xref: /linux/arch/arm/mm/mmu.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
29 #include <asm/tlb.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
35 
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
40 
41 #include "fault.h"
42 #include "mm.h"
43 #include "tcm.h"
44 
45 /*
46  * empty_zero_page is a special page that is used for
47  * zero-initialized data and COW.
48  */
49 struct page *empty_zero_page;
50 EXPORT_SYMBOL(empty_zero_page);
51 
52 /*
53  * The pmd table for the upper-most set of pages.
54  */
55 pmd_t *top_pmd;
56 
57 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58 
59 #define CPOLICY_UNCACHED	0
60 #define CPOLICY_BUFFERED	1
61 #define CPOLICY_WRITETHROUGH	2
62 #define CPOLICY_WRITEBACK	3
63 #define CPOLICY_WRITEALLOC	4
64 
65 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66 static unsigned int ecc_mask __initdata = 0;
67 pgprot_t pgprot_user;
68 pgprot_t pgprot_kernel;
69 pgprot_t pgprot_hyp_device;
70 pgprot_t pgprot_s2;
71 pgprot_t pgprot_s2_device;
72 
73 EXPORT_SYMBOL(pgprot_user);
74 EXPORT_SYMBOL(pgprot_kernel);
75 
76 struct cachepolicy {
77 	const char	policy[16];
78 	unsigned int	cr_mask;
79 	pmdval_t	pmd;
80 	pteval_t	pte;
81 	pteval_t	pte_s2;
82 };
83 
84 #ifdef CONFIG_ARM_LPAE
85 #define s2_policy(policy)	policy
86 #else
87 #define s2_policy(policy)	0
88 #endif
89 
90 static struct cachepolicy cache_policies[] __initdata = {
91 	{
92 		.policy		= "uncached",
93 		.cr_mask	= CR_W|CR_C,
94 		.pmd		= PMD_SECT_UNCACHED,
95 		.pte		= L_PTE_MT_UNCACHED,
96 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
97 	}, {
98 		.policy		= "buffered",
99 		.cr_mask	= CR_C,
100 		.pmd		= PMD_SECT_BUFFERED,
101 		.pte		= L_PTE_MT_BUFFERABLE,
102 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
103 	}, {
104 		.policy		= "writethrough",
105 		.cr_mask	= 0,
106 		.pmd		= PMD_SECT_WT,
107 		.pte		= L_PTE_MT_WRITETHROUGH,
108 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
109 	}, {
110 		.policy		= "writeback",
111 		.cr_mask	= 0,
112 		.pmd		= PMD_SECT_WB,
113 		.pte		= L_PTE_MT_WRITEBACK,
114 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
115 	}, {
116 		.policy		= "writealloc",
117 		.cr_mask	= 0,
118 		.pmd		= PMD_SECT_WBWA,
119 		.pte		= L_PTE_MT_WRITEALLOC,
120 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
121 	}
122 };
123 
124 #ifdef CONFIG_CPU_CP15
125 static unsigned long initial_pmd_value __initdata = 0;
126 
127 /*
128  * Initialise the cache_policy variable with the initial state specified
129  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
130  * the C code sets the page tables up with the same policy as the head
131  * assembly code, which avoids an illegal state where the TLBs can get
132  * confused.  See comments in early_cachepolicy() for more information.
133  */
134 void __init init_default_cache_policy(unsigned long pmd)
135 {
136 	int i;
137 
138 	initial_pmd_value = pmd;
139 
140 	pmd &= PMD_SECT_CACHE_MASK;
141 
142 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
143 		if (cache_policies[i].pmd == pmd) {
144 			cachepolicy = i;
145 			break;
146 		}
147 
148 	if (i == ARRAY_SIZE(cache_policies))
149 		pr_err("ERROR: could not find cache policy\n");
150 }
151 
152 /*
153  * These are useful for identifying cache coherency problems by allowing
154  * the cache or the cache and writebuffer to be turned off.  (Note: the
155  * write buffer should not be on and the cache off).
156  */
157 static int __init early_cachepolicy(char *p)
158 {
159 	int i, selected = -1;
160 
161 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
162 		int len = strlen(cache_policies[i].policy);
163 
164 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
165 			selected = i;
166 			break;
167 		}
168 	}
169 
170 	if (selected == -1)
171 		pr_err("ERROR: unknown or unsupported cache policy\n");
172 
173 	/*
174 	 * This restriction is partly to do with the way we boot; it is
175 	 * unpredictable to have memory mapped using two different sets of
176 	 * memory attributes (shared, type, and cache attribs).  We can not
177 	 * change these attributes once the initial assembly has setup the
178 	 * page tables.
