xref: /linux/arch/arm/probes/decode.h (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * arch/arm/probes/decode.h
3  *
4  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5  *
6  * Some contents moved here from arch/arm/include/asm/kprobes.h which is
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #ifndef _ARM_KERNEL_PROBES_H
20 #define  _ARM_KERNEL_PROBES_H
21 
22 #include <linux/types.h>
23 #include <linux/stddef.h>
24 #include <asm/probes.h>
25 
26 void __init arm_probes_decode_init(void);
27 
28 extern probes_check_cc * const probes_condition_checks[16];
29 
30 #if __LINUX_ARM_ARCH__ >= 7
31 
32 /* str_pc_offset is architecturally defined from ARMv7 onwards */
33 #define str_pc_offset 8
34 #define find_str_pc_offset()
35 
36 #else /* __LINUX_ARM_ARCH__ < 7 */
37 
38 /* We need a run-time check to determine str_pc_offset */
39 extern int str_pc_offset;
40 void __init find_str_pc_offset(void);
41 
42 #endif
43 
44 
45 /*
46  * Update ITSTATE after normal execution of an IT block instruction.
47  *
48  * The 8 IT state bits are split into two parts in CPSR:
49  *	ITSTATE<1:0> are in CPSR<26:25>
50  *	ITSTATE<7:2> are in CPSR<15:10>
51  */
52 static inline unsigned long it_advance(unsigned long cpsr)
53 	{
54 	if ((cpsr & 0x06000400) == 0) {
55 		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
56 		cpsr &= ~PSR_IT_MASK;
57 	} else {
58 		/* We need to shift left ITSTATE<4:0> */
59 		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
60 		unsigned long it = cpsr & mask;
61 		it <<= 1;
62 		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
63 		it &= mask;
64 		cpsr &= ~mask;
65 		cpsr |= it;
66 	}
67 	return cpsr;
68 }
69 
70 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
71 {
72 	long cpsr = regs->ARM_cpsr;
73 	if (pcv & 0x1) {
74 		cpsr |= PSR_T_BIT;
75 		pcv &= ~0x1;
76 	} else {
77 		cpsr &= ~PSR_T_BIT;
78 		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
79 	}
80 	regs->ARM_cpsr = cpsr;
81 	regs->ARM_pc = pcv;
82 }
83 
84 
85 #if __LINUX_ARM_ARCH__ >= 6
86 
87 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
88 #define load_write_pc_interworks true
89 #define test_load_write_pc_interworking()
90 
91 #else /* __LINUX_ARM_ARCH__ < 6 */
92 
93 /* We need run-time testing to determine if load_write_pc() should interwork. */
94 extern bool load_write_pc_interworks;
95 void __init test_load_write_pc_interworking(void);
96 
97 #endif
98 
99 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
100 {
101 	if (load_write_pc_interworks)
102 		bx_write_pc(pcv, regs);
103 	else
104 		regs->ARM_pc = pcv;
105 }
106 
107 
108 #if __LINUX_ARM_ARCH__ >= 7
109 
110 #define alu_write_pc_interworks true
111 #define test_alu_write_pc_interworking()
112 
113 #elif __LINUX_ARM_ARCH__ <= 5
114 
115 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
116 #define alu_write_pc_interworks false
117 #define test_alu_write_pc_interworking()
118 
119 #else /* __LINUX_ARM_ARCH__ == 6 */
120 
121 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
122 extern bool alu_write_pc_interworks;
123 void __init test_alu_write_pc_interworking(void);
124 
125 #endif /* __LINUX_ARM_ARCH__ == 6 */
126 
127 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
128 {
129 	if (alu_write_pc_interworks)
130 		bx_write_pc(pcv, regs);
131 	else
132 		regs->ARM_pc = pcv;
133 }
134 
135 
136 /*
137  * Test if load/store instructions writeback the address register.
138  * if P (bit 24) == 0 or W (bit 21) == 1
139  */
140 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
141 
142 /*
143  * The following definitions and macros are used to build instruction
144  * decoding tables for use by probes_decode_insn.
145  *
146  * These tables are a concatenation of entries each of which consist of one of
147  * the decode_* structs. All of the fields in every type of decode structure
148  * are of the union type decode_item, therefore the entire decode table can be
149  * viewed as an array of these and declared like:
150  *
151  *	static const union decode_item table_name[] = {};
152  *
153  * In order to construct each entry in the table, macros are used to
154  * initialise a number of sequential decode_item values in a layout which
155  * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
156  * decode_simulate by initialising four decode_item objects like this...
