xref: /linux/arch/arm/mm/mmu.c (revision d9996de40b121d976a17515aada54c54350e3f21)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tcm.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/system_info.h>
28 #include <asm/traps.h>
29 #include <asm/procinfo.h>
30 #include <asm/page.h>
31 #include <asm/pgalloc.h>
32 #include <asm/kasan_def.h>
33 
34 #include <asm/mach/arch.h>
35 #include <asm/mach/map.h>
36 #include <asm/mach/pci.h>
37 #include <asm/fixmap.h>
38 
39 #include "fault.h"
40 #include "mm.h"
41 
42 extern unsigned long __atags_pointer;
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 };
78 
79 static struct cachepolicy cache_policies[] __initdata = {
80 	{
81 		.policy		= "uncached",
82 		.cr_mask	= CR_W|CR_C,
83 		.pmd		= PMD_SECT_UNCACHED,
84 		.pte		= L_PTE_MT_UNCACHED,
85 	}, {
86 		.policy		= "buffered",
87 		.cr_mask	= CR_C,
88 		.pmd		= PMD_SECT_BUFFERED,
89 		.pte		= L_PTE_MT_BUFFERABLE,
90 	}, {
91 		.policy		= "writethrough",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WT,
94 		.pte		= L_PTE_MT_WRITETHROUGH,
95 	}, {
96 		.policy		= "writeback",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WB,
99 		.pte		= L_PTE_MT_WRITEBACK,
100 	}, {
101 		.policy		= "writealloc",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WBWA,
104 		.pte		= L_PTE_MT_WRITEALLOC,
105 	}
106 };
107 
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110 
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 	int i;
121 
122 	initial_pmd_value = pmd;
123 
124 	pmd &= PMD_SECT_CACHE_MASK;
125 
126 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 		if (cache_policies[i].pmd == pmd) {
128 			cachepolicy = i;
129 			break;
130 		}
131 
132 	if (i == ARRAY_SIZE(cache_policies))
133 		pr_err("ERROR: could not find cache policy\n");
134 }
135 
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
141 static int __init early_cachepolicy(char *p)
142 {
143 	int i, selected = -1;
144 
145 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 		int len = strlen(cache_policies[i].policy);
147 
148 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 			selected = i;
150 			break;
151 		}
152 	}
153 
154 	if (selected == -1)
155 		pr_err("ERROR: unknown or unsupported cache policy\n");
156 
157 	/*
158 	 * This restriction is partly to do with the way we boot; it is
159 	 * unpredictable to have memory mapped using two different sets of
160 	 * memory attributes (shared, type, and cache attribs).  We can not
161 	 * change these attributes once the initial assembly has setup the
162 	 * page tables.
163 	 */
164 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 			cache_policies[cachepolicy].policy);
167 		return 0;
168 	}
169 
170 	if (selected != cachepolicy) {
171 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 		cachepolicy = selected;
173 		flush_cache_all();
174 		set_cr(cr);
175 	}
176 	return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179 
180 static int __init early_nocache(char *__unused)
181 {
182 	char *p = "buffered";
183 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 	early_cachepolicy(p);
185 	return 0;
186 }
187 early_param("nocache", early_nocache);
188 
189 static int __init early_nowrite(char *__unused)
190 {
191 	char *p = "uncached";
192 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 	early_cachepolicy(p);
194 	return 0;
195 }
196 early_param("nowb", early_nowrite);
197 
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
200 {
201 	if (memcmp(p, "on", 2) == 0)
202 		ecc_mask = PMD_PROTECTION;
203 	else if (memcmp(p, "off", 3) == 0)
204 		ecc_mask = 0;
205 	return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209 
210 #else /* ifdef CONFIG_CPU_CP15 */
211 
212 static int __init early_cachepolicy(char *p)
213 {
214 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 	return 0;
216 }
217 early_param("cachepolicy", early_cachepolicy);
218 
219 static int __init noalign_setup(char *__unused)
220 {
221 	pr_warn("noalign kernel parameter not supported without cp15\n");
222 	return 1;
223 }
224 __setup("noalign", noalign_setup);
225 
226 #endif /* ifdef CONFIG_CPU_CP15 / else */
227 
228 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
230 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231 
232 static struct mem_type mem_types[] __ro_after_init = {
233 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
234 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 				  L_PTE_SHARED,
236 		.prot_l1	= PMD_TYPE_TABLE,
237 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
238 		.domain		= DOMAIN_IO,
239 	},
240 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 		.prot_l1	= PMD_TYPE_TABLE,