179 	 */
180 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
181 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
182 			cache_policies[cachepolicy].policy);
183 		return 0;
184 	}
185 
186 	if (selected != cachepolicy) {
187 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
188 		cachepolicy = selected;
189 		flush_cache_all();
190 		set_cr(cr);
191 	}
192 	return 0;
193 }
194 early_param("cachepolicy", early_cachepolicy);
195 
196 static int __init early_nocache(char *__unused)
197 {
198 	char *p = "buffered";
199 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
200 	early_cachepolicy(p);
201 	return 0;
202 }
203 early_param("nocache", early_nocache);
204 
205 static int __init early_nowrite(char *__unused)
206 {
207 	char *p = "uncached";
208 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
209 	early_cachepolicy(p);
210 	return 0;
211 }
212 early_param("nowb", early_nowrite);
213 
214 #ifndef CONFIG_ARM_LPAE
215 static int __init early_ecc(char *p)
216 {
217 	if (memcmp(p, "on", 2) == 0)
218 		ecc_mask = PMD_PROTECTION;
219 	else if (memcmp(p, "off", 3) == 0)
220 		ecc_mask = 0;
221 	return 0;
222 }
223 early_param("ecc", early_ecc);
224 #endif
225 
226 #else /* ifdef CONFIG_CPU_CP15 */
227 
228 static int __init early_cachepolicy(char *p)
229 {
230 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 }
232 early_param("cachepolicy", early_cachepolicy);
233 
234 static int __init noalign_setup(char *__unused)
235 {
236 	pr_warn("noalign kernel parameter not supported without cp15\n");
237 }
238 __setup("noalign", noalign_setup);
239 
240 #endif /* ifdef CONFIG_CPU_CP15 / else */
241 
242 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
243 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
244 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245 
246 static struct mem_type mem_types[] __ro_after_init = {
247 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
248 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
249 				  L_PTE_SHARED,
250 		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
251 				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
252 				  L_PTE_SHARED,
253 		.prot_l1	= PMD_TYPE_TABLE,
254 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
255 		.domain		= DOMAIN_IO,
256 	},
257 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
258 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
259 		.prot_l1	= PMD_TYPE_TABLE,
260 		.prot_sect	= PROT_SECT_DEVICE,
261 		.domain		= DOMAIN_IO,
262 	},
263 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
264 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
265 		.prot_l1	= PMD_TYPE_TABLE,
266 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
267 		.domain		= DOMAIN_IO,
268 	},
269 	[MT_DEVICE_WC] = {	/* ioremap_wc */
270 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
271 		.prot_l1	= PMD_TYPE_TABLE,
272 		.prot_sect	= PROT_SECT_DEVICE,
273 		.domain		= DOMAIN_IO,
274 	},
275 	[MT_UNCACHED] = {
276 		.prot_pte	= PROT_PTE_DEVICE,
277 		.prot_l1	= PMD_TYPE_TABLE,
278 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
279 		.domain		= DOMAIN_IO,
280 	},
281 	[MT_CACHECLEAN] = {
282 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
283 		.domain    = DOMAIN_KERNEL,
284 	},
285 #ifndef CONFIG_ARM_LPAE
286 	[MT_MINICLEAN] = {
287 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
288 		.domain    = DOMAIN_KERNEL,
289 	},
290 #endif
291 	[MT_LOW_VECTORS] = {
292 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
293 				L_PTE_RDONLY,
294 		.prot_l1   = PMD_TYPE_TABLE,
295 		.domain    = DOMAIN_VECTORS,
296 	},
297 	[MT_HIGH_VECTORS] = {
298 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299 				L_PTE_USER | L_PTE_RDONLY,
300 		.prot_l1   = PMD_TYPE_TABLE,
301 		.domain    = DOMAIN_VECTORS,
302 	},
303 	[MT_MEMORY_RWX] = {
304 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
305 		.prot_l1   = PMD_TYPE_TABLE,
306 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
307 		.domain    = DOMAIN_KERNEL,
308 	},
309 	[MT_MEMORY_RW] = {
310 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
311 			     L_PTE_XN,
312 		.prot_l1   = PMD_TYPE_TABLE,
313 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
314 		.domain    = DOMAIN_KERNEL,
315 	},
316 	[MT_ROM] = {
317 		.prot_sect = PMD_TYPE_SECT,
318 		.domain    = DOMAIN_KERNEL,
319 	},
320 	[MT_MEMORY_RWX_NONCACHED] = {
321 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322 				L_PTE_MT_BUFFERABLE,
323 		.prot_l1   = PMD_TYPE_TABLE,
324 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
325 		.domain    = DOMAIN_KERNEL,
326 	},
327 	[MT_MEMORY_RW_DTCM] = {
328 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329 				L_PTE_XN,
330 		.prot_l1   = PMD_TYPE_TABLE,
331 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
332 		.domain    = DOMAIN_KERNEL,
333 	},
334 	[MT_MEMORY_RWX_ITCM] = {
335 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
336 		.prot_l1   = PMD_TYPE_TABLE,
337 		.domain    = DOMAIN_KERNEL,
338 	},
339 	[MT_MEMORY_RW_SO] = {
340 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341 				L_PTE_MT_UNCACHED | L_PTE_XN,
342 		.prot_l1   = PMD_TYPE_TABLE,
343 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
344 				PMD_SECT_UNCACHED | PMD_SECT_XN,
345 		.domain    = DOMAIN_KERNEL,
346 	},
347 	[MT_MEMORY_DMA_READY] = {
348 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
349 				L_PTE_XN,
350 		.prot_l1   = PMD_TYPE_TABLE,
351 		.domain    = DOMAIN_KERNEL,
352 	},
353 };
354 
355 const struct mem_type *get_mem_type(unsigned int type)
356 {
357 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
358 }
359 EXPORT_SYMBOL(get_mem_type);
360 
361 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
362 
363 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
364 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
365 
366 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
367 {
368 	return &bm_pte[pte_index(addr)];
369 }
370 
371 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
372 {
373 	return pte_offset_kernel(dir, addr);
374 }
375 
376 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
377 {
378 	pgd_t *pgd = pgd_offset_k(addr);
379 	pud_t *pud = pud_offset(pgd, addr);
380 	pmd_t *pmd = pmd_offset(pud, addr);
381 
382 	return pmd;
383 }
384 
385 void __init early_fixmap_init(void)
386 {
387 	pmd_t *pmd;
388 
389 	/*
390 	 * The early fixmap range spans multiple pmds, for which
391 	 * we are not prepared:
392 	 */
393 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
394 		     != FIXADDR_TOP >> PMD_SHIFT);
395 
396 	pmd = fixmap_pmd(FIXADDR_TOP);
397 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
398 
399 	pte_offset_fixmap = pte_offset_early_fixmap;
400 }
401 
402 /*
403  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
404  * As a result, this can only be called with preemption disabled, as under
405  * stop_machine().
406  */
407 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
408 {
409 	unsigned long vaddr = __fix_to_virt(idx);
410 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
411 
412 	/* Make sure fixmap region does not exceed available allocation. */
413 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
414 		     FIXADDR_END);
415 	BUG_ON(idx >= __end_of_fixed_addresses);
416 
417 	if (pgprot_val(prot))
418 		set_pte_at(NULL, vaddr, pte,
419 			pfn_pte(phys >> PAGE_SHIFT, prot));
420 	else
421 		pte_clear(NULL, vaddr, pte);
422 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
423 }
424 
425 /*
426  * Adjust the PMD section entries according to the CPU in use.