157  *
158  *	{.bits = _type},
159  *	{.bits = _mask},
160  *	{.bits = _value},
161  *	{.action = _handler},
162  *
163  * Initialising a specified member of the union means that the compiler
164  * will produce a warning if the argument is of an incorrect type.
165  *
166  * Below is a list of each of the macros used to initialise entries and a
167  * description of the action performed when that entry is matched to an
168  * instruction. A match is found when (instruction & mask) == value.
169  *
170  * DECODE_TABLE(mask, value, table)
171  *	Instruction decoding jumps to parsing the new sub-table 'table'.
172  *
173  * DECODE_CUSTOM(mask, value, decoder)
174  *	The value of 'decoder' is used as an index into the array of
175  *	action functions, and the retrieved decoder function is invoked
176  *	to complete decoding of the instruction.
177  *
178  * DECODE_SIMULATE(mask, value, handler)
179  *	The probes instruction handler is set to the value found by
180  *	indexing into the action array using the value of 'handler'. This
181  *	will be used to simulate the instruction when the probe is hit.
182  *	Decoding returns with INSN_GOOD_NO_SLOT.
183  *
184  * DECODE_EMULATE(mask, value, handler)
185  *	The probes instruction handler is set to the value found by
186  *	indexing into the action array using the value of 'handler'. This
187  *	will be used to emulate the instruction when the probe is hit. The
188  *	modified instruction (see below) is placed in the probes instruction
189  *	slot so it may be called by the emulation code. Decoding returns
190  *	with INSN_GOOD.
191  *
192  * DECODE_REJECT(mask, value)
193  *	Instruction decoding fails with INSN_REJECTED
194  *
195  * DECODE_OR(mask, value)
196  *	This allows the mask/value test of multiple table entries to be
197  *	logically ORed. Once an 'or' entry is matched the decoding action to
198  *	be performed is that of the next entry which isn't an 'or'. E.g.
199  *
200  *		DECODE_OR	(mask1, value1)
201  *		DECODE_OR	(mask2, value2)
202  *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
203  *
204  *	This means that if any of the three mask/value pairs match the
205  *	instruction being decoded, then 'simulation_handler' will be used
206  *	for it.
207  *
208  * Both the SIMULATE and EMULATE macros have a second form which take an
209  * additional 'regs' argument.
210  *
211  *	DECODE_SIMULATEX(mask, value, handler, regs)
212  *	DECODE_EMULATEX	(mask, value, handler, regs)
213  *
214  * These are used to specify what kind of CPU register is encoded in each of the
215  * least significant 5 nibbles of the instruction being decoded. The regs value
216  * is specified using the REGS macro, this takes any of the REG_TYPE_* values
217  * from enum decode_reg_type as arguments; only the '*' part of the name is
218  * given. E.g.
219  *
220  *	REGS(0, ANY, NOPC, 0, ANY)
221  *
222  * This indicates an instruction is encoded like:
223  *
224  *	bits 19..16	ignore
225  *	bits 15..12	any register allowed here
226  *	bits 11.. 8	any register except PC allowed here
227  *	bits  7.. 4	ignore
228  *	bits  3.. 0	any register allowed here
229  *
230  * This register specification is checked after a decode table entry is found to
231  * match an instruction (through the mask/value test). Any invalid register then
232  * found in the instruction will cause decoding to fail with INSN_REJECTED. In
233  * the above example this would happen if bits 11..8 of the instruction were
234  * 1111, indicating R15 or PC.
235  *
236  * As well as checking for legal combinations of registers, this data is also
237  * used to modify the registers encoded in the instructions so that an
238  * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
239  *
240  * Here is a real example which matches ARM instructions of the form
241  * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
242  *
243  *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
244  *						 REGS(ANY, ANY, NOPC, 0, ANY)),
245  *						      ^    ^    ^        ^
246  *						      Rn   Rd   Rs       Rm
247  *
248  * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
249  * Rs == R15
250  *
251  * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
252  * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
253  * the kprobes instruction slot. This can then be called later by the handler
254  * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
255  * the indicated slot in the action array), in order to simulate the instruction.
