xref: /linux/arch/arm/mm/pmsa-v7.c (revision d198b34f3855eee2571dda03eea75a09c7c31480)
1 /*
2  * Based on linux/arch/arm/mm/nommu.c
3  *
4  * ARM PMSAv7 supporting functions.
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/memblock.h>
9 #include <linux/string.h>
10 
11 #include <asm/cacheflush.h>
12 #include <asm/cp15.h>
13 #include <asm/cputype.h>
14 #include <asm/mpu.h>
15 #include <asm/sections.h>
16 
17 #include "mm.h"
18 
19 struct region {
20 	phys_addr_t base;
21 	phys_addr_t size;
22 	unsigned long subreg;
23 };
24 
25 static struct region __initdata mem[MPU_MAX_REGIONS];
26 #ifdef CONFIG_XIP_KERNEL
27 static struct region __initdata xip[MPU_MAX_REGIONS];
28 #endif
29 
30 static unsigned int __initdata mpu_min_region_order;
31 static unsigned int __initdata mpu_max_regions;
32 
33 static int __init __mpu_min_region_order(void);
34 static int __init __mpu_max_regions(void);
35 
36 #ifndef CONFIG_CPU_V7M
37 
38 #define DRBAR	__ACCESS_CP15(c6, 0, c1, 0)
39 #define IRBAR	__ACCESS_CP15(c6, 0, c1, 1)
40 #define DRSR	__ACCESS_CP15(c6, 0, c1, 2)
41 #define IRSR	__ACCESS_CP15(c6, 0, c1, 3)
42 #define DRACR	__ACCESS_CP15(c6, 0, c1, 4)
43 #define IRACR	__ACCESS_CP15(c6, 0, c1, 5)
44 #define RNGNR	__ACCESS_CP15(c6, 0, c2, 0)
45 
46 /* Region number */
47 static inline void rgnr_write(u32 v)
48 {
49 	write_sysreg(v, RNGNR);
50 }
51 
52 /* Data-side / unified region attributes */
53 
54 /* Region access control register */
55 static inline void dracr_write(u32 v)
56 {
57 	write_sysreg(v, DRACR);
58 }
59 
60 /* Region size register */
61 static inline void drsr_write(u32 v)
62 {
63 	write_sysreg(v, DRSR);
64 }
65 
66 /* Region base address register */
67 static inline void drbar_write(u32 v)
68 {
69 	write_sysreg(v, DRBAR);
70 }
71 
72 static inline u32 drbar_read(void)
73 {
74 	return read_sysreg(DRBAR);
75 }
76 /* Optional instruction-side region attributes */
77 
78 /* I-side Region access control register */
79 static inline void iracr_write(u32 v)
80 {
81 	write_sysreg(v, IRACR);
82 }
83 
84 /* I-side Region size register */
85 static inline void irsr_write(u32 v)
86 {
87 	write_sysreg(v, IRSR);
88 }
89 
90 /* I-side Region base address register */
91 static inline void irbar_write(u32 v)
92 {
93 	write_sysreg(v, IRBAR);
94 }
95 
96 static inline u32 irbar_read(void)
97 {
98 	return read_sysreg(IRBAR);
99 }
100 
101 #else
102 
103 static inline void rgnr_write(u32 v)
104 {
105 	writel_relaxed(v, BASEADDR_V7M_SCB + PMSAv7_RNR);
106 }
107 
108 /* Data-side / unified region attributes */
109 
110 /* Region access control register */
111 static inline void dracr_write(u32 v)
112 {
113 	u32 rsr = readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RASR) & GENMASK(15, 0);
114 
115 	writel_relaxed((v << 16) | rsr, BASEADDR_V7M_SCB + PMSAv7_RASR);
116 }
117 
118 /* Region size register */
119 static inline void drsr_write(u32 v)
120 {
121 	u32 racr = readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RASR) & GENMASK(31, 16);
122 
123 	writel_relaxed(v | racr, BASEADDR_V7M_SCB + PMSAv7_RASR);
124 }
125 
126 /* Region base address register */
127 static inline void drbar_write(u32 v)
128 {
129 	writel_relaxed(v, BASEADDR_V7M_SCB + PMSAv7_RBAR);
130 }
131 
132 static inline u32 drbar_read(void)
133 {
134 	return readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RBAR);
135 }
136 