427  */
428 static void __init build_mem_type_table(void)
429 {
430 	struct cachepolicy *cp;
431 	unsigned int cr = get_cr();
432 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
433 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
434 	int cpu_arch = cpu_architecture();
435 	int i;
436 
437 	if (cpu_arch < CPU_ARCH_ARMv6) {
438 #if defined(CONFIG_CPU_DCACHE_DISABLE)
439 		if (cachepolicy > CPOLICY_BUFFERED)
440 			cachepolicy = CPOLICY_BUFFERED;
441 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
442 		if (cachepolicy > CPOLICY_WRITETHROUGH)
443 			cachepolicy = CPOLICY_WRITETHROUGH;
444 #endif
445 	}
446 	if (cpu_arch < CPU_ARCH_ARMv5) {
447 		if (cachepolicy >= CPOLICY_WRITEALLOC)
448 			cachepolicy = CPOLICY_WRITEBACK;
449 		ecc_mask = 0;
450 	}
451 
452 	if (is_smp()) {
453 		if (cachepolicy != CPOLICY_WRITEALLOC) {
454 			pr_warn("Forcing write-allocate cache policy for SMP\n");
455 			cachepolicy = CPOLICY_WRITEALLOC;
456 		}
457 		if (!(initial_pmd_value & PMD_SECT_S)) {
458 			pr_warn("Forcing shared mappings for SMP\n");
459 			initial_pmd_value |= PMD_SECT_S;
460 		}
461 	}
462 
463 	/*
464 	 * Strip out features not present on earlier architectures.
465 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
466 	 * without extended page tables don't have the 'Shared' bit.
467 	 */
468 	if (cpu_arch < CPU_ARCH_ARMv5)
469 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
470 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
471 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
472 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
473 			mem_types[i].prot_sect &= ~PMD_SECT_S;
474 
475 	/*
476 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
477 	 * "update-able on write" bit on ARM610).  However, Xscale and
478 	 * Xscale3 require this bit to be cleared.
479 	 */
480 	if (cpu_is_xscale_family()) {
481 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
482 			mem_types[i].prot_sect &= ~PMD_BIT4;
483 			mem_types[i].prot_l1 &= ~PMD_BIT4;
484 		}
485 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
486 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
487 			if (mem_types[i].prot_l1)
488 				mem_types[i].prot_l1 |= PMD_BIT4;
489 			if (mem_types[i].prot_sect)
490 				mem_types[i].prot_sect |= PMD_BIT4;
491 		}
492 	}
493 
494 	/*
495 	 * Mark the device areas according to the CPU/architecture.
496 	 */
497 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
498 		if (!cpu_is_xsc3()) {
499 			/*
500 			 * Mark device regions on ARMv6+ as execute-never
501 			 * to prevent speculative instruction fetches.
502 			 */
503 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
504 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
505 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
506 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
507 
508 			/* Also setup NX memory mapping */
509 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
510 		}
511 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
512 			/*
513 			 * For ARMv7 with TEX remapping,
514 			 * - shared device is SXCB=1100
515 			 * - nonshared device is SXCB=0100
516 			 * - write combine device mem is SXCB=0001
517 			 * (Uncached Normal memory)
518 			 */
519 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
520 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
521 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
522 		} else if (cpu_is_xsc3()) {
523 			/*
524 			 * For Xscale3,
525 			 * - shared device is TEXCB=00101
526 			 * - nonshared device is TEXCB=01000
527 			 * - write combine device mem is TEXCB=00100
528 			 * (Inner/Outer Uncacheable in xsc3 parlance)
529 			 */
530 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
531 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
532 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
533 		} else {
534 			/*
535 			 * For ARMv6 and ARMv7 without TEX remapping,
536 			 * - shared device is TEXCB=00001
537 			 * - nonshared device is TEXCB=01000
538 			 * - write combine device mem is TEXCB=00100
539 			 * (Uncached Normal in ARMv6 parlance).
540 			 */
541 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
542 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
543 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
544 		}
545 	} else {
546 		/*
547 		 * On others, write combining is "Uncached/Buffered"
548 		 */
549 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
550 	}
551 
552 	/*
553 	 * Now deal with the memory-type mappings
554 	 */
555 	cp = &cache_policies[cachepolicy];
556 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
557 	s2_pgprot = cp->pte_s2;
558 	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
559 	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
560 
561 #ifndef CONFIG_ARM_LPAE
562 	/*
563 	 * We don't use domains on ARMv6 (since this causes problems with
564 	 * v6/v7 kernels), so we must use a separate memory type for user
565 	 * r/o, kernel r/w to map the vectors page.
566 	 */
567 	if (cpu_arch == CPU_ARCH_ARMv6)
568 		vecs_pgprot |= L_PTE_MT_VECTORS;
569 
570 	/*
571 	 * Check is it with support for the PXN bit
572 	 * in the Short-descriptor translation table format descriptors.
573 	 */
574 	if (cpu_arch == CPU_ARCH_ARMv7 &&
575 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
576 		user_pmd_table |= PMD_PXNTABLE;
577 	}
578 #endif
579 
580 	/*
581 	 * ARMv6 and above have extended page tables.
582 	 */
583 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
584 #ifndef CONFIG_ARM_LPAE
585 		/*
586 		 * Mark cache clean areas and XIP ROM read only
587 		 * from SVC mode and no access from userspace.
588 		 */
589 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
590 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
591 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
592 #endif
593 
594 		/*
595 		 * If the initial page tables were created with the S bit
596 		 * set, then we need to do the same here for the same
597 		 * reasons given in early_cachepolicy().
598 		 */
599 		if (initial_pmd_value & PMD_SECT_S) {
600 			user_pgprot |= L_PTE_SHARED;
601 			kern_pgprot |= L_PTE_SHARED;
602 			vecs_pgprot |= L_PTE_SHARED;
603 			s2_pgprot |= L_PTE_SHARED;
604 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
605 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
606 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
607 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
608 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
609 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
610 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
611 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
612 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
613 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
614 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
615 		}
616 	}
617 
618 	/*
619 	 * Non-cacheable Normal - intended for memory areas that must
620 	 * not cause dirty cache line writebacks when used
621 	 */
622 	if (cpu_arch >= CPU_ARCH_ARMv6) {
623 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
624 			/* Non-cacheable Normal is XCB = 001 */
625 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
626 				PMD_SECT_BUFFERED;
627 		} else {
628 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
629 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
630 				PMD_SECT_TEX(1);
631 		}
632 	} else {
633 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
634 	}
635 
636 #ifdef CONFIG_ARM_LPAE
637 	/*
638 	 * Do not generate access flag faults for the kernel mappings.