256  */
257 
258 enum decode_type {
259 	DECODE_TYPE_END,
260 	DECODE_TYPE_TABLE,
261 	DECODE_TYPE_CUSTOM,
262 	DECODE_TYPE_SIMULATE,
263 	DECODE_TYPE_EMULATE,
264 	DECODE_TYPE_OR,
265 	DECODE_TYPE_REJECT,
266 	NUM_DECODE_TYPES /* Must be last enum */
267 };
268 
269 #define DECODE_TYPE_BITS	4
270 #define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
271 
272 enum decode_reg_type {
273 	REG_TYPE_NONE = 0, /* Not a register, ignore */
274 	REG_TYPE_ANY,	   /* Any register allowed */
275 	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
276 	REG_TYPE_SP,	   /* Register must be SP */
277 	REG_TYPE_PC,	   /* Register must be PC */
278 	REG_TYPE_NOSP,	   /* Register must not be SP */
279 	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
280 	REG_TYPE_NOPC,	   /* Register must not be PC */
281 	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
282 
283 	/* The following types are used when the encoding for PC indicates
284 	 * another instruction form. This distiction only matters for test
285 	 * case coverage checks.
286 	 */
287 	REG_TYPE_NOPCX,	   /* Register must not be PC */
288 	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
289 
290 	/* Alias to allow '0' arg to be used in REGS macro. */
291 	REG_TYPE_0 = REG_TYPE_NONE
292 };
293 
294 #define REGS(r16, r12, r8, r4, r0)	\
295 	(((REG_TYPE_##r16) << 16) +	\
296 	((REG_TYPE_##r12) << 12) +	\
297 	((REG_TYPE_##r8) << 8) +	\
298 	((REG_TYPE_##r4) << 4) +	\
299 	(REG_TYPE_##r0))
300 
301 union decode_item {
302 	u32			bits;
303 	const union decode_item	*table;
304 	int			action;
305 };
306 
307 struct decode_header;
308 typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
309 						  struct arch_probes_insn *,
310 						  const struct decode_header *);
311 
312 union decode_action {
313 	probes_insn_handler_t	*handler;
314 	probes_custom_decode_t	*decoder;
315 };
316 
317 typedef enum probes_insn (probes_check_t)(probes_opcode_t,
318 					   struct arch_probes_insn *,
319 					   const struct decode_header *);
320 
321 struct decode_checker {
322 	probes_check_t	*checker;
323 };
324 
325 #define DECODE_END			\
326 	{.bits = DECODE_TYPE_END}
327 
328 
329 struct decode_header {
330 	union decode_item	type_regs;
331 	union decode_item	mask;
332 	union decode_item	value;
333 };
334 
335 #define DECODE_HEADER(_type, _mask, _value, _regs)		\
336 	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
337 	{.bits = (_mask)},					\
338 	{.bits = (_value)}
339 
340 
341 struct decode_table {
342 	struct decode_header	header;
343 	union decode_item	table;
344 };
345 
346 #define DECODE_TABLE(_mask, _value, _table)			\
347 	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
348 	{.table = (_table)}
349 
350 
351 struct decode_custom {
352 	struct decode_header	header;
353 	union decode_item	decoder;
354 };
355 
356 #define DECODE_CUSTOM(_mask, _value, _decoder)			\
357 	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
358 	{.action = (_decoder)}
359 
360 
361 struct decode_simulate {
362 	struct decode_header	header;
363 	union decode_item	handler;
364 };
365 
366 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
367 	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
368 	{.action = (_handler)}
369 
370 #define DECODE_SIMULATE(_mask, _value, _handler)	\
371 	DECODE_SIMULATEX(_mask, _value, _handler, 0)
372 
373 
374 struct decode_emulate {
375 	struct decode_header	header;
376 	union decode_item	handler;
377 };
378 
379 #define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
380 	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
381 	{.action = (_handler)}
382 
383 #define DECODE_EMULATE(_mask, _value, _handler)		\
384 	DECODE_EMULATEX(_mask, _value, _handler, 0)
385 
386 
387 struct decode_or {
388 	struct decode_header	header;
389 };
390 
391 #define DECODE_OR(_mask, _value)				\
392 	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
393 
394 enum probes_insn {
395 	INSN_REJECTED,
396 	INSN_GOOD,
397 	INSN_GOOD_NO_SLOT
398 };
399 
400 struct decode_reject {
401 	struct decode_header	header;
402 };
403 
404 #define DECODE_REJECT(_mask, _value)				\
405 	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
406 
407 probes_insn_handler_t probes_simulate_nop;
408 probes_insn_handler_t probes_emulate_none;
409 
410 int __kprobes
411 probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
412 		const union decode_item *table, bool thumb, bool emulate,
413 		const union decode_action *actions,
414 		const struct decode_checker **checkers);
415 
416 #endif
417