243 		.prot_sect	= PROT_SECT_DEVICE,
244 		.domain		= DOMAIN_IO,
245 	},
246 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
247 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 		.prot_l1	= PMD_TYPE_TABLE,
249 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
250 		.domain		= DOMAIN_IO,
251 	},
252 	[MT_DEVICE_WC] = {	/* ioremap_wc */
253 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 		.prot_l1	= PMD_TYPE_TABLE,
255 		.prot_sect	= PROT_SECT_DEVICE,
256 		.domain		= DOMAIN_IO,
257 	},
258 	[MT_UNCACHED] = {
259 		.prot_pte	= PROT_PTE_DEVICE,
260 		.prot_l1	= PMD_TYPE_TABLE,
261 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
262 		.domain		= DOMAIN_IO,
263 	},
264 	[MT_CACHECLEAN] = {
265 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 		.domain    = DOMAIN_KERNEL,
267 	},
268 #ifndef CONFIG_ARM_LPAE
269 	[MT_MINICLEAN] = {
270 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 		.domain    = DOMAIN_KERNEL,
272 	},
273 #endif
274 	[MT_LOW_VECTORS] = {
275 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 				L_PTE_RDONLY,
277 		.prot_l1   = PMD_TYPE_TABLE,
278 		.domain    = DOMAIN_VECTORS,
279 	},
280 	[MT_HIGH_VECTORS] = {
281 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 				L_PTE_USER | L_PTE_RDONLY,
283 		.prot_l1   = PMD_TYPE_TABLE,
284 		.domain    = DOMAIN_VECTORS,
285 	},
286 	[MT_MEMORY_RWX] = {
287 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 		.prot_l1   = PMD_TYPE_TABLE,
289 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 		.domain    = DOMAIN_KERNEL,
291 	},
292 	[MT_MEMORY_RW] = {
293 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 			     L_PTE_XN,
295 		.prot_l1   = PMD_TYPE_TABLE,
296 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 		.domain    = DOMAIN_KERNEL,
298 	},
299 	[MT_MEMORY_RO] = {
300 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 			     L_PTE_XN | L_PTE_RDONLY,
302 		.prot_l1   = PMD_TYPE_TABLE,
303 #ifdef CONFIG_ARM_LPAE
304 		.prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
305 #else
306 		.prot_sect = PMD_TYPE_SECT,
307 #endif
308 		.domain    = DOMAIN_KERNEL,
309 	},
310 	[MT_ROM] = {
311 		.prot_sect = PMD_TYPE_SECT,
312 		.domain    = DOMAIN_KERNEL,
313 	},
314 	[MT_MEMORY_RWX_NONCACHED] = {
315 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
316 				L_PTE_MT_BUFFERABLE,
317 		.prot_l1   = PMD_TYPE_TABLE,
318 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
319 		.domain    = DOMAIN_KERNEL,
320 	},
321 	[MT_MEMORY_RW_DTCM] = {
322 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
323 				L_PTE_XN,
324 		.prot_l1   = PMD_TYPE_TABLE,
325 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
326 		.domain    = DOMAIN_KERNEL,
327 	},
328 	[MT_MEMORY_RWX_ITCM] = {
329 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
330 		.prot_l1   = PMD_TYPE_TABLE,
331 		.domain    = DOMAIN_KERNEL,
332 	},
333 	[MT_MEMORY_RW_SO] = {
334 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
335 				L_PTE_MT_UNCACHED | L_PTE_XN,
336 		.prot_l1   = PMD_TYPE_TABLE,
337 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
338 				PMD_SECT_UNCACHED | PMD_SECT_XN,
339 		.domain    = DOMAIN_KERNEL,
340 	},
341 	[MT_MEMORY_DMA_READY] = {
342 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343 				L_PTE_XN,
344 		.prot_l1   = PMD_TYPE_TABLE,
345 		.domain    = DOMAIN_KERNEL,
346 	},
347 };
348 
349 const struct mem_type *get_mem_type(unsigned int type)
350 {
351 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
352 }
353 EXPORT_SYMBOL(get_mem_type);
354 
355 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
356 
357 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
358 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
359 
360 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
361 {
362 	return &bm_pte[pte_index(addr)];
363 }
364 
365 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
366 {
367 	return pte_offset_kernel(dir, addr);
368 }
369 
370 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
371 {
372 	return pmd_off_k(addr);
373 }
374 
375 void __init early_fixmap_init(void)
376 {
377 	pmd_t *pmd;
378 
379 	/*
380 	 * The early fixmap range spans multiple pmds, for which
381 	 * we are not prepared:
382 	 */
383 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
384 		     != FIXADDR_TOP >> PMD_SHIFT);
385 
386 	pmd = fixmap_pmd(FIXADDR_TOP);
387 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
388 
389 	pte_offset_fixmap = pte_offset_early_fixmap;
390 }
391 
392 /*
393  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
394  * As a result, this can only be called with preemption disabled, as under
395  * stop_machine().