639 	 */
640 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
641 		mem_types[i].prot_pte |= PTE_EXT_AF;
642 		if (mem_types[i].prot_sect)
643 			mem_types[i].prot_sect |= PMD_SECT_AF;
644 	}
645 	kern_pgprot |= PTE_EXT_AF;
646 	vecs_pgprot |= PTE_EXT_AF;
647 
648 	/*
649 	 * Set PXN for user mappings
650 	 */
651 	user_pgprot |= PTE_EXT_PXN;
652 #endif
653 
654 	for (i = 0; i < 16; i++) {
655 		pteval_t v = pgprot_val(protection_map[i]);
656 		protection_map[i] = __pgprot(v | user_pgprot);
657 	}
658 
659 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
660 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
661 
662 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
663 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
664 				 L_PTE_DIRTY | kern_pgprot);
665 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
666 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
667 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
668 
669 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
670 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
671 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
672 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
673 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
674 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
675 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
676 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
677 	mem_types[MT_ROM].prot_sect |= cp->pmd;
678 
679 	switch (cp->pmd) {
680 	case PMD_SECT_WT:
681 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
682 		break;
683 	case PMD_SECT_WB:
684 	case PMD_SECT_WBWA:
685 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
686 		break;
687 	}
688 	pr_info("Memory policy: %sData cache %s\n",
689 		ecc_mask ? "ECC enabled, " : "", cp->policy);
690 
691 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
692 		struct mem_type *t = &mem_types[i];
693 		if (t->prot_l1)
694 			t->prot_l1 |= PMD_DOMAIN(t->domain);
695 		if (t->prot_sect)
696 			t->prot_sect |= PMD_DOMAIN(t->domain);
697 	}
698 }
699 
700 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
701 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
702 			      unsigned long size, pgprot_t vma_prot)
703 {
704 	if (!pfn_valid(pfn))
705 		return pgprot_noncached(vma_prot);
706 	else if (file->f_flags & O_SYNC)
707 		return pgprot_writecombine(vma_prot);
708 	return vma_prot;
709 }
710 EXPORT_SYMBOL(phys_mem_access_prot);
711 #endif
712 
713 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
714 
715 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
716 {
717 	void *ptr = __va(memblock_alloc(sz, align));
718 	memset(ptr, 0, sz);
719 	return ptr;
720 }
721 
722 static void __init *early_alloc(unsigned long sz)
723 {
724 	return early_alloc_aligned(sz, sz);
725 }
726 
727 static void *__init late_alloc(unsigned long sz)
728 {
729 	void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
730 
731 	if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
732 		BUG();
733 	return ptr;
734 }
735 
736 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
737 				unsigned long prot,
738 				void *(*alloc)(unsigned long sz))
739 {
740 	if (pmd_none(*pmd)) {
741 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
742 		__pmd_populate(pmd, __pa(pte), prot);
743 	}
744 	BUG_ON(pmd_bad(*pmd));
745 	return pte_offset_kernel(pmd, addr);
746 }
747 
748 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
749 				      unsigned long prot)
750 {
751 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
752 }
753 
754 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
755 				  unsigned long end, unsigned long pfn,
756 				  const struct mem_type *type,
757 				  void *(*alloc)(unsigned long sz),
758 				  bool ng)
759 {
760 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
761 	do {
762 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
763 			    ng ? PTE_EXT_NG : 0);
764 		pfn++;
765 	} while (pte++, addr += PAGE_SIZE, addr != end);
766 }
767 
768 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
769 			unsigned long end, phys_addr_t phys,
770 			const struct mem_type *type, bool ng)
771 {
772 	pmd_t *p = pmd;
773 
774 #ifndef CONFIG_ARM_LPAE
775 	/*
776 	 * In classic MMU format, puds and pmds are folded in to
777 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
778 	 * group of L1 entries making up one logical pointer to
779 	 * an L2 table (2MB), where as PMDs refer to the individual
780 	 * L1 entries (1MB). Hence increment to get the correct
781 	 * offset for odd 1MB sections.
782 	 * (See arch/arm/include/asm/pgtable-2level.h)
783 	 */
784 	if (addr & SECTION_SIZE)
785 		pmd++;
786 #endif
787 	do {
788 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
789 		phys += SECTION_SIZE;
790 	} while (pmd++, addr += SECTION_SIZE, addr != end);
791 
792 	flush_pmd_entry(p);
793 }
794 
795 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
796 				      unsigned long end, phys_addr_t phys,
797 				      const struct mem_type *type,
798 				      void *(*alloc)(unsigned long sz), bool ng)
799 {
800 	pmd_t *pmd = pmd_offset(pud, addr);
801 	unsigned long next;
802 
803 	do {
804 		/*
805 		 * With LPAE, we must loop over to map
806 		 * all the pmds for the given range.
807 		 */
808 		next = pmd_addr_end(addr, end);
809 
810 		/*
811 		 * Try a section mapping - addr, next and phys must all be
812 		 * aligned to a section boundary.
813 		 */
814 		if (type->prot_sect &&
815 				((addr | next | phys) & ~SECTION_MASK) == 0) {
816 			__map_init_section(pmd, addr, next, phys, type, ng);
817 		} else {
818 			alloc_init_pte(pmd, addr, next,
819 				       __phys_to_pfn(phys), type, alloc, ng);
820 		}
821 
822 		phys += next - addr;
823 
824 	} while (pmd++, addr = next, addr != end);
825 }
826 
827 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
828 				  unsigned long end, phys_addr_t phys,
829 				  const struct mem_type *type,
830 				  void *(*alloc)(unsigned long sz), bool ng)
831 {
832 	pud_t *pud = pud_offset(pgd, addr);
833 	unsigned long next;
834 
835 	do {
836 		next = pud_addr_end(addr, end);
837 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
838 		phys += next - addr;
839 	} while (pud++, addr = next, addr != end);
840 }
841 
842 #ifndef CONFIG_ARM_LPAE
843 static void __init create_36bit_mapping(struct mm_struct *mm,
844 					struct map_desc *md,
845 					const struct mem_type *type,
846 					bool ng)
847 {
848 	unsigned long addr, length, end;
849 	phys_addr_t phys;
850 	pgd_t *pgd;
851 
852 	addr = md->virtual;
853 	phys = __pfn_to_phys(md->pfn);
854 	length = PAGE_ALIGN(md->length);
855 
856 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
857 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
858 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
859 		return;
860 	}
861 
862 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
863 	 *	Since domain assignments can in fact be arbitrary, the
864 	 *	'domain == 0' check below is required to insure that ARMv6
865 	 *	supersections are only allocated for domain 0 regardless
866 	 *	of the actual domain assignments in use.
