xref: /linux/arch/arm/probes/kprobes/core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/opcodes.h>
30 #include <asm/cacheflush.h>
31 #include <linux/percpu.h>
32 #include <linux/bug.h>
33 #include <asm/patch.h>
34 
35 #include "../decode-arm.h"
36 #include "../decode-thumb.h"
37 #include "core.h"
38 
39 #define MIN_STACK_SIZE(addr) 				\
40 	min((unsigned long)MAX_STACK_SIZE,		\
41 	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
42 
43 #define flush_insns(addr, size)				\
44 	flush_icache_range((unsigned long)(addr),	\
45 			   (unsigned long)(addr) +	\
46 			   (size))
47 
48 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
49 #define JPROBE_MAGIC_ADDR		0xffffffff
50 
51 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
52 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
53 
54 
55 int __kprobes arch_prepare_kprobe(struct kprobe *p)
56 {
57 	kprobe_opcode_t insn;
58 	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
59 	unsigned long addr = (unsigned long)p->addr;
60 	bool thumb;
61 	kprobe_decode_insn_t *decode_insn;
62 	const union decode_action *actions;
63 	int is;
64 	const struct decode_checker **checkers;
65 
66 	if (in_exception_text(addr))
67 		return -EINVAL;
68 
69 #ifdef CONFIG_THUMB2_KERNEL
70 	thumb = true;
71 	addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
72 	insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
73 	if (is_wide_instruction(insn)) {
74 		u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
75 		insn = __opcode_thumb32_compose(insn, inst2);
76 		decode_insn = thumb32_probes_decode_insn;
77 		actions = kprobes_t32_actions;
78 		checkers = kprobes_t32_checkers;
79 	} else {
80 		decode_insn = thumb16_probes_decode_insn;
81 		actions = kprobes_t16_actions;
82 		checkers = kprobes_t16_checkers;
83 	}
84 #else /* !CONFIG_THUMB2_KERNEL */
85 	thumb = false;
86 	if (addr & 0x3)
87 		return -EINVAL;
88 	insn = __mem_to_opcode_arm(*p->addr);
89 	decode_insn = arm_probes_decode_insn;
90 	actions = kprobes_arm_actions;
91 	checkers = kprobes_arm_checkers;
92 #endif
93 
94 	p->opcode = insn;
95 	p->ainsn.insn = tmp_insn;
96 
97 	switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
98 	case INSN_REJECTED:	/* not supported */
99 		return -EINVAL;
100 
101 	case INSN_GOOD:		/* instruction uses slot */
102 		p->ainsn.insn = get_insn_slot();
103 		if (!p->ainsn.insn)
104 			return -ENOMEM;
105 		for (is = 0; is < MAX_INSN_SIZE; ++is)
106 			p->ainsn.insn[is] = tmp_insn[is];
107 		flush_insns(p->ainsn.insn,
108 				sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
109 		p->ainsn.insn_fn = (probes_insn_fn_t *)
110 					((uintptr_t)p->ainsn.insn | thumb);
111 		break;
112 
113 	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
114 		p->ainsn.insn = NULL;
115 		break;
116 	}
117 
118 	/*
119 	 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
120 	 * 'str r0, [sp, #-68]' should also be prohibited.
121 	 * See __und_svc.
122 	 */
123 	if ((p->ainsn.stack_space < 0) ||
124 			(p->ainsn.stack_space > MAX_STACK_SIZE))
125 		return -EINVAL;
126 
127 	return 0;
128 }
129 
130 void __kprobes arch_arm_kprobe(struct kprobe *p)
131 {
132 	unsigned int brkp;
133 	void *addr;
134 
135 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
136 		/* Remove any Thumb flag */
137 		addr = (void *)((uintptr_t)p->addr & ~1);
138 
139 		if (is_wide_instruction(p->opcode))
140 			brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
141 		else
142 			brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
143 	} else {
144 		kprobe_opcode_t insn = p->opcode;
145 
146 		addr = p->addr;
147 		brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
148 
149 		if (insn >= 0xe0000000)
150 			brkp |= 0xe0000000;  /* Unconditional instruction */
151 		else
152 			brkp |= insn & 0xf0000000;  /* Copy condition from insn */
153 	}
154 
155 	patch_text(addr, brkp);
156 }
157 
158 /*
159  * The actual disarming is done here on each CPU and synchronized using
160  * stop_machine. This synchronization is necessary on SMP to avoid removing
161  * a probe between the moment the 'Undefined Instruction' exception is raised
162  * and the moment the exception handler reads the faulting instruction from
163  * memory. It is also needed to atomically set the two half-words of a 32-bit
164  * Thumb breakpoint.