396  */
397 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
398 {
399 	unsigned long vaddr = __fix_to_virt(idx);
400 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
401 
402 	/* Make sure fixmap region does not exceed available allocation. */
403 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
404 	BUG_ON(idx >= __end_of_fixed_addresses);
405 
406 	/* We support only device mappings before pgprot_kernel is set. */
407 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
408 		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
409 		return;
410 
411 	if (pgprot_val(prot))
412 		set_pte_at(NULL, vaddr, pte,
413 			pfn_pte(phys >> PAGE_SHIFT, prot));
414 	else
415 		pte_clear(NULL, vaddr, pte);
416 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
417 }
418 
419 static pgprot_t protection_map[16] __ro_after_init = {
420 	[VM_NONE]					= __PAGE_NONE,
421 	[VM_READ]					= __PAGE_READONLY,
422 	[VM_WRITE]					= __PAGE_COPY,
423 	[VM_WRITE | VM_READ]				= __PAGE_COPY,
424 	[VM_EXEC]					= __PAGE_READONLY_EXEC,
425 	[VM_EXEC | VM_READ]				= __PAGE_READONLY_EXEC,
426 	[VM_EXEC | VM_WRITE]				= __PAGE_COPY_EXEC,
427 	[VM_EXEC | VM_WRITE | VM_READ]			= __PAGE_COPY_EXEC,
428 	[VM_SHARED]					= __PAGE_NONE,
429 	[VM_SHARED | VM_READ]				= __PAGE_READONLY,
430 	[VM_SHARED | VM_WRITE]				= __PAGE_SHARED,
431 	[VM_SHARED | VM_WRITE | VM_READ]		= __PAGE_SHARED,
432 	[VM_SHARED | VM_EXEC]				= __PAGE_READONLY_EXEC,
433 	[VM_SHARED | VM_EXEC | VM_READ]			= __PAGE_READONLY_EXEC,
434 	[VM_SHARED | VM_EXEC | VM_WRITE]		= __PAGE_SHARED_EXEC,
435 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __PAGE_SHARED_EXEC
436 };
437 DECLARE_VM_GET_PAGE_PROT
438 
439 /*
440  * Adjust the PMD section entries according to the CPU in use.
441  */
442 static void __init build_mem_type_table(void)
443 {
444 	struct cachepolicy *cp;
445 	unsigned int cr = get_cr();
446 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
447 	int cpu_arch = cpu_architecture();
448 	int i;
449 
450 	if (cpu_arch < CPU_ARCH_ARMv6) {
451 #if defined(CONFIG_CPU_DCACHE_DISABLE)
452 		if (cachepolicy > CPOLICY_BUFFERED)
453 			cachepolicy = CPOLICY_BUFFERED;
454 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
455 		if (cachepolicy > CPOLICY_WRITETHROUGH)
456 			cachepolicy = CPOLICY_WRITETHROUGH;
457 #endif
458 	}
459 	if (cpu_arch < CPU_ARCH_ARMv5) {
460 		if (cachepolicy >= CPOLICY_WRITEALLOC)
461 			cachepolicy = CPOLICY_WRITEBACK;
462 		ecc_mask = 0;
463 	}
464 
465 	if (is_smp()) {
466 		if (cachepolicy != CPOLICY_WRITEALLOC) {
467 			pr_warn("Forcing write-allocate cache policy for SMP\n");
468 			cachepolicy = CPOLICY_WRITEALLOC;
469 		}
470 		if (!(initial_pmd_value & PMD_SECT_S)) {
471 			pr_warn("Forcing shared mappings for SMP\n");
472 			initial_pmd_value |= PMD_SECT_S;
473 		}
474 	}
475 
476 	/*
477 	 * Strip out features not present on earlier architectures.
