xref: /linux/arch/arm/mm/nommu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/arch/arm/mm/nommu.c
3  *
4  * ARM uCLinux supporting functions.
5  */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
12 
13 #include <asm/cacheflush.h>
14 #include <asm/sections.h>
15 #include <asm/page.h>
16 #include <asm/setup.h>
17 #include <asm/traps.h>
18 #include <asm/mach/arch.h>
19 #include <asm/cputype.h>
20 #include <asm/mpu.h>
21 #include <asm/procinfo.h>
22 
23 #include "mm.h"
24 
25 #ifdef CONFIG_ARM_MPU
26 struct mpu_rgn_info mpu_rgn_info;
27 
28 /* Region number */
29 static void rgnr_write(u32 v)
30 {
31 	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
32 }
33 
34 /* Data-side / unified region attributes */
35 
36 /* Region access control register */
37 static void dracr_write(u32 v)
38 {
39 	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
40 }
41 
42 /* Region size register */
43 static void drsr_write(u32 v)
44 {
45 	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
46 }
47 
48 /* Region base address register */
49 static void drbar_write(u32 v)
50 {
51 	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
52 }
53 
54 static u32 drbar_read(void)
55 {
56 	u32 v;
57 	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
58 	return v;
59 }
60 /* Optional instruction-side region attributes */
61 
62 /* I-side Region access control register */
63 static void iracr_write(u32 v)
64 {
65 	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
66 }
67 
68 /* I-side Region size register */
69 static void irsr_write(u32 v)
70 {
71 	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
72 }
73 
74 /* I-side Region base address register */
75 static void irbar_write(u32 v)
76 {
77 	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
78 }
79 
80 static unsigned long irbar_read(void)
81 {
82 	unsigned long v;
83 	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
84 	return v;
85 }
86 
87 /* MPU initialisation functions */
88 void __init sanity_check_meminfo_mpu(void)
89 {
90 	phys_addr_t phys_offset = PHYS_OFFSET;
91 	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
92 	struct memblock_region *reg;
93 	bool first = true;
94 	phys_addr_t mem_start;
95 	phys_addr_t mem_end;
96 
97 	for_each_memblock(memory, reg) {
98 		if (first) {
99 			/*
100 			 * Initially only use memory continuous from
101 			 * PHYS_OFFSET */
102 			if (reg->base != phys_offset)
103 				panic("First memory bank must be contiguous from PHYS_OFFSET");
104 
105 			mem_start = reg->base;
106 			mem_end = reg->base + reg->size;
107 			specified_mem_size = reg->size;
108 			first = false;
109 		} else {
110 			/*
111 			 * memblock auto merges contiguous blocks, remove
112 			 * all blocks afterwards in one go (we can't remove
113 			 * blocks separately while iterating)
114 			 */
115 			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
116 				  &mem_end, &reg->base);
117 			memblock_remove(reg->base, 0 - reg->base);
118 			break;
119 		}
120 	}
121 
122 	/*
123 	 * MPU has curious alignment requirements: Size must be power of 2, and
124 	 * region start must be aligned to the region size
125 	 */
126 	if (phys_offset != 0)
127 		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
128 
129 	/*
130 	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
131 	 * 0. Hence we keep everything below 4G until we take the smaller of
132 	 * the aligned_region_size and rounded_mem_size, one of which is
133 	 * guaranteed to be smaller than the maximum physical address.
134 	 */
135 	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
136 	/* Find the max power-of-two sized region that fits inside our bank */
137 	rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1;
138 
139 	/* The actual region size is the smaller of the two */
140 	aligned_region_size = aligned_region_size < rounded_mem_size
141 				? aligned_region_size + 1
142 				: rounded_mem_size + 1;
143 
144 	if (aligned_region_size != specified_mem_size) {
145 		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
146 				&specified_mem_size, &aligned_region_size);
147 		memblock_remove(mem_start + aligned_region_size,
148 				specified_mem_size - aligned_region_size);
149 
150 		mem_end = mem_start + aligned_region_size;
151 	}
152 
153 	pr_debug("MPU Region from %pa size %pa (end %pa))\n",
154 		&phys_offset, &aligned_region_size, &mem_end);
155 
156 }
157 
158 static int mpu_present(void)
159 {
160 	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
161 }
162 
163 static int mpu_max_regions(void)
164 {
165 	/*
166 	 * We don't support a different number of I/D side regions so if we
167 	 * have separate instruction and data memory maps then return
168 	 * whichever side has a smaller number of supported regions.
