xref: /linux/arch/arm/mm/pmsa-v7.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 /*
2  * Based on linux/arch/arm/mm/nommu.c
3  *
4  * ARM PMSAv7 supporting functions.
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/memblock.h>
9 #include <linux/string.h>
10 
11 #include <asm/cacheflush.h>
12 #include <asm/cp15.h>
13 #include <asm/cputype.h>
14 #include <asm/mpu.h>
15 #include <asm/sections.h>
16 
17 #include "mm.h"
18 
19 struct region {
20 	phys_addr_t base;
21 	phys_addr_t size;
22 	unsigned long subreg;
23 };
24 
25 static struct region __initdata mem[MPU_MAX_REGIONS];
26 #ifdef CONFIG_XIP_KERNEL
27 static struct region __initdata xip[MPU_MAX_REGIONS];
28 #endif
29 
30 static unsigned int __initdata mpu_min_region_order;
31 static unsigned int __initdata mpu_max_regions;
32 
33 static int __init __mpu_min_region_order(void);
34 static int __init __mpu_max_regions(void);
35 
36 #ifndef CONFIG_CPU_V7M
37 
38 #define DRBAR	__ACCESS_CP15(c6, 0, c1, 0)
39 #define IRBAR	__ACCESS_CP15(c6, 0, c1, 1)
40 #define DRSR	__ACCESS_CP15(c6, 0, c1, 2)
41 #define IRSR	__ACCESS_CP15(c6, 0, c1, 3)
42 #define DRACR	__ACCESS_CP15(c6, 0, c1, 4)
43 #define IRACR	__ACCESS_CP15(c6, 0, c1, 5)
44 #define RNGNR	__ACCESS_CP15(c6, 0, c2, 0)
45 
46 /* Region number */
47 static inline void rgnr_write(u32 v)
48 {
49 	write_sysreg(v, RNGNR);
50 }
51 
52 /* Data-side / unified region attributes */
53 
54 /* Region access control register */
55 static inline void dracr_write(u32 v)
56 {
57 	write_sysreg(v, DRACR);
58 }
59 
60 /* Region size register */
61 static inline void drsr_write(u32 v)
62 {
63 	write_sysreg(v, DRSR);
64 }
65 
66 /* Region base address register */
67 static inline void drbar_write(u32 v)
68 {
69 	write_sysreg(v, DRBAR);
70 }
71 
72 static inline u32 drbar_read(void)
73 {
74 	return read_sysreg(DRBAR);
75 }
76 /* Optional instruction-side region attributes */
77 
78 /* I-side Region access control register */
79 static inline void iracr_write(u32 v)
80 {
81 	write_sysreg(v, IRACR);
82 }
83 
84 /* I-side Region size register */
85 static inline void irsr_write(u32 v)
86 {
87 	write_sysreg(v, IRSR);
88 }
89 
90 /* I-side Region base address register */
91 static inline void irbar_write(u32 v)
92 {
93 	write_sysreg(v, IRBAR);
94 }
95 
96 static inline u32 irbar_read(void)
97 {
98 	return read_sysreg(IRBAR);
99 }
100 
101 #else
102 
103 static inline void rgnr_write(u32 v)
104 {
105 	writel_relaxed(v, BASEADDR_V7M_SCB + PMSAv7_RNR);
106 }
107 
108 /* Data-side / unified region attributes */
109 
110 /* Region access control register */
111 static inline void dracr_write(u32 v)
112 {
113 	u32 rsr = readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RASR) & GENMASK(15, 0);
114 
115 	writel_relaxed((v << 16) | rsr, BASEADDR_V7M_SCB + PMSAv7_RASR);
116 }
117 
118 /* Region size register */
119 static inline void drsr_write(u32 v)
120 {
121 	u32 racr = readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RASR) & GENMASK(31, 16);
122 
123 	writel_relaxed(v | racr, BASEADDR_V7M_SCB + PMSAv7_RASR);
124 }
125 
126 /* Region base address register */
127 static inline void drbar_write(u32 v)
128 {
129 	writel_relaxed(v, BASEADDR_V7M_SCB + PMSAv7_RBAR);
130 }
131 
132 static inline u32 drbar_read(void)
133 {
134 	return readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RBAR);
135 }
136 