165  */
166 struct patch {
167 	void *addr;
168 	unsigned int insn;
169 };
170 
171 static int __kprobes_remove_breakpoint(void *data)
172 {
173 	struct patch *p = data;
174 	__patch_text(p->addr, p->insn);
175 	return 0;
176 }
177 
178 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
179 {
180 	struct patch p = {
181 		.addr = addr,
182 		.insn = insn,
183 	};
184 	stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask);
185 }
186 
187 void __kprobes arch_disarm_kprobe(struct kprobe *p)
188 {
189 	kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
190 			p->opcode);
191 }
192 
193 void __kprobes arch_remove_kprobe(struct kprobe *p)
194 {
195 	if (p->ainsn.insn) {
196 		free_insn_slot(p->ainsn.insn, 0);
197 		p->ainsn.insn = NULL;
198 	}
199 }
200 
201 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
202 {
203 	kcb->prev_kprobe.kp = kprobe_running();
204 	kcb->prev_kprobe.status = kcb->kprobe_status;
205 }
206 
207 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
208 {
209 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
210 	kcb->kprobe_status = kcb->prev_kprobe.status;
211 }
212 
213 static void __kprobes set_current_kprobe(struct kprobe *p)
214 {
215 	__this_cpu_write(current_kprobe, p);
216 }
217 
218 static void __kprobes
219 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
220 {
221 #ifdef CONFIG_THUMB2_KERNEL
222 	regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
223 	if (is_wide_instruction(p->opcode))
224 		regs->ARM_pc += 4;
225 	else
226 		regs->ARM_pc += 2;
227 #else
228 	regs->ARM_pc += 4;
229 #endif
230 }
231 
232 static inline void __kprobes
233 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
234 {
235 	p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
236 }
237 
238 /*
239  * Called with IRQs disabled. IRQs must remain disabled from that point
240  * all the way until processing this kprobe is complete.  The current
241  * kprobes implementation cannot process more than one nested level of
242  * kprobe, and that level is reserved for user kprobe handlers, so we can't
243  * risk encountering a new kprobe in an interrupt handler.
244  */
245 void __kprobes kprobe_handler(struct pt_regs *regs)
246 {
247 	struct kprobe *p, *cur;
248 	struct kprobe_ctlblk *kcb;
249 
250 	kcb = get_kprobe_ctlblk();
251 	cur = kprobe_running();
252 
253 #ifdef CONFIG_THUMB2_KERNEL
254 	/*
255 	 * First look for a probe which was registered using an address with
256 	 * bit 0 set, this is the usual situation for pointers to Thumb code.
257 	 * If not found, fallback to looking for one with bit 0 clear.
258 	 */
259 	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
260 	if (!p)
261 		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
262 
263 #else /* ! CONFIG_THUMB2_KERNEL */
264 	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
265 #endif
266 
267 	if (p) {
268 		if (cur) {
269 			/* Kprobe is pending, so we're recursing. */
270 			switch (kcb->kprobe_status) {
271 			case KPROBE_HIT_ACTIVE:
272 			case KPROBE_HIT_SSDONE:
273 				/* A pre- or post-handler probe got us here. */
274 				kprobes_inc_nmissed_count(p);
275 				save_previous_kprobe(kcb);
276 				set_current_kprobe(p);
277 				kcb->kprobe_status = KPROBE_REENTER;
278 				singlestep(p, regs, kcb);
279 				restore_previous_kprobe(kcb);
280 				break;
281 			default:
282 				/* impossible cases */
283 				BUG();
284 			}
285 		} else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
286 			/* Probe hit and conditional execution check ok. */
287 			set_current_kprobe(p);
288 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
289 
290 			/*
291 			 * If we have no pre-handler or it returned 0, we
292 			 * continue with normal processing.  If we have a
293 			 * pre-handler and it returned non-zero, it prepped
294 			 * for calling the break_handler below on re-entry,
295 			 * so get out doing nothing more here.
