->jprobe_saved_regs = *regs; 533 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr)); 534 regs->ARM_pc = (long)jp->entry; 535 536 cpsr = regs->ARM_cpsr | PSR_I_BIT; 537 #ifdef CONFIG_THUMB2_KERNEL 538 /* Set correct Thumb state in cpsr */ 539 if (regs->ARM_pc & 1) 540 cpsr |= PSR_T_BIT; 541 else 542 cpsr &= ~PSR_T_BIT; 543 #endif 544 regs->ARM_cpsr = cpsr; 545 546 preempt_disable(); 547 return 1; 548 } 549 550 void __kprobes jprobe_return(void) 551 { 552 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 553 554 __asm__ __volatile__ ( 555 /* 556 * Setup an empty pt_regs. Fill SP and PC fields as 557 * they're needed by longjmp_break_handler. 558 * 559 * We allocate some slack between the original SP and start of 560 * our fabricated regs. To be precise we want to have worst case 561 * covered which is STMFD with all 16 regs so we allocate 2 * 562 * sizeof(struct_pt_regs)). 563 * 564 * This is to prevent any simulated instruction from writing 565 * over the regs when they are accessing the stack. 566 */ 567 #ifdef CONFIG_THUMB2_KERNEL 568 "sub r0, %0, %1 \n\t" 569 "mov sp, r0 \n\t" 570 #else 571 "sub sp, %0, %1 \n\t" 572 #endif 573 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t" 574 "str %0, [sp, %2] \n\t" 575 "str r0, [sp, %3] \n\t" 576 "mov r0, sp \n\t" 577 "bl kprobe_handler \n\t" 578 579 /* 580 * Return to the context saved by setjmp_pre_handler 581 * and restored by longjmp_break_handler. 582 */ 583 #ifdef CONFIG_THUMB2_KERNEL 584 "ldr lr, [sp, %2] \n\t" /* lr = saved sp */ 585 "ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */ 586 "ldr r2, [sp, %4] \n\t" /* r2 = saved psr */ 587 "stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */ 588 /* rfe context */ 589 "ldmia sp, {r0 - r12} \n\t" 590 "mov sp, lr \n\t" 591 "ldr lr, [sp], #4 \n\t" 592 "rfeia sp! \n\t" 593 #else 594 "ldr r0, [sp, %4] \n\t" 595 "msr cpsr_cxsf, r0 \n\t" 596 "ldmia sp, {r0 - pc} \n\t" 597 #endif 598 : 599 : "r" (kcb->jprobe_saved_regs.ARM_sp), 600 "I" (sizeof(struct pt_regs) * 2), 601 "J" (offsetof(struct pt_regs, ARM_sp)), 602 "J" (offsetof(struct pt_regs, ARM_pc)), 603 "J" (offsetof(struct pt_regs, ARM_cpsr)), 604 "J" (offsetof(struct pt_regs, ARM_lr)) 605 : "memory", "cc"); 606 } 607 608 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 609 { 610 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 611 long stack_addr = kcb->jprobe_saved_regs.ARM_sp; 612 long orig_sp = regs->ARM_sp; 613 struct jprobe *jp = container_of(p, struct jprobe, kp); 614 615 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) { 616 if (orig_sp != stack_addr) { 617 struct pt_regs *saved_regs = 618 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp; 619 printk("current sp %lx does not match saved sp %lx\n", 620 orig_sp, stack_addr); 621 printk("Saved registers for jprobe %p\n", jp); 622 show_regs(saved_regs); 623 printk("Current registers\n"); 624 show_regs(regs); 625 BUG(); 626 } 627 *regs = kcb->jprobe_saved_regs; 628 memcpy((void *)stack_addr, kcb->jprobes_stack, 629 MIN_STACK_SIZE(stack_addr)); 630 preempt_enable_no_resched(); 631 return 1; 632 } 633 return 0; 634 } 635 636 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 637 { 638 return 0; 639 } 640 641 #ifdef CONFIG_THUMB2_KERNEL 642 643 static struct undef_hook kprobes_thumb16_break_hook = { 644 .instr_mask = 0xffff, 645 .instr_val = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION, 646 .cpsr_mask = MODE_MASK, 647 .cpsr_val = SVC_MODE, 648 .fn = kprobe_trap_handler, 649 }; 650 651 static struct undef_hook kprobes_thumb32_break_hook = { 652 .instr_mask = 0xffffffff, 653 .instr_val = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION, 654 .cpsr_mask = MODE_MASK, 655 .cpsr_val = SVC_MODE, 656 .fn = kprobe_trap_handler, 657 }; 658 659 #else /* !CONFIG_THUMB2_KERNEL */ 660 661 static struct undef_hook kprobes_arm_break_hook = { 662 .instr_mask = 0x0fffffff, 663 .instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION, 664 .cpsr_mask = MODE_MASK, 665 .cpsr_val = SVC_MODE, 666 .fn = kprobe_trap_handler, 667 }; 668 669 #endif /* !CONFIG_THUMB2_KERNEL */ 670 671 int __init arch_init_kprobes() 672 { 673 arm_probes_decode_init(); 674 #ifdef CONFIG_THUMB2_KERNEL 675 register_undef_hook(&kprobes_thumb16_break_hook); 676 register_undef_hook(&kprobes_thumb32_break_hook); 677 #else 678 register_undef_hook(&kprobes_arm_break_hook); 679 #endif 680 return 0; 681 } 682