137 /* ARMv7-M only supports a unified MPU, so I-side operations are nop */
138 
139 static inline void iracr_write(u32 v) {}
140 static inline void irsr_write(u32 v) {}
141 static inline void irbar_write(u32 v) {}
142 static inline unsigned long irbar_read(void) {return 0;}
143 
144 #endif
145 
146 static bool __init try_split_region(phys_addr_t base, phys_addr_t size, struct region *region)
147 {
148 	unsigned long  subreg, bslots, sslots;
149 	phys_addr_t abase = base & ~(size - 1);
150 	phys_addr_t asize = base + size - abase;
151 	phys_addr_t p2size = 1 << __fls(asize);
152 	phys_addr_t bdiff, sdiff;
153 
154 	if (p2size != asize)
155 		p2size *= 2;
156 
157 	bdiff = base - abase;
158 	sdiff = p2size - asize;
159 	subreg = p2size / PMSAv7_NR_SUBREGS;
160 
161 	if ((bdiff % subreg) || (sdiff % subreg))
162 		return false;
163 
164 	bslots = bdiff / subreg;
165 	sslots = sdiff / subreg;
166 
167 	if (bslots || sslots) {
168 		int i;
169 
170 		if (subreg < PMSAv7_MIN_SUBREG_SIZE)
171 			return false;
172 
173 		if (bslots + sslots > PMSAv7_NR_SUBREGS)
174 			return false;
175 
176 		for (i = 0; i < bslots; i++)
177 			_set_bit(i, &region->subreg);
178 
179 		for (i = 1; i <= sslots; i++)
180 			_set_bit(PMSAv7_NR_SUBREGS - i, &region->subreg);
181 	}
182 
183 	region->base = abase;
184 	region->size = p2size;
185 
186 	return true;
187 }
188 
189 static int __init allocate_region(phys_addr_t base, phys_addr_t size,
190 				  unsigned int limit, struct region *regions)
191 {
192 	int count = 0;
193 	phys_addr_t diff = size;
194 	int attempts = MPU_MAX_REGIONS;
195 
196 	while (diff) {
197 		/* Try cover region as is (maybe with help of subregions) */
198 		if (try_split_region(base, size, &regions[count])) {
199 			count++;
200 			base += size;
201 			diff -= size;
202 			size = diff;
203 		} else {
204 			/*
205 			 * Maximum aligned region might overflow phys_addr_t
206 			 * if "base" is 0. Hence we keep everything below 4G
207 			 * until we take the smaller of the aligned region
208 			 * size ("asize") and rounded region size ("p2size"),
209 			 * one of which is guaranteed to be smaller than the
210 			 * maximum physical address.
211 			 */
212 			phys_addr_t asize = (base - 1) ^ base;
213 			phys_addr_t p2size = (1 <<  __fls(diff)) - 1;
214 
215 			size = asize < p2size ? asize + 1 : p2size + 1;
216 		}
217 
218 		if (count > limit)
219 			break;
220 
221 		if (!attempts)
222 			break;
223 
224 		attempts--;
225 	}
226 
227 	return count;
228 }
229 
230 /* MPU initialisation functions */
231 void __init pmsav7_adjust_lowmem_bounds(void)
232 {
233 	phys_addr_t  specified_mem_size = 0, total_mem_size = 0;
234 	phys_addr_t mem_start;
235 	phys_addr_t mem_end;
236 	phys_addr_t reg_start, reg_end;
237 	unsigned int mem_max_regions;
238 	int num;
239 	u64 i;
240 
241 	/* Free-up PMSAv7_PROBE_REGION */
242 	mpu_min_region_order = __mpu_min_region_order();
243 
244 	/* How many regions are supported */
245 	mpu_max_regions = __mpu_max_regions();
246 
247 	mem_max_regions = min((unsigned int)MPU_MAX_REGIONS, mpu_max_regions);
248 
249 	/* We need to keep one slot for background region */
250 	mem_max_regions--;
251 
252 #ifndef CONFIG_CPU_V7M
253 	/* ... and one for vectors */
254 	mem_max_regions--;
255 #endif
256 
257 #ifdef CONFIG_XIP_KERNEL
258 	/* plus some regions to cover XIP ROM */