867 	 */
868 	if (type->domain) {
869 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
870 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
871 		return;
872 	}
873 
874 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
875 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
876 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
877 		return;
878 	}
879 
880 	/*
881 	 * Shift bits [35:32] of address into bits [23:20] of PMD
882 	 * (See ARMv6 spec).
883 	 */
884 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
885 
886 	pgd = pgd_offset(mm, addr);
887 	end = addr + length;
888 	do {
889 		pud_t *pud = pud_offset(pgd, addr);
890 		pmd_t *pmd = pmd_offset(pud, addr);
891 		int i;
892 
893 		for (i = 0; i < 16; i++)
894 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
895 				       (ng ? PMD_SECT_nG : 0));
896 
897 		addr += SUPERSECTION_SIZE;
898 		phys += SUPERSECTION_SIZE;
899 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
900 	} while (addr != end);
901 }
902 #endif	/* !CONFIG_ARM_LPAE */
903 
904 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
905 				    void *(*alloc)(unsigned long sz),
906 				    bool ng)
907 {
908 	unsigned long addr, length, end;
909 	phys_addr_t phys;
910 	const struct mem_type *type;
911 	pgd_t *pgd;
912 
913 	type = &mem_types[md->type];
914 
915 #ifndef CONFIG_ARM_LPAE
916 	/*
917 	 * Catch 36-bit addresses
918 	 */
919 	if (md->pfn >= 0x100000) {
920 		create_36bit_mapping(mm, md, type, ng);
921 		return;
922 	}
923 #endif
924 
925 	addr = md->virtual & PAGE_MASK;
926 	phys = __pfn_to_phys(md->pfn);
927 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
928 
929 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
930 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
931 			(long long)__pfn_to_phys(md->pfn), addr);
932 		return;
933 	}
934 
935 	pgd = pgd_offset(mm, addr);
936 	end = addr + length;
937 	do {
938 		unsigned long next = pgd_addr_end(addr, end);
939 
940 		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
941 
942 		phys += next - addr;
943 		addr = next;
944 	} while (pgd++, addr != end);
945 }
946 
947 /*
948  * Create the page directory entries and any necessary
949  * page tables for the mapping specified by `md'.  We
950  * are able to cope here with varying sizes and address
951  * offsets, and we take full advantage of sections and
952  * supersections.
953  */
954 static void __init create_mapping(struct map_desc *md)
955 {
956 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
957 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
958 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
959 		return;
960 	}
961 
962 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
963 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
964 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
965 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
966 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
967 	}
968 
969 	__create_mapping(&init_mm, md, early_alloc, false);
970 }
971 
972 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
973 				bool ng)
974 {
975 #ifdef CONFIG_ARM_LPAE
976 	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
977 	if (WARN_ON(!pud))
978 		return;
979 	pmd_alloc(mm, pud, 0);
980 #endif
981 	__create_mapping(mm, md, late_alloc, ng);
982 }
983 
984 /*
985  * Create the architecture specific mappings
986  */
987 void __init iotable_init(struct map_desc *io_desc, int nr)
988 {
989 	struct map_desc *md;
990 	struct vm_struct *vm;
991 	struct static_vm *svm;
992 
993 	if (!nr)
994 		return;
995 
996 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
997 
998 	for (md = io_desc; nr; md++, nr--) {
999 		create_mapping(md);
1000 
1001 		vm = &svm->vm;
1002 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1003 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1004 		vm->phys_addr = __pfn_to_phys(md->pfn);
1005 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1006 		vm->flags |= VM_ARM_MTYPE(md->type);
1007 		vm->caller = iotable_init;
1008 		add_static_vm_early(svm++);
1009 	}
1010 }
1011 
1012 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1013 				  void *caller)
1014 {
1015 	struct vm_struct *vm;
1016 	struct static_vm *svm;
1017 
1018 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1019 
1020 	vm = &svm->vm;
1021 	vm->addr = (void *)addr;
1022 	vm->size = size;
1023 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1024 	vm->caller = caller;
1025 	add_static_vm_early(svm);
1026 }
1027 
1028 #ifndef CONFIG_ARM_LPAE
1029 
1030 /*
1031  * The Linux PMD is made of two consecutive section entries covering 2MB
1032  * (see definition in include/asm/pgtable-2level.h).  However a call to
1033  * create_mapping() may optimize static mappings by using individual
1034  * 1MB section mappings.  This leaves the actual PMD potentially half
1035  * initialized if the top or bottom section entry isn't used, leaving it
1036  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037  * the virtual space left free by that unused section entry.
1038  *
1039  * Let's avoid the issue by inserting dummy vm entries covering the unused
1040  * PMD halves once the static mappings are in place.
1041  */
1042 
1043 static void __init pmd_empty_section_gap(unsigned long addr)
1044 {
1045 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046 }
1047 
1048 static void __init fill_pmd_gaps(void)
1049 {
1050 	struct static_vm *svm;
1051 	struct vm_struct *vm;
1052 	unsigned long addr, next = 0;
1053 	pmd_t *pmd;
1054 
1055 	list_for_each_entry(svm, &static_vmlist, list) {
1056 		vm = &svm->vm;
1057 		addr = (unsigned long)vm->addr;
1058 		if (addr < next)
1059 			continue;
1060 
1061 		/*
1062 		 * Check if this vm starts on an odd section boundary.
1063 		 * If so and the first section entry for this PMD is free
1064 		 * then we block the corresponding virtual address.
1065 		 */
1066 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067 			pmd = pmd_off_k(addr);
1068 			if (pmd_none(*pmd))
1069 				pmd_empty_section_gap(addr & PMD_MASK);
1070 		}
1071 
1072 		/*
1073 		 * Then check if this vm ends on an odd section boundary.
1074 		 * If so and the second section entry for this PMD is empty
1075 		 * then we block the corresponding virtual address.