137 /* ARMv7-M only supports a unified MPU, so I-side operations are nop */
138 
139 static inline void iracr_write(u32 v) {}
140 static inline void irsr_write(u32 v) {}
141 static inline void irbar_write(u32 v) {}
142 static inline unsigned long irbar_read(void) {return 0;}
143 
144 #endif
145 
146 static bool __init try_split_region(phys_addr_t base, phys_addr_t size, struct region *region)
147 {
148 	unsigned long  subreg, bslots, sslots;
149 	phys_addr_t abase = base & ~(size - 1);
150 	phys_addr_t asize = base + size - abase;
151 	phys_addr_t p2size = 1 << __fls(asize);
152 	phys_addr_t bdiff, sdiff;
153 
154 	if (p2size != asize)
155 		p2size *= 2;
156 
157 	bdiff = base - abase;
158 	sdiff = p2size - asize;
159 	subreg = p2size / PMSAv7_NR_SUBREGS;
160 
161 	if ((bdiff % subreg) || (sdiff % subreg))
162 		return false;
163 
164 	bslots = bdiff / subreg;
165 	sslots = sdiff / subreg;
166 
167 	if (bslots || sslots) {
168 		int i;
169 
170 		if (subreg < PMSAv7_MIN_SUBREG_SIZE)
171 			return false;
172 
173 		if (bslots + sslots > PMSAv7_NR_SUBREGS)
174 			return false;
175 
176 		for (i = 0; i < bslots; i++)
177 			_set_bit(i, &region->subreg);
178 
179 		for (i = 1; i <= sslots; i++)
180 			_set_bit(PMSAv7_NR_SUBREGS - i, &region->subreg);
181 	}
182 
183 	region->base = abase;
184 	region->size = p2size;
185 
186 	return true;
187 }
188 
189 static int __init allocate_region(phys_addr_t base, phys_addr_t size,
190 				  unsigned int limit, struct region *regions)
191 {
192 	int count = 0;
193 	phys_addr_t diff = size;
194 	int attempts = MPU_MAX_REGIONS;
195 
196 	while (diff) {
197 		/* Try cover region as is (maybe with help of subregions) */
198 		if (try_split_region(base, size, &regions[count])) {
199 			count++;
200 			base += size;
201 			diff -= size;
202 			size = diff;
203 		} else {
204 			/*
205 			 * Maximum aligned region might overflow phys_addr_t
206 			 * if "base" is 0. Hence we keep everything below 4G
207 			 * until we take the smaller of the aligned region
208 			 * size ("asize") and rounded region size ("p2size"),
209 			 * one of which is guaranteed to be smaller than the
210 			 * maximum physical address.
211 			 */
212 			phys_addr_t asize = (base - 1) ^ base;
213 			phys_addr_t p2size = (1 <<  __fls(diff)) - 1;
214 
215 			size = asize < p2size ? asize + 1 : p2size + 1;
216 		}
217 
218 		if (count > limit)
219 			break;
220 
221 		if (!attempts)
222 			break;
223 
224 		attempts--;
225 	}
226 
227 	return count;
228 }
229 
230 /* MPU initialisation functions */
231 void __init pmsav7_adjust_lowmem_bounds(void)
232 {
233 	phys_addr_t  specified_mem_size = 0, total_mem_size = 0;
234 	struct memblock_region *reg;
235 	bool first = true;
236 	phys_addr_t mem_start;
237 	phys_addr_t mem_end;
238 	unsigned int mem_max_regions;
239 	int num, i;
240 
241 	/* Free-up PMSAv7_PROBE_REGION */
242 	mpu_min_region_order = __mpu_min_region_order();
243 
244 	/* How many regions are supported */
245 	mpu_max_regions = __mpu_max_regions();
246 
247 	mem_max_regions = min((unsigned int)MPU_MAX_REGIONS, mpu_max_regions);
248 
249 	/* We need to keep one slot for background region */
250 	mem_max_regions--;
251 
252 #ifndef CONFIG_CPU_V7M
253 	/* ... and one for vectors */
254 	mem_max_regions--;
255 #endif
256 
257 #ifdef CONFIG_XIP_KERNEL
258 	/* plus some regions to cover XIP ROM */