478 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
479 	 * without extended page tables don't have the 'Shared' bit.
480 	 */
481 	if (cpu_arch < CPU_ARCH_ARMv5)
482 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
483 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
484 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
485 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
486 			mem_types[i].prot_sect &= ~PMD_SECT_S;
487 
488 	/*
489 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
490 	 * "update-able on write" bit on ARM610).  However, Xscale and
491 	 * Xscale3 require this bit to be cleared.
492 	 */
493 	if (cpu_is_xscale_family()) {
494 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
495 			mem_types[i].prot_sect &= ~PMD_BIT4;
496 			mem_types[i].prot_l1 &= ~PMD_BIT4;
497 		}
498 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
499 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
500 			if (mem_types[i].prot_l1)
501 				mem_types[i].prot_l1 |= PMD_BIT4;
502 			if (mem_types[i].prot_sect)
503 				mem_types[i].prot_sect |= PMD_BIT4;
504 		}
505 	}
506 
507 	/*
508 	 * Mark the device areas according to the CPU/architecture.
509 	 */
510 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
511 		if (!cpu_is_xsc3()) {
512 			/*
513 			 * Mark device regions on ARMv6+ as execute-never
514 			 * to prevent speculative instruction fetches.
515 			 */
516 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
517 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
518 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
519 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
520 
521 			/* Also setup NX memory mapping */
522 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
523 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
524 		}
525 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
526 			/*
527 			 * For ARMv7 with TEX remapping,
528 			 * - shared device is SXCB=1100
529 			 * - nonshared device is SXCB=0100
530 			 * - write combine device mem is SXCB=0001
531 			 * (Uncached Normal memory)
532 			 */
533 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
534 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
535 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
536 		} else if (cpu_is_xsc3()) {
537 			/*
538 			 * For Xscale3,
539 			 * - shared device is TEXCB=00101
540 			 * - nonshared device is TEXCB=01000
541 			 * - write combine device mem is TEXCB=00100
542 			 * (Inner/Outer Uncacheable in xsc3 parlance)
543 			 */
544 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
545 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
546 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
547 		} else {
548 			/*
549 			 * For ARMv6 and ARMv7 without TEX remapping,
550 			 * - shared device is TEXCB=00001
551 			 * - nonshared device is TEXCB=01000
552 			 * - write combine device mem is TEXCB=00100
553 			 * (Uncached Normal in ARMv6 parlance).
554 			 */
555 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
556 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
557 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
558 		}
559 	} else {
560 		/*
561 		 * On others, write combining is "Uncached/Buffered"
562 		 */
563 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
564 	}
565 
566 	/*
567 	 * Now deal with the memory-type mappings
568 	 */
569 	cp = &cache_policies[cachepolicy];
570 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
571 
572 #ifndef CONFIG_ARM_LPAE
573 	/*
574 	 * We don't use domains on ARMv6 (since this causes problems with
575 	 * v6/v7 kernels), so we must use a separate memory type for user
576 	 * r/o, kernel r/w to map the vectors page.
577 	 */
578 	if (cpu_arch == CPU_ARCH_ARMv6)
579 		vecs_pgprot |= L_PTE_MT_VECTORS;
580 
581 	/*
582 	 * Check is it with support for the PXN bit
583 	 * in the Short-descriptor translation table format descriptors.
584 	 */
585 	if (cpu_arch == CPU_ARCH_ARMv7 &&
586 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
587 		user_pmd_table |= PMD_PXNTABLE;
588 	}
589 #endif
590 
591 	/*
592 	 * ARMv6 and above have extended page tables.