296 			 */
297 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
298 				kcb->kprobe_status = KPROBE_HIT_SS;
299 				singlestep(p, regs, kcb);
300 				if (p->post_handler) {
301 					kcb->kprobe_status = KPROBE_HIT_SSDONE;
302 					p->post_handler(p, regs, 0);
303 				}
304 				reset_current_kprobe();
305 			}
306 		} else {
307 			/*
308 			 * Probe hit but conditional execution check failed,
309 			 * so just skip the instruction and continue as if
310 			 * nothing had happened.
311 			 */
312 			singlestep_skip(p, regs);
313 		}
314 	} else if (cur) {
315 		/* We probably hit a jprobe.  Call its break handler. */
316 		if (cur->break_handler && cur->break_handler(cur, regs)) {
317 			kcb->kprobe_status = KPROBE_HIT_SS;
318 			singlestep(cur, regs, kcb);
319 			if (cur->post_handler) {
320 				kcb->kprobe_status = KPROBE_HIT_SSDONE;
321 				cur->post_handler(cur, regs, 0);
322 			}
323 		}
324 		reset_current_kprobe();
325 	} else {
326 		/*
327 		 * The probe was removed and a race is in progress.
328 		 * There is nothing we can do about it.  Let's restart
329 		 * the instruction.  By the time we can restart, the
330 		 * real instruction will be there.
331 		 */
332 	}
333 }
334 
335 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
336 {
337 	unsigned long flags;
338 	local_irq_save(flags);
339 	kprobe_handler(regs);
340 	local_irq_restore(flags);
341 	return 0;
342 }
343 
344 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
345 {
346 	struct kprobe *cur = kprobe_running();
347 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
348 
349 	switch (kcb->kprobe_status) {
350 	case KPROBE_HIT_SS:
351 	case KPROBE_REENTER:
352 		/*
353 		 * We are here because the instruction being single
354 		 * stepped caused a page fault. We reset the current
355 		 * kprobe and the PC to point back to the probe address
356 		 * and allow the page fault handler to continue as a
357 		 * normal page fault.
358 		 */
359 		regs->ARM_pc = (long)cur->addr;
360 		if (kcb->kprobe_status == KPROBE_REENTER) {
361 			restore_previous_kprobe(kcb);
362 		} else {
363 			reset_current_kprobe();
364 		}
365 		break;
366 
367 	case KPROBE_HIT_ACTIVE:
368 	case KPROBE_HIT_SSDONE:
369 		/*
370 		 * We increment the nmissed count for accounting,
371 		 * we can also use npre/npostfault count for accounting
372 		 * these specific fault cases.
373 		 */
374 		kprobes_inc_nmissed_count(cur);
375 
376 		/*
377 		 * We come here because instructions in the pre/post
378 		 * handler caused the page_fault, this could happen
379 		 * if handler tries to access user space by
380 		 * copy_from_user(), get_user() etc. Let the
381 		 * user-specified handler try to fix it.
382 		 */
383 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
384 			return 1;
385 		break;
386 
387 	default:
388 		break;
389 	}
390 
391 	return 0;
392 }
393 
394 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
395 				       unsigned long val, void *data)
396 {
397 	/*
398 	 * notify_die() is currently never called on ARM,
399 	 * so this callback is currently empty.
400 	 */
401 	return NOTIFY_DONE;
402 }
403 
404 /*
405  * When a retprobed function returns, trampoline_handler() is called,
406  * calling the kretprobe's handler. We construct a struct pt_regs to
407  * give a view of registers r0-r11 to the user return-handler.  This is
408  * not a complete pt_regs structure, but that should be plenty sufficient
409  * for kretprobe handlers which should normally be interested in r0 only
410  * anyway.