169 	 */
170 	u32 dregions, iregions, mpuir;
171 	mpuir = read_cpuid(CPUID_MPUIR);
172 
173 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
174 
175 	/* Check for separate d-side and i-side memory maps */
176 	if (mpuir & MPUIR_nU)
177 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
178 
179 	/* Use the smallest of the two maxima */
180 	return min(dregions, iregions);
181 }
182 
183 static int mpu_iside_independent(void)
184 {
185 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
186 	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
187 }
188 
189 static int mpu_min_region_order(void)
190 {
191 	u32 drbar_result, irbar_result;
192 	/* We've kept a region free for this probing */
193 	rgnr_write(MPU_PROBE_REGION);
194 	isb();
195 	/*
196 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
197 	 * region order
198 	*/
199 	drbar_write(0xFFFFFFFC);
200 	drbar_result = irbar_result = drbar_read();
201 	drbar_write(0x0);
202 	/* If the MPU is non-unified, we use the larger of the two minima*/
203 	if (mpu_iside_independent()) {
204 		irbar_write(0xFFFFFFFC);
205 		irbar_result = irbar_read();
206 		irbar_write(0x0);
207 	}
208 	isb(); /* Ensure that MPU region operations have completed */
209 	/* Return whichever result is larger */
210 	return __ffs(max(drbar_result, irbar_result));
211 }
212 
213 static int mpu_setup_region(unsigned int number, phys_addr_t start,
214 			unsigned int size_order, unsigned int properties)
215 {
216 	u32 size_data;
217 
218 	/* We kept a region free for probing resolution of MPU regions*/
219 	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
220 		return -ENOENT;
221 
222 	if (size_order > 32)
223 		return -ENOMEM;
224 
225 	if (size_order < mpu_min_region_order())
226 		return -ENOMEM;
227 
228 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
229 	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
230 
231 	dsb(); /* Ensure all previous data accesses occur with old mappings */
232 	rgnr_write(number);
233 	isb();
234 	drbar_write(start);
235 	dracr_write(properties);
236 	isb(); /* Propagate properties before enabling region */
237 	drsr_write(size_data);
238 
239 	/* Check for independent I-side registers */
240 	if (mpu_iside_independent()) {
241 		irbar_write(start);
242 		iracr_write(properties);
243 		isb();
244 		irsr_write(size_data);
245 	}
246 	isb();
247 
248 	/* Store region info (we treat i/d side the same, so only store d) */
249 	mpu_rgn_info.rgns[number].dracr = properties;
250 	mpu_rgn_info.rgns[number].drbar = start;
251 	mpu_rgn_info.rgns[number].drsr = size_data;
252 	return 0;
253 }
254 
255 /*
256 * Set up default MPU regions, doing nothing if there is no MPU
257 */
258 void __init mpu_setup(void)
259 {
260 	int region_err;
261 	if (!mpu_present())
262 		return;
263 
264 	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
265 					ilog2(memblock.memory.regions[0].size),
266 					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
267 	if (region_err) {
268 		panic("MPU region initialization failure! %d", region_err);
269 	} else {
270 		pr_info("Using ARMv7 PMSA Compliant MPU. "
271 			 "Region independence: %s, Max regions: %d\n",
272 			mpu_iside_independent() ? "Yes" : "No",
273 			mpu_max_regions());
274 	}
275 }
276 #else
277 static void sanity_check_meminfo_mpu(void) {}
278 static void __init mpu_setup(void) {}
279 #endif /* CONFIG_ARM_MPU */
280 
281 void __init arm_mm_memblock_reserve(void)
282 {
283 #ifndef CONFIG_CPU_V7M
284 	/*
285 	 * Register the exception vector page.
286 	 * some architectures which the DRAM is the exception vector to trap,
287 	 * alloc_page breaks with error, although it is not NULL, but "0."
288 	 */
289 	memblock_reserve(CONFIG_VECTORS_BASE, 2 * PAGE_SIZE);
290 #else /* ifndef CONFIG_CPU_V7M */
291 	/*
292 	 * There is no dedicated vector page on V7-M. So nothing needs to be
293 	 * reserved here.
294 	 */
295 #endif
296 }
297 
298 void __init sanity_check_meminfo(void)
299 {
300 	phys_addr_t end;
301 	sanity_check_meminfo_mpu();
302 	end = memblock_end_of_DRAM();
303 	high_memory = __va(end - 1) + 1;
304 	memblock_set_current_limit(end);
305 }
306 
307 /*
308  * paging_init() sets up the page tables, initialises the zone memory
309  * maps, and sets up the zero page, bad page and bad page tables.
310  */
311 void __init paging_init(const struct machine_desc *mdesc)
312 {
313 	early_trap_init((void *)CONFIG_VECTORS_BASE);
314 	mpu_setup();
315 	bootmem_init();
316 }
317 
318 /*
319  * We don't need to do anything here for nommu machines.
320  */
321 void setup_mm_for_reboot(void)
322 {
323 }
324 
325 void flush_dcache_page(struct page *page)
326 {
327 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
328 }
329 EXPORT_SYMBOL(flush_dcache_page);
330 
331 void flush_kernel_dcache_page(struct page *page)
332 {
333 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
334 }
335 EXPORT_SYMBOL(flush_kernel_dcache_page);
336 
337 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
338 		       unsigned long uaddr, void *dst, const void *src,
339 		       unsigned long len)
340 {
341 	memcpy(dst, src, len);
342 	if (vma->vm_flags & VM_EXEC)
343 		__cpuc_coherent_user_range(uaddr, uaddr + len);
344 }
345 
346 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
347 				size_t size, unsigned int mtype)
348 {
349 	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
350 		return NULL;
351 	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
352 }
353 EXPORT_SYMBOL(__arm_ioremap_pfn);
354 
355 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
356 				   unsigned int mtype, void *caller)
357 {
358 	return (void __iomem *)phys_addr;
359 }
360 
361 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
362 
363 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
364 {
365 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
366 				    __builtin_return_address(0));
367 }
368 EXPORT_SYMBOL(ioremap);
369 
370 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
371 	__alias(ioremap_cached);
372 
373 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
374 {
375 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
376 				    __builtin_return_address(0));
377 }
378 EXPORT_SYMBOL(ioremap_cache);
379 EXPORT_SYMBOL(ioremap_cached);
380 
381 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
382 {
383 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
384 				    __builtin_return_address(0));
385 }
386 EXPORT_SYMBOL(ioremap_wc);
387 
388 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
389 {
390 	return (void *)phys_addr;
391 }
392 
393 void __iounmap(volatile void __iomem *addr)
394 {
395 }
396 EXPORT_SYMBOL(__iounmap);
397 
398 void (*arch_iounmap)(volatile void __iomem *);
399 
400 void iounmap(volatile void __iomem *addr)
401 {
402 }
403 EXPORT_SYMBOL(iounmap);
404