593 	 */
594 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
595 #ifndef CONFIG_ARM_LPAE
596 		/*
597 		 * Mark cache clean areas and XIP ROM read only
598 		 * from SVC mode and no access from userspace.
599 		 */
600 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
601 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
602 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
603 		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
604 #endif
605 
606 		/*
607 		 * If the initial page tables were created with the S bit
608 		 * set, then we need to do the same here for the same
609 		 * reasons given in early_cachepolicy().
610 		 */
611 		if (initial_pmd_value & PMD_SECT_S) {
612 			user_pgprot |= L_PTE_SHARED;
613 			kern_pgprot |= L_PTE_SHARED;
614 			vecs_pgprot |= L_PTE_SHARED;
615 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
616 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
617 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
618 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
619 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
620 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
621 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
622 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
623 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
624 			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
625 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
626 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
627 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
628 		}
629 	}
630 
631 	/*
632 	 * Non-cacheable Normal - intended for memory areas that must
633 	 * not cause dirty cache line writebacks when used
634 	 */
635 	if (cpu_arch >= CPU_ARCH_ARMv6) {
636 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
637 			/* Non-cacheable Normal is XCB = 001 */
638 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
639 				PMD_SECT_BUFFERED;
640 		} else {
641 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
642 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
643 				PMD_SECT_TEX(1);
644 		}
645 	} else {
646 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
647 	}
648 
649 #ifdef CONFIG_ARM_LPAE
650 	/*
651 	 * Do not generate access flag faults for the kernel mappings.
652 	 */
653 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
654 		mem_types[i].prot_pte |= PTE_EXT_AF;
655 		if (mem_types[i].prot_sect)
656 			mem_types[i].prot_sect |= PMD_SECT_AF;
657 	}
658 	kern_pgprot |= PTE_EXT_AF;
659 	vecs_pgprot |= PTE_EXT_AF;
660 
661 	/*
662 	 * Set PXN for user mappings
663 	 */
664 	user_pgprot |= PTE_EXT_PXN;
665 #endif
666 
667 	for (i = 0; i < 16; i++) {
668 		pteval_t v = pgprot_val(protection_map[i]);
669 		protection_map[i] = __pgprot(v | user_pgprot);
670 	}
671 
672 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
673 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
674 
675 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
676 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
677 				 L_PTE_DIRTY | kern_pgprot);
678 
679 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
680 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
681 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
682 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
683 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
684 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
685 	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
686 	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
687 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
688 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
689 	mem_types[MT_ROM].prot_sect |= cp->pmd;
690 
691 	switch (cp->pmd) {
692 	case PMD_SECT_WT:
693 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
694 		break;
695 	case PMD_SECT_WB:
696 	case PMD_SECT_WBWA:
697 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
698 		break;
699 	}
700 	pr_info("Memory policy: %sData cache %s\n",
701 		ecc_mask ? "ECC enabled, " : "", cp->policy);
702 
703 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
704 		struct mem_type *t = &mem_types[i];
705 		if (t->prot_l1)
706 			t->prot_l1 |= PMD_DOMAIN(t->domain);
707 		if (t->prot_sect)
708 			t->prot_sect |= PMD_DOMAIN(t->domain);
709 	}
710 }
711 
712 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
713 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
714 			      unsigned long size, pgprot_t vma_prot)
715 {
716 	if (!pfn_valid(pfn))
717 		return pgprot_noncached(vma_prot);
718 	else if (file->f_flags & O_SYNC)
719 		return pgprot_writecombine(vma_prot);
720 	return vma_prot;
721 }
722 EXPORT_SYMBOL(phys_mem_access_prot);
723 #endif
724 
725 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
726 
727 static void __init *early_alloc(unsigned long sz)
728 {
729 	void *ptr = memblock_alloc(sz, sz);
730 
731 	if (!ptr)