1076 		 */
1077 		addr += vm->size;
1078 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079 			pmd = pmd_off_k(addr) + 1;
1080 			if (pmd_none(*pmd))
1081 				pmd_empty_section_gap(addr);
1082 		}
1083 
1084 		/* no need to look at any vm entry until we hit the next PMD */
1085 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086 	}
1087 }
1088 
1089 #else
1090 #define fill_pmd_gaps() do { } while (0)
1091 #endif
1092 
1093 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094 static void __init pci_reserve_io(void)
1095 {
1096 	struct static_vm *svm;
1097 
1098 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099 	if (svm)
1100 		return;
1101 
1102 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103 }
1104 #else
1105 #define pci_reserve_io() do { } while (0)
1106 #endif
1107 
1108 #ifdef CONFIG_DEBUG_LL
1109 void __init debug_ll_io_init(void)
1110 {
1111 	struct map_desc map;
1112 
1113 	debug_ll_addr(&map.pfn, &map.virtual);
1114 	if (!map.pfn || !map.virtual)
1115 		return;
1116 	map.pfn = __phys_to_pfn(map.pfn);
1117 	map.virtual &= PAGE_MASK;
1118 	map.length = PAGE_SIZE;
1119 	map.type = MT_DEVICE;
1120 	iotable_init(&map, 1);
1121 }
1122 #endif
1123 
1124 static void * __initdata vmalloc_min =
1125 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1126 
1127 /*
1128  * vmalloc=size forces the vmalloc area to be exactly 'size'
1129  * bytes. This can be used to increase (or decrease) the vmalloc
1130  * area - the default is 240m.
1131  */
1132 static int __init early_vmalloc(char *arg)
1133 {
1134 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1135 
1136 	if (vmalloc_reserve < SZ_16M) {
1137 		vmalloc_reserve = SZ_16M;
1138 		pr_warn("vmalloc area too small, limiting to %luMB\n",
1139 			vmalloc_reserve >> 20);
1140 	}
1141 
1142 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1143 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1144 		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1145 			vmalloc_reserve >> 20);
1146 	}
1147 
1148 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1149 	return 0;
1150 }
1151 early_param("vmalloc", early_vmalloc);
1152 
1153 phys_addr_t arm_lowmem_limit __initdata = 0;
1154 
1155 void __init sanity_check_meminfo(void)
1156 {
1157 	phys_addr_t memblock_limit = 0;
1158 	int highmem = 0;
1159 	u64 vmalloc_limit;
1160 	struct memblock_region *reg;
1161 	bool should_use_highmem = false;
1162 
1163 	/*
1164 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1165 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1166 	 * The result is used as the upper bound on physical memory address
1167 	 * and may itself be outside the valid range for which phys_addr_t
1168 	 * and therefore __pa() is defined.
1169 	 */
1170 	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1171 
1172 	for_each_memblock(memory, reg) {
1173 		phys_addr_t block_start = reg->base;
1174 		phys_addr_t block_end = reg->base + reg->size;
1175 		phys_addr_t size_limit = reg->size;
1176 
1177 		if (reg->base >= vmalloc_limit)
1178 			highmem = 1;
1179 		else
1180 			size_limit = vmalloc_limit - reg->base;
1181 
1182 
1183 		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1184 
1185 			if (highmem) {
1186 				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1187 					  &block_start, &block_end);
1188 				memblock_remove(reg->base, reg->size);
1189 				should_use_highmem = true;
1190 				continue;
1191 			}
1192 
1193 			if (reg->size > size_limit) {
1194 				phys_addr_t overlap_size = reg->size - size_limit;
1195 
1196 				pr_notice("Truncating RAM at %pa-%pa",
1197 					  &block_start, &block_end);
1198 				block_end = vmalloc_limit;
1199 				pr_cont(" to -%pa", &block_end);
1200 				memblock_remove(vmalloc_limit, overlap_size);
1201 				should_use_highmem = true;
1202 			}
1203 		}
1204 
1205 		if (!highmem) {
1206 			if (block_end > arm_lowmem_limit) {
1207 				if (reg->size > size_limit)
1208 					arm_lowmem_limit = vmalloc_limit;
1209 				else
1210 					arm_lowmem_limit = block_end;
1211 			}
1212 
1213 			/*
1214 			 * Find the first non-pmd-aligned page, and point
1215 			 * memblock_limit at it. This relies on rounding the
1216 			 * limit down to be pmd-aligned, which happens at the
1217 			 * end of this function.
1218 			 *
1219 			 * With this algorithm, the start or end of almost any
1220 			 * bank can be non-pmd-aligned. The only exception is
1221 			 * that the start of the bank 0 must be section-
1222 			 * aligned, since otherwise memory would need to be
1223 			 * allocated when mapping the start of bank 0, which
1224 			 * occurs before any free memory is mapped.
1225 			 */
1226 			if (!memblock_limit) {
1227 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1228 					memblock_limit = block_start;
1229 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1230 					memblock_limit = arm_lowmem_limit;
1231 			}
1232 
1233 		}
1234 	}
1235 
1236 	if (should_use_highmem)
1237 		pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1238 
1239 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1240 
1241 	/*
1242 	 * Round the memblock limit down to a pmd size.  This
1243 	 * helps to ensure that we will allocate memory from the
1244 	 * last full pmd, which should be mapped.
1245 	 */
1246 	if (memblock_limit)
1247 		memblock_limit = round_down(memblock_limit, PMD_SIZE);
1248 	if (!memblock_limit)
1249 		memblock_limit = arm_lowmem_limit;
1250 
1251 	memblock_set_current_limit(memblock_limit);
1252 }
1253 
1254 static inline void prepare_page_table(void)
1255 {
1256 	unsigned long addr;
1257 	phys_addr_t end;
1258 
1259 	/*
1260 	 * Clear out all the mappings below the kernel image.
1261 	 */
1262 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1263 		pmd_clear(pmd_off_k(addr));
1264 
1265 #ifdef CONFIG_XIP_KERNEL
1266 	/* The XIP kernel is mapped in the module area -- skip over it */
1267 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1268 #endif
1269 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1270 		pmd_clear(pmd_off_k(addr));
1271 
1272 	/*
1273 	 * Find the end of the first block of lowmem.
1274 	 */
1275 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1276 	if (end >= arm_lowmem_limit)
1277 		end = arm_lowmem_limit;
1278 
1279 	/*
1280 	 * Clear out all the kernel space mappings, except for the first
1281 	 * memory bank, up to the vmalloc region.