411  */
412 void __naked __kprobes kretprobe_trampoline(void)
413 {
414 	__asm__ __volatile__ (
415 		"stmdb	sp!, {r0 - r11}		\n\t"
416 		"mov	r0, sp			\n\t"
417 		"bl	trampoline_handler	\n\t"
418 		"mov	lr, r0			\n\t"
419 		"ldmia	sp!, {r0 - r11}		\n\t"
420 #ifdef CONFIG_THUMB2_KERNEL
421 		"bx	lr			\n\t"
422 #else
423 		"mov	pc, lr			\n\t"
424 #endif
425 		: : : "memory");
426 }
427 
428 /* Called from kretprobe_trampoline */
429 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
430 {
431 	struct kretprobe_instance *ri = NULL;
432 	struct hlist_head *head, empty_rp;
433 	struct hlist_node *tmp;
434 	unsigned long flags, orig_ret_address = 0;
435 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
436 
437 	INIT_HLIST_HEAD(&empty_rp);
438 	kretprobe_hash_lock(current, &head, &flags);
439 
440 	/*
441 	 * It is possible to have multiple instances associated with a given
442 	 * task either because multiple functions in the call path have
443 	 * a return probe installed on them, and/or more than one return
444 	 * probe was registered for a target function.
445 	 *
446 	 * We can handle this because:
447 	 *     - instances are always inserted at the head of the list
448 	 *     - when multiple return probes are registered for the same
449 	 *       function, the first instance's ret_addr will point to the
450 	 *       real return address, and all the rest will point to
451 	 *       kretprobe_trampoline
452 	 */
453 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
454 		if (ri->task != current)
455 			/* another task is sharing our hash bucket */
456 			continue;
457 
458 		if (ri->rp && ri->rp->handler) {
459 			__this_cpu_write(current_kprobe, &ri->rp->kp);
460 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
461 			ri->rp->handler(ri, regs);
462 			__this_cpu_write(current_kprobe, NULL);
463 		}
464 
465 		orig_ret_address = (unsigned long)ri->ret_addr;
466 		recycle_rp_inst(ri, &empty_rp);
467 
468 		if (orig_ret_address != trampoline_address)
469 			/*
470 			 * This is the real return address. Any other
471 			 * instances associated with this task are for
472 			 * other calls deeper on the call stack
473 			 */
474 			break;
475 	}
476 
477 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
478 	kretprobe_hash_unlock(current, &flags);
479 
480 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
481 		hlist_del(&ri->hlist);
482 		kfree(ri);
483 	}
484 
485 	return (void *)orig_ret_address;
486 }
487 
488 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
489 				      struct pt_regs *regs)
490 {
491 	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
492 
493 	/* Replace the return addr with trampoline addr. */
494 	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
495 }
496 
497 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
498 {
499 	struct jprobe *jp = container_of(p, struct jprobe, kp);
500 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
501 	long sp_addr = regs->ARM_sp;
502 	long cpsr;
503 
504 	kcb->jprobe_saved_regs = *regs;
505 	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
506 	regs->ARM_pc = (long)jp->entry;
507 
508 	cpsr = regs->ARM_cpsr | PSR_I_BIT;
509 #ifdef CONFIG_THUMB2_KERNEL
510 	/* Set correct Thumb state in cpsr */
511 	if (regs->ARM_pc & 1)
512 		cpsr |= PSR_T_BIT;
513 	else
514 		cpsr &= ~PSR_T_BIT;
515 #endif
516 	regs->ARM_cpsr = cpsr;
517 
518 	preempt_disable();
519 	return 1;
520 }
521 
522 void __kprobes jprobe_return(void)
523 {
524 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
525 
526 	__asm__ __volatile__ (
527 		/*
528 		 * Setup an empty pt_regs. Fill SP and PC fields as
529 		 * they're needed by longjmp_break_handler.
530 		 *
531 		 * We allocate some slack between the original SP and start of
532 		 * our fabricated regs. To be precise we want to have worst case
533 		 * covered which is STMFD with all 16 regs so we allocate 2 *
534 		 * sizeof(struct_pt_regs)).
535 		 *
536 		 * This is to prevent any simulated instruction from writing
537 		 * over the regs when they are accessing the stack.
538 		 */
539 #ifdef CONFIG_THUMB2_KERNEL
540 		"sub    r0, %0, %1		\n\t"
541 		"mov    sp, r0			\n\t"
542 #else
543 		"sub    sp, %0, %1		\n\t"
544 #endif
545 		"ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
546 		"str    %0, [sp, %2]		\n\t"
547 		"str    r0, [sp, %3]		\n\t"
548 		"mov    r0, sp			\n\t"
549 		"bl     kprobe_handler		\n\t"
550 
551 		/*
552 		 * Return to the context saved by setjmp_pre_handler
553 		 * and restored by longjmp_break_handler.