259 	num = allocate_region(CONFIG_XIP_PHYS_ADDR, __pa(_exiprom) - CONFIG_XIP_PHYS_ADDR,
260 			      mem_max_regions, xip);
261 
262 	mem_max_regions -= num;
263 #endif
264 
265 	for_each_memblock(memory, reg) {
266 		if (first) {
267 			phys_addr_t phys_offset = PHYS_OFFSET;
268 
269 			/*
270 			 * Initially only use memory continuous from
271 			 * PHYS_OFFSET */
272 			if (reg->base != phys_offset)
273 				panic("First memory bank must be contiguous from PHYS_OFFSET");
274 
275 			mem_start = reg->base;
276 			mem_end = reg->base + reg->size;
277 			specified_mem_size = reg->size;
278 			first = false;
279 		} else {
280 			/*
281 			 * memblock auto merges contiguous blocks, remove
282 			 * all blocks afterwards in one go (we can't remove
283 			 * blocks separately while iterating)
284 			 */
285 			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
286 				  &mem_end, &reg->base);
287 			memblock_remove(reg->base, 0 - reg->base);
288 			break;
289 		}
290 	}
291 
292 	memset(mem, 0, sizeof(mem));
293 	num = allocate_region(mem_start, specified_mem_size, mem_max_regions, mem);
294 
295 	for (i = 0; i < num; i++) {
296 		unsigned long  subreg = mem[i].size / PMSAv7_NR_SUBREGS;
297 
298 		total_mem_size += mem[i].size - subreg * hweight_long(mem[i].subreg);
299 
300 		pr_debug("MPU: base %pa size %pa disable subregions: %*pbl\n",
301 			 &mem[i].base, &mem[i].size, PMSAv7_NR_SUBREGS, &mem[i].subreg);
302 	}
303 
304 	if (total_mem_size != specified_mem_size) {
305 		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
306 				&specified_mem_size, &total_mem_size);
307 		memblock_remove(mem_start + total_mem_size,
308 				specified_mem_size - total_mem_size);
309 	}
310 }
311 
312 static int __init __mpu_max_regions(void)
313 {
314 	/*
315 	 * We don't support a different number of I/D side regions so if we
316 	 * have separate instruction and data memory maps then return
317 	 * whichever side has a smaller number of supported regions.
318 	 */
319 	u32 dregions, iregions, mpuir;
320 
321 	mpuir = read_cpuid_mputype();
322 
323 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
324 
325 	/* Check for separate d-side and i-side memory maps */
326 	if (mpuir & MPUIR_nU)
327 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
328 
329 	/* Use the smallest of the two maxima */
330 	return min(dregions, iregions);
331 }
332 
333 static int __init mpu_iside_independent(void)
334 {
335 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
336 	return read_cpuid_mputype() & MPUIR_nU;
337 }
338 
339 static int __init __mpu_min_region_order(void)
340 {
341 	u32 drbar_result, irbar_result;
342 
343 	/* We've kept a region free for this probing */
344 	rgnr_write(PMSAv7_PROBE_REGION);
345 	isb();
346 	/*
347 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
348 	 * region order
349 	*/
350 	drbar_write(0xFFFFFFFC);
351 	drbar_result = irbar_result = drbar_read();
352 	drbar_write(0x0);
353 	/* If the MPU is non-unified, we use the larger of the two minima*/
354 	if (mpu_iside_independent()) {
355 		irbar_write(0xFFFFFFFC);
356 		irbar_result = irbar_read();
357 		irbar_write(0x0);
358 	}
359 	isb(); /* Ensure that MPU region operations have completed */
360 	/* Return whichever result is larger */
361 
362 	return __ffs(max(drbar_result, irbar_result));
363 }
364 
365 static int __init mpu_setup_region(unsigned int number, phys_addr_t start,