259 	num = allocate_region(CONFIG_XIP_PHYS_ADDR, __pa(_exiprom) - CONFIG_XIP_PHYS_ADDR,
260 			      mem_max_regions, xip);
261 
262 	mem_max_regions -= num;
263 #endif
264 
265 	for_each_mem_range(i, &reg_start, &reg_end) {
266 		if (i == 0) {
267 			phys_addr_t phys_offset = PHYS_OFFSET;
268 
269 			/*
270 			 * Initially only use memory continuous from
271 			 * PHYS_OFFSET */
272 			if (reg_start != phys_offset)
273 				panic("First memory bank must be contiguous from PHYS_OFFSET");
274 
275 			mem_start = reg_start;
276 			mem_end = reg_end;
277 			specified_mem_size = mem_end - mem_start;
278 		} else {
279 			/*
280 			 * memblock auto merges contiguous blocks, remove
281 			 * all blocks afterwards in one go (we can't remove
282 			 * blocks separately while iterating)
283 			 */
284 			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
285 				  &mem_end, &reg_start);
286 			memblock_remove(reg_start, 0 - reg_start);
287 			break;
288 		}
289 	}
290 
291 	memset(mem, 0, sizeof(mem));
292 	num = allocate_region(mem_start, specified_mem_size, mem_max_regions, mem);
293 
294 	for (i = 0; i < num; i++) {
295 		unsigned long  subreg = mem[i].size / PMSAv7_NR_SUBREGS;
296 
297 		total_mem_size += mem[i].size - subreg * hweight_long(mem[i].subreg);
298 
299 		pr_debug("MPU: base %pa size %pa disable subregions: %*pbl\n",
300 			 &mem[i].base, &mem[i].size, PMSAv7_NR_SUBREGS, &mem[i].subreg);
301 	}
302 
303 	if (total_mem_size != specified_mem_size) {
304 		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
305 				&specified_mem_size, &total_mem_size);
306 		memblock_remove(mem_start + total_mem_size,
307 				specified_mem_size - total_mem_size);
308 	}
309 }
310 
311 static int __init __mpu_max_regions(void)
312 {
313 	/*
314 	 * We don't support a different number of I/D side regions so if we
315 	 * have separate instruction and data memory maps then return
316 	 * whichever side has a smaller number of supported regions.
317 	 */
318 	u32 dregions, iregions, mpuir;
319 
320 	mpuir = read_cpuid_mputype();
321 
322 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
323 
324 	/* Check for separate d-side and i-side memory maps */
325 	if (mpuir & MPUIR_nU)
326 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
327 
328 	/* Use the smallest of the two maxima */
329 	return min(dregions, iregions);
330 }
331 
332 static int __init mpu_iside_independent(void)
333 {
334 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
335 	return read_cpuid_mputype() & MPUIR_nU;
336 }
337 
338 static int __init __mpu_min_region_order(void)
339 {
340 	u32 drbar_result, irbar_result;
341 
342 	/* We've kept a region free for this probing */
343 	rgnr_write(PMSAv7_PROBE_REGION);
344 	isb();
345 	/*
346 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
347 	 * region order
348 	*/
349 	drbar_write(0xFFFFFFFC);
350 	drbar_result = irbar_result = drbar_read();
351 	drbar_write(0x0);
352 	/* If the MPU is non-unified, we use the larger of the two minima*/
353 	if (mpu_iside_independent()) {
354 		irbar_write(0xFFFFFFFC);
355 		irbar_result = irbar_read();
356 		irbar_write(0x0);
357 	}
358 	isb(); /* Ensure that MPU region operations have completed */
359 	/* Return whichever result is larger */
360 
361 	return __ffs(max(drbar_result, irbar_result));
362 }
363 
364 static int __init mpu_setup_region(unsigned int number, phys_addr_t start,