554 		 */
555 #ifdef CONFIG_THUMB2_KERNEL
556 		"ldr	lr, [sp, %2]		\n\t" /* lr = saved sp */
557 		"ldrd	r0, r1, [sp, %5]	\n\t" /* r0,r1 = saved lr,pc */
558 		"ldr	r2, [sp, %4]		\n\t" /* r2 = saved psr */
559 		"stmdb	lr!, {r0, r1, r2}	\n\t" /* push saved lr and */
560 						      /* rfe context */
561 		"ldmia	sp, {r0 - r12}		\n\t"
562 		"mov	sp, lr			\n\t"
563 		"ldr	lr, [sp], #4		\n\t"
564 		"rfeia	sp!			\n\t"
565 #else
566 		"ldr	r0, [sp, %4]		\n\t"
567 		"msr	cpsr_cxsf, r0		\n\t"
568 		"ldmia	sp, {r0 - pc}		\n\t"
569 #endif
570 		:
571 		: "r" (kcb->jprobe_saved_regs.ARM_sp),
572 		  "I" (sizeof(struct pt_regs) * 2),
573 		  "J" (offsetof(struct pt_regs, ARM_sp)),
574 		  "J" (offsetof(struct pt_regs, ARM_pc)),
575 		  "J" (offsetof(struct pt_regs, ARM_cpsr)),
576 		  "J" (offsetof(struct pt_regs, ARM_lr))
577 		: "memory", "cc");
578 }
579 
580 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
581 {
582 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
583 	long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
584 	long orig_sp = regs->ARM_sp;
585 	struct jprobe *jp = container_of(p, struct jprobe, kp);
586 
587 	if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
588 		if (orig_sp != stack_addr) {
589 			struct pt_regs *saved_regs =
590 				(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
591 			printk("current sp %lx does not match saved sp %lx\n",
592 			       orig_sp, stack_addr);
593 			printk("Saved registers for jprobe %p\n", jp);
594 			show_regs(saved_regs);
595 			printk("Current registers\n");
596 			show_regs(regs);
597 			BUG();
598 		}
599 		*regs = kcb->jprobe_saved_regs;
600 		memcpy((void *)stack_addr, kcb->jprobes_stack,
601 		       MIN_STACK_SIZE(stack_addr));
602 		preempt_enable_no_resched();
603 		return 1;
604 	}
605 	return 0;
606 }
607 
608 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
609 {
610 	return 0;
611 }
612 
613 #ifdef CONFIG_THUMB2_KERNEL
614 
615 static struct undef_hook kprobes_thumb16_break_hook = {
616 	.instr_mask	= 0xffff,
617 	.instr_val	= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
618 	.cpsr_mask	= MODE_MASK,
619 	.cpsr_val	= SVC_MODE,
620 	.fn		= kprobe_trap_handler,
621 };
622 
623 static struct undef_hook kprobes_thumb32_break_hook = {
624 	.instr_mask	= 0xffffffff,
625 	.instr_val	= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
626 	.cpsr_mask	= MODE_MASK,
627 	.cpsr_val	= SVC_MODE,
628 	.fn		= kprobe_trap_handler,
629 };
630 
631 #else  /* !CONFIG_THUMB2_KERNEL */
632 
633 static struct undef_hook kprobes_arm_break_hook = {
634 	.instr_mask	= 0x0fffffff,
635 	.instr_val	= KPROBE_ARM_BREAKPOINT_INSTRUCTION,
636 	.cpsr_mask	= MODE_MASK,
637 	.cpsr_val	= SVC_MODE,
638 	.fn		= kprobe_trap_handler,
639 };
640 
641 #endif /* !CONFIG_THUMB2_KERNEL */
642 
643 int __init arch_init_kprobes()
644 {
645 	arm_probes_decode_init();
646 #ifdef CONFIG_THUMB2_KERNEL
647 	register_undef_hook(&kprobes_thumb16_break_hook);
648 	register_undef_hook(&kprobes_thumb32_break_hook);
649 #else
650 	register_undef_hook(&kprobes_arm_break_hook);
651 #endif
652 	return 0;
653 }
654