732 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
733 		      __func__, sz, sz);
734 
735 	return ptr;
736 }
737 
738 static void *__init late_alloc(unsigned long sz)
739 {
740 	void *ptdesc = pagetable_alloc(GFP_PGTABLE_KERNEL & ~__GFP_HIGHMEM,
741 			get_order(sz));
742 
743 	if (!ptdesc || !pagetable_pte_ctor(ptdesc))
744 		BUG();
745 	return ptdesc_to_virt(ptdesc);
746 }
747 
748 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
749 				unsigned long prot,
750 				void *(*alloc)(unsigned long sz))
751 {
752 	if (pmd_none(*pmd)) {
753 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
754 		__pmd_populate(pmd, __pa(pte), prot);
755 	}
756 	BUG_ON(pmd_bad(*pmd));
757 	return pte_offset_kernel(pmd, addr);
758 }
759 
760 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
761 				      unsigned long prot)
762 {
763 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
764 }
765 
766 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
767 				  unsigned long end, unsigned long pfn,
768 				  const struct mem_type *type,
769 				  void *(*alloc)(unsigned long sz),
770 				  bool ng)
771 {
772 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
773 	do {
774 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
775 			    ng ? PTE_EXT_NG : 0);
776 		pfn++;
777 	} while (pte++, addr += PAGE_SIZE, addr != end);
778 }
779 
780 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
781 			unsigned long end, phys_addr_t phys,
782 			const struct mem_type *type, bool ng)
783 {
784 	pmd_t *p = pmd;
785 
786 #ifndef CONFIG_ARM_LPAE
787 	/*
788 	 * In classic MMU format, puds and pmds are folded in to
789 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
790 	 * group of L1 entries making up one logical pointer to
791 	 * an L2 table (2MB), where as PMDs refer to the individual
792 	 * L1 entries (1MB). Hence increment to get the correct
793 	 * offset for odd 1MB sections.
794 	 * (See arch/arm/include/asm/pgtable-2level.h)
795 	 */
796 	if (addr & SECTION_SIZE)
797 		pmd++;
798 #endif
799 	do {
800 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
801 		phys += SECTION_SIZE;
802 	} while (pmd++, addr += SECTION_SIZE, addr != end);
803 
804 	flush_pmd_entry(p);
805 }
806 
807 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
808 				      unsigned long end, phys_addr_t phys,
809 				      const struct mem_type *type,
810 				      void *(*alloc)(unsigned long sz), bool ng)
811 {
812 	pmd_t *pmd = pmd_offset(pud, addr);
813 	unsigned long next;
814 
815 	do {
816 		/*
817 		 * With LPAE, we must loop over to map
818 		 * all the pmds for the given range.
819 		 */
820 		next = pmd_addr_end(addr, end);
821 
822 		/*
823 		 * Try a section mapping - addr, next and phys must all be
824 		 * aligned to a section boundary.
825 		 */
826 		if (type->prot_sect &&
827 				((addr | next | phys) & ~SECTION_MASK) == 0) {
828 			__map_init_section(pmd, addr, next, phys, type, ng);
829 		} else {
830 			alloc_init_pte(pmd, addr, next,
831 				       __phys_to_pfn(phys), type, alloc, ng);
832 		}
833 
834 		phys += next - addr;
835 
836 	} while (pmd++, addr = next, addr != end);
837 }
838 
839 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
840 				  unsigned long end, phys_addr_t phys,
841 				  const struct mem_type *type,
842 				  void *(*alloc)(unsigned long sz), bool ng)
843 {
844 	pud_t *pud = pud_offset(p4d, addr);
845 	unsigned long next;
846 
847 	do {
848 		next = pud_addr_end(addr, end);
849 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
850 		phys += next - addr;
851 	} while (pud++, addr = next, addr != end);
852 }
853 
854 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
855 				  unsigned long end, phys_addr_t phys,
856 				  const struct mem_type *type,
857 				  void *(*alloc)(unsigned long sz), bool ng)
858 {
859 	p4d_t *p4d = p4d_offset(pgd, addr);
860 	unsigned long next;
861 
862 	do {
863 		next = p4d_addr_end(addr, end);
864 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
865 		phys += next - addr;
866 	} while (p4d++, addr = next, addr != end);
867 }
868 
869 #ifndef CONFIG_ARM_LPAE
870 static void __init create_36bit_mapping(struct mm_struct *mm,
871 					struct map_desc *md,
872 					const struct mem_type *type,
873 					bool ng)
874 {
875 	unsigned long addr, length, end;
876 	phys_addr_t phys;
877 	pgd_t *pgd;
878 
879 	addr = md->virtual;
880 	phys = __pfn_to_phys(md->pfn);
881 	length = PAGE_ALIGN(md->length);
882 
883 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
884 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
885 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
886 		return;
887 	}
888 
889 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
890 	 *	Since domain assignments can in fact be arbitrary, the
891 	 *	'domain == 0' check below is required to insure that ARMv6
892 	 *	supersections are only allocated for domain 0 regardless
893 	 *	of the actual domain assignments in use.