365 				   unsigned int size_order, unsigned int properties,
366 				   unsigned int subregions, bool need_flush)
367 {
368 	u32 size_data;
369 
370 	/* We kept a region free for probing resolution of MPU regions*/
371 	if (number > mpu_max_regions
372 	    || number >= MPU_MAX_REGIONS)
373 		return -ENOENT;
374 
375 	if (size_order > 32)
376 		return -ENOMEM;
377 
378 	if (size_order < mpu_min_region_order)
379 		return -ENOMEM;
380 
381 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
382 	size_data = ((size_order - 1) << PMSAv7_RSR_SZ) | 1 << PMSAv7_RSR_EN;
383 	size_data |= subregions << PMSAv7_RSR_SD;
384 
385 	if (need_flush)
386 		flush_cache_all();
387 
388 	dsb(); /* Ensure all previous data accesses occur with old mappings */
389 	rgnr_write(number);
390 	isb();
391 	drbar_write(start);
392 	dracr_write(properties);
393 	isb(); /* Propagate properties before enabling region */
394 	drsr_write(size_data);
395 
396 	/* Check for independent I-side registers */
397 	if (mpu_iside_independent()) {
398 		irbar_write(start);
399 		iracr_write(properties);
400 		isb();
401 		irsr_write(size_data);
402 	}
403 	isb();
404 
405 	/* Store region info (we treat i/d side the same, so only store d) */
406 	mpu_rgn_info.rgns[number].dracr = properties;
407 	mpu_rgn_info.rgns[number].drbar = start;
408 	mpu_rgn_info.rgns[number].drsr = size_data;
409 
410 	mpu_rgn_info.used++;
411 
412 	return 0;
413 }
414 
415 /*
416 * Set up default MPU regions, doing nothing if there is no MPU
417 */
418 void __init pmsav7_setup(void)
419 {
420 	int i, region = 0, err = 0;
421 
422 	/* Setup MPU (order is important) */
423 
424 	/* Background */
425 	err |= mpu_setup_region(region++, 0, 32,
426 				PMSAv7_ACR_XN | PMSAv7_RGN_STRONGLY_ORDERED | PMSAv7_AP_PL1RW_PL0RW,
427 				0, false);
428 
429 #ifdef CONFIG_XIP_KERNEL
430 	/* ROM */
431 	for (i = 0; i < ARRAY_SIZE(xip); i++) {
432 		/*
433                  * In case we overwrite RAM region we set earlier in
434                  * head-nommu.S (which is cachable) all subsequent
435                  * data access till we setup RAM bellow would be done
436                  * with BG region (which is uncachable), thus we need
437                  * to clean and invalidate cache.
438 		 */
439 		bool need_flush = region == PMSAv7_RAM_REGION;
440 
441 		if (!xip[i].size)
442 			continue;
443 
444 		err |= mpu_setup_region(region++, xip[i].base, ilog2(xip[i].size),
445 					PMSAv7_AP_PL1RO_PL0NA | PMSAv7_RGN_NORMAL,
446 					xip[i].subreg, need_flush);
447 	}
448 #endif
449 
450 	/* RAM */
451 	for (i = 0; i < ARRAY_SIZE(mem); i++) {
452 		if (!mem[i].size)
453 			continue;
454 
455 		err |= mpu_setup_region(region++, mem[i].base, ilog2(mem[i].size),
456 					PMSAv7_AP_PL1RW_PL0RW | PMSAv7_RGN_NORMAL,
457 					mem[i].subreg, false);
458 	}
459 
460 	/* Vectors */
461 #ifndef CONFIG_CPU_V7M
462 	err |= mpu_setup_region(region++, vectors_base, ilog2(2 * PAGE_SIZE),
463 				PMSAv7_AP_PL1RW_PL0NA | PMSAv7_RGN_NORMAL,
464 				0, false);
465 #endif
466 	if (err) {
467 		panic("MPU region initialization failure! %d", err);
468 	} else {
469 		pr_info("Using ARMv7 PMSA Compliant MPU. "
470 			 "Region independence: %s, Used %d of %d regions\n",
471 			mpu_iside_independent() ? "Yes" : "No",
472 			mpu_rgn_info.used, mpu_max_regions);
473 	}
474 }
475