366 				   unsigned int size_order, unsigned int properties,
367 				   unsigned int subregions, bool need_flush)
368 {
369 	u32 size_data;
370 
371 	/* We kept a region free for probing resolution of MPU regions*/
372 	if (number > mpu_max_regions
373 	    || number >= MPU_MAX_REGIONS)
374 		return -ENOENT;
375 
376 	if (size_order > 32)
377 		return -ENOMEM;
378 
379 	if (size_order < mpu_min_region_order)
380 		return -ENOMEM;
381 
382 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
383 	size_data = ((size_order - 1) << PMSAv7_RSR_SZ) | 1 << PMSAv7_RSR_EN;
384 	size_data |= subregions << PMSAv7_RSR_SD;
385 
386 	if (need_flush)
387 		flush_cache_all();
388 
389 	dsb(); /* Ensure all previous data accesses occur with old mappings */
390 	rgnr_write(number);
391 	isb();
392 	drbar_write(start);
393 	dracr_write(properties);
394 	isb(); /* Propagate properties before enabling region */
395 	drsr_write(size_data);
396 
397 	/* Check for independent I-side registers */
398 	if (mpu_iside_independent()) {
399 		irbar_write(start);
400 		iracr_write(properties);
401 		isb();
402 		irsr_write(size_data);
403 	}
404 	isb();
405 
406 	/* Store region info (we treat i/d side the same, so only store d) */
407 	mpu_rgn_info.rgns[number].dracr = properties;
408 	mpu_rgn_info.rgns[number].drbar = start;
409 	mpu_rgn_info.rgns[number].drsr = size_data;
410 
411 	mpu_rgn_info.used++;
412 
413 	return 0;
414 }
415 
416 /*
417 * Set up default MPU regions, doing nothing if there is no MPU
418 */
419 void __init pmsav7_setup(void)
420 {
421 	int i, region = 0, err = 0;
422 
423 	/* Setup MPU (order is important) */
424 
425 	/* Background */
426 	err |= mpu_setup_region(region++, 0, 32,
427 				PMSAv7_ACR_XN | PMSAv7_RGN_STRONGLY_ORDERED | PMSAv7_AP_PL1RW_PL0RW,
428 				0, false);
429 
430 #ifdef CONFIG_XIP_KERNEL
431 	/* ROM */
432 	for (i = 0; i < ARRAY_SIZE(xip); i++) {
433 		/*
434                  * In case we overwrite RAM region we set earlier in
435                  * head-nommu.S (which is cachable) all subsequent
436                  * data access till we setup RAM bellow would be done
437                  * with BG region (which is uncachable), thus we need
438                  * to clean and invalidate cache.
439 		 */
440 		bool need_flush = region == PMSAv7_RAM_REGION;
441 
442 		if (!xip[i].size)
443 			continue;
444 
445 		err |= mpu_setup_region(region++, xip[i].base, ilog2(xip[i].size),
446 					PMSAv7_AP_PL1RO_PL0NA | PMSAv7_RGN_NORMAL,
447 					xip[i].subreg, need_flush);
448 	}
449 #endif
450 
451 	/* RAM */
452 	for (i = 0; i < ARRAY_SIZE(mem); i++) {
453 		if (!mem[i].size)
454 			continue;
455 
456 		err |= mpu_setup_region(region++, mem[i].base, ilog2(mem[i].size),
457 					PMSAv7_AP_PL1RW_PL0RW | PMSAv7_RGN_NORMAL,
458 					mem[i].subreg, false);
459 	}
460 
461 	/* Vectors */
462 #ifndef CONFIG_CPU_V7M
463 	err |= mpu_setup_region(region++, vectors_base, ilog2(2 * PAGE_SIZE),
464 				PMSAv7_AP_PL1RW_PL0NA | PMSAv7_RGN_NORMAL,
465 				0, false);
466 #endif
467 	if (err) {
468 		panic("MPU region initialization failure! %d", err);
469 	} else {
470 		pr_info("Using ARMv7 PMSA Compliant MPU. "
471 			 "Region independence: %s, Used %d of %d regions\n",
472 			mpu_iside_independent() ? "Yes" : "No",
473 			mpu_rgn_info.used, mpu_max_regions);
474 	}
475 }
476