894 	 */
895 	if (type->domain) {
896 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
897 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
898 		return;
899 	}
900 
901 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
902 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
903 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
904 		return;
905 	}
906 
907 	/*
908 	 * Shift bits [35:32] of address into bits [23:20] of PMD
909 	 * (See ARMv6 spec).
910 	 */
911 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
912 
913 	pgd = pgd_offset(mm, addr);
914 	end = addr + length;
915 	do {
916 		p4d_t *p4d = p4d_offset(pgd, addr);
917 		pud_t *pud = pud_offset(p4d, addr);
918 		pmd_t *pmd = pmd_offset(pud, addr);
919 		int i;
920 
921 		for (i = 0; i < 16; i++)
922 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
923 				       (ng ? PMD_SECT_nG : 0));
924 
925 		addr += SUPERSECTION_SIZE;
926 		phys += SUPERSECTION_SIZE;
927 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
928 	} while (addr != end);
929 }
930 #endif	/* !CONFIG_ARM_LPAE */
931 
932 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
933 				    void *(*alloc)(unsigned long sz),
934 				    bool ng)
935 {
936 	unsigned long addr, length, end;
937 	phys_addr_t phys;
938 	const struct mem_type *type;
939 	pgd_t *pgd;
940 
941 	type = &mem_types[md->type];
942 
943 #ifndef CONFIG_ARM_LPAE
944 	/*
945 	 * Catch 36-bit addresses
946 	 */
947 	if (md->pfn >= 0x100000) {
948 		create_36bit_mapping(mm, md, type, ng);
949 		return;
950 	}
951 #endif
952 
953 	addr = md->virtual & PAGE_MASK;
954 	phys = __pfn_to_phys(md->pfn);
955 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
956 
957 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
958 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
959 			(long long)__pfn_to_phys(md->pfn), addr);
960 		return;
961 	}
962 
963 	pgd = pgd_offset(mm, addr);
964 	end = addr + length;
965 	do {
966 		unsigned long next = pgd_addr_end(addr, end);
967 
968 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
969 
970 		phys += next - addr;
971 		addr = next;
972 	} while (pgd++, addr != end);
973 }
974 
975 /*
976  * Create the page directory entries and any necessary
977  * page tables for the mapping specified by `md'.  We
978  * are able to cope here with varying sizes and address
979  * offsets, and we take full advantage of sections and
980  * supersections.
981  */
982 static void __init create_mapping(struct map_desc *md)
983 {
984 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
985 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
986 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
987 		return;
988 	}
989 
990 	if (md->type == MT_DEVICE &&
991 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
992 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
993 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
994 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
995 	}
996 
997 	__create_mapping(&init_mm, md, early_alloc, false);
998 }
999 
1000 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
1001 				bool ng)
1002 {
1003 #ifdef CONFIG_ARM_LPAE
1004 	p4d_t *p4d;
1005 	pud_t *pud;
1006 
1007 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
1008 	if (WARN_ON(!p4d))
1009 		return;
1010 	pud = pud_alloc(mm, p4d, md->virtual);
1011 	if (WARN_ON(!pud))
1012 		return;
1013 	pmd_alloc(mm, pud, 0);
1014 #endif
1015 	__create_mapping(mm, md, late_alloc, ng);
1016 }
1017 
1018 /*
1019  * Create the architecture specific mappings
1020  */
1021 void __init iotable_init(struct map_desc *io_desc, int nr)
1022 {
1023 	struct map_desc *md;
1024 	struct vm_struct *vm;
1025 	struct static_vm *svm;
1026 
1027 	if (!nr)
1028 		return;
1029 
1030 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1031 	if (!svm)
1032 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1033 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1034 
1035 	for (md = io_desc; nr; md++, nr--) {
1036 		create_mapping(md);
1037 
1038 		vm = &svm->vm;
1039 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1040 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1041 		vm->phys_addr = __pfn_