1282 	 */
1283 	for (addr = __phys_to_virt(end);
1284 	     addr < VMALLOC_START; addr += PMD_SIZE)
1285 		pmd_clear(pmd_off_k(addr));
1286 }
1287 
1288 #ifdef CONFIG_ARM_LPAE
1289 /* the first page is reserved for pgd */
1290 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1291 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1292 #else
1293 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1294 #endif
1295 
1296 /*
1297  * Reserve the special regions of memory
1298  */
1299 void __init arm_mm_memblock_reserve(void)
1300 {
1301 	/*
1302 	 * Reserve the page tables.  These are already in use,
1303 	 * and can only be in node 0.
1304 	 */
1305 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1306 
1307 #ifdef CONFIG_SA1111
1308 	/*
1309 	 * Because of the SA1111 DMA bug, we want to preserve our
1310 	 * precious DMA-able memory...
1311 	 */
1312 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1313 #endif
1314 }
1315 
1316 /*
1317  * Set up the device mappings.  Since we clear out the page tables for all
1318  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1319  * device mappings.  This means earlycon can be used to debug this function
1320  * Any other function or debugging method which may touch any device _will_
1321  * crash the kernel.
1322  */
1323 static void __init devicemaps_init(const struct machine_desc *mdesc)
1324 {
1325 	struct map_desc map;
1326 	unsigned long addr;
1327 	void *vectors;
1328 
1329 	/*
1330 	 * Allocate the vector page early.
1331 	 */
1332 	vectors = early_alloc(PAGE_SIZE * 2);
1333 
1334 	early_trap_init(vectors);
1335 
1336 	/*
1337 	 * Clear page table except top pmd used by early fixmaps
1338 	 */
1339 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1340 		pmd_clear(pmd_off_k(addr));
1341 
1342 	/*
1343 	 * Map the kernel if it is XIP.
1344 	 * It is always first in the modulearea.
1345 	 */
1346 #ifdef CONFIG_XIP_KERNEL
1347 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1348 	map.virtual = MODULES_VADDR;
1349 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1350 	map.type = MT_ROM;
1351 	create_mapping(&map);
1352 #endif
1353 
1354 	/*
1355 	 * Map the cache flushing regions.
1356 	 */
1357 #ifdef FLUSH_BASE
1358 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1359 	map.virtual = FLUSH_BASE;
1360 	map.length = SZ_1M;
1361 	map.type = MT_CACHECLEAN;
1362 	create_mapping(&map);
1363 #endif
1364 #ifdef FLUSH_BASE_MINICACHE
1365 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1366 	map.virtual = FLUSH_BASE_MINICACHE;
1367 	map.length = SZ_1M;
1368 	map.type = MT_MINICLEAN;
1369 	create_mapping(&map);
1370 #endif
1371 
1372 	/*
1373 	 * Create a mapping for the machine vectors at the high-vectors
1374 	 * location (0xffff0000).  If we aren't using high-vectors, also
1375 	 * create a mapping at the low-vectors virtual address.
1376 	 */
1377 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1378 	map.virtual = 0xffff0000;
1379 	map.length = PAGE_SIZE;
1380 #ifdef CONFIG_KUSER_HELPERS
1381 	map.type = MT_HIGH_VECTORS;
1382 #else
1383 	map.type = MT_LOW_VECTORS;
1384 #endif
1385 	create_mapping(&map);
1386 
1387 	if (!vectors_high()) {
1388 		map.virtual = 0;
1389 		map.length = PAGE_SIZE * 2;
1390 		map.type = MT_LOW_VECTORS;
1391 		create_mapping(&map);
1392 	}
1393 
1394 	/* Now create a kernel read-only mapping */
1395 	map.pfn += 1;
1396 	map.virtual = 0xffff0000 + PAGE_SIZE;
1397 	map.length = PAGE_SIZE;
1398 	map.type = MT_LOW_VECTORS;
1399 	create_mapping(&map);
1400 
1401 	/*
1402 	 * Ask the machine support to map in the statically mapped devices.
1403 	 */
1404 	if (mdesc->map_io)
1405 		mdesc->map_io();
1406 	else
1407 		debug_ll_io_init();
1408 	fill_pmd_gaps();
1409 
1410 	/* Reserve fixed i/o space in VMALLOC region */
1411 	pci_reserve_io();
1412 
1413 	/*
1414 	 * Finally flush the caches and tlb to ensure that we're in a
1415 	 * consistent state wrt the writebuffer.  This also ensures that
1416 	 * any write-allocated cache lines in the vector page are written
1417 	 * back.  After this point, we can start to touch devices again.
1418 	 */
1419 	local_flush_tlb_all();
1420 	flush_cache_all();
1421 
1422 	/* Enable asynchronous aborts */
1423 	early_abt_enable();
1424 }
1425 
1426 static void __init kmap_init(void)
1427 {
1428 #ifdef CONFIG_HIGHMEM
1429 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1430 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1431 #endif
1432 
1433 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1434 			_PAGE_KERNEL_TABLE);
1435 }
1436 
1437 static void __init map_lowmem(void)
1438 {
1439 	struct memblock_region *reg;
1440 #ifdef CONFIG_XIP_KERNEL
1441 	phys_addr_t kernel_x_start = round_down(__pa(_sdata), SECTION_SIZE);
1442 #else
1443 	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1444 #endif
1445 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1446 
1447 	/* Map all the lowmem memory banks. */
1448 	for_each_memblock(memory, reg) {
1449 		phys_addr_t start = reg->base;
1450 		phys_addr_t end = start + reg->size;
1451 		struct map_desc map;
1452 
1453 		if (memblock_is_nomap(reg))
1454 			continue;
1455 
1456 		if (end > arm_lowmem_limit)
1457 			end = arm_lowmem_limit;
1458 		if (start >= end)
1459 			break;
1460 
1461 		if (end < kernel_x_start) {
1462 			map.pfn = __phys_to_pfn(start);
1463 			map.virtual = __phys_to_virt(start);
1464 			map.length = end - start;
1465 			map.type = MT_MEMORY_RWX;
1466 
1467 			create_mapping(&map);
1468 		} else if (start >= kernel_x_end) {
1469 			map.pfn = __phys_to_pfn(start);
1470 			map.virtual = __phys_to_virt(start);
1471 			map.length = end - start;
1472 			map.type = MT_MEMORY_RW;
1473 
1474 			create_mapping(&map);
1475 		} else {
1476 			/* This better cover the entire kernel */
1477 			if (start < kernel_x_start) {
1478 				map.pfn = __phys_to_pfn(start);
1479 				map.virtual = __phys_to_virt(start);
1480 				map.length = kernel_x_start - start;
1481 				map.type = MT_MEMORY_RW;
1482 
1483 				create_mapping(&map);
1484 			}
1485 
1486 			map.pfn = __phys_to_pfn(kernel_x_start);
1487 			map.virtual = __phys_to_virt(kernel_x_start);
1488 			map.length = kernel_x_end - kernel_x_start;
1489 			map.type = MT_MEMORY_RWX;
1490 
1491 			create_mapping(&map);
1492 
1493 			if (kernel_x_end < end) {
1494 				map.pfn = __phys_to_pfn(kernel_x_end);
1495 				map.virtual = __phys_to_virt(kernel_x_end);
1496 				map.length = end - kernel_x_end;
1497 				map.type = MT_MEMORY_RW;
1498 
1499 				create_mapping(&map);
1500 			}
1501 		}
1502 	}
1503 }
1504 
1505 #ifdef CONFIG_ARM_PV_FIXUP
1506 extern unsigned long __atags_pointer;
1507 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1508 pgtables_remap lpae_pgtables_remap_asm;
1509 
1510 /*
1511  * early_paging_init() recreates boot time page table setup, allowing machines
1512  * to switch over to a high (>4G) address space on LPAE systems
1513  */
1514 void __init early_paging_init(const struct machine_desc *mdesc)
1515 {
1516 	pgtables_remap *lpae_pgtables_remap;
1517 	unsigned long pa_pgd;
1518 	unsigned int cr, ttbcr;
1519 	long long offset;
1520 	void *boot_data;
1521 
1522 	if (!mdesc->pv_fixup)
1523 		return;
1524 
1525 	offset = mdesc->pv_fixup();
1526 	if (offset == 0)
1527 		return;
1528 
1529 	/*
1530 	 * Get the address of the remap function in the 1:1 identity
1531 	 * mapping setup by the early page table assembly code.  We
1532 	 * must get this prior to the pv update.  The following barrier
1533 	 * ensures that this is complete before we fixup any P:V offsets.
1534 	 */
1535 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1536 	pa_pgd = __pa(swapper_pg_dir);
1537 	boot_data = __va(__atags_pointer);
1538 	barrier();
1539 
1540 	pr_info("Switching physical address space to 0x%08llx\n",
1541 		(u64)PHYS_OFFSET + offset);
1542 
1543 	/* Re-set the phys pfn offset, and the pv offset */
1544 	__pv_offset += offset;
1545 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1546 
1547 	/* Run the patch stub to update the constants */
1548 	fixup_pv_table(&__pv_table_begin,
1549 		(&__pv_table_end - &__pv_table_begin) << 2);
1550 
1551 	/*
1552 	 * We changing not only the virtual to physical mapping, but also
1553 	 * the physical addresses used to access memory.  We need to flush
1554 	 * all levels of cache in the system with caching disabled to
1555 	 * ensure that all data is written back, and nothing is prefetched
1556 	 * into the caches.  We also need to prevent the TLB walkers
1557 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1558 	 * specific.
1559 	 */
1560 	cr = get_cr();
1561 	set_cr(cr & ~(CR_I | CR_C));
1562 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1563 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1564 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1565 	flush_cache_all();
1566 
1567 	/*
1568 	 * Fixup the page tables - this must be in the idmap region as
1569 	 * we need to disable the MMU to do this safely, and hence it
1570 	 * needs to be assembly.  It's fairly simple, as we're using the
1571 	 * temporary tables setup by the initial assembly code.
1572 	 */
1573 	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1574 
1575 	/* Re-enable the caches and cacheable TLB walks */
1576 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1577 	set_cr(cr);
1578 }
1579 
1580 #else
1581 
1582 void __init early_paging_init(const struct machine_desc *mdesc)
1583 {
1584 	long long offset;
1585 
1586 	if (!mdesc->pv_fixup)
1587 		return;
1588 
1589 	offset = mdesc->pv_fixup();
1590 	if (offset == 0)
1591 		return;
1592 
1593 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1594 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1595 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1596 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1597 }
1598 
1599 #endif
1600 
1601 static void __init early_fixmap_shutdown(void)
1602 {
1603 	int i;
1604 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1605 
1606 	pte_offset_fixmap = pte_offset_late_fixmap;
1607 	pmd_clear(fixmap_pmd(va));
1608 	local_flush_tlb_kernel_page(va);
1609 
1610 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1611 		pte_t *pte;
1612 		struct map_desc map;
1613 
1614 		map.virtual = fix_to_virt(i);
1615 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1616 
1617 		/* Only i/o device mappings are supported ATM */
1618 		if (pte_none(*pte) ||
1619 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1620 			continue;
1621 
1622 		map.pfn = pte_pfn(*pte);
1623 		map.type = MT_DEVICE;
1624 		map.length = PAGE_SIZE;
1625 
1626 		create_mapping(&map);
1627 	}
1628 }
1629 
1630 /*
1631  * paging_init() sets up the page tables, initialises the zone memory
1632  * maps, and sets up the zero page, bad page and bad page tables.
1633  */
1634 void __init paging_init(const struct machine_desc *mdesc)
1635 {
1636 	void *zero_page;
1637 
1638 	build_mem_type_table();
1639 	prepare_page_table();
1640 	map_lowmem();
1641 	memblock_set_current_limit(arm_lowmem_limit);
1642 	dma_contiguous_remap();
1643 	early_fixmap_shutdown();
1644 	devicemaps_init(mdesc);
1645 	kmap_init();
1646 	tcm_init();
1647 
1648 	top_pmd = pmd_off_k(0xffff0000);
1649 
1650 	/* allocate the zero page. */
1651 	zero_page = early_alloc(PAGE_SIZE);
1652 
1653 	bootmem_init();
1654 
1655 	empty_zero_page = virt_to_page(zero_page);
1656 	__flush_dcache_page(NULL, empty_zero_page);
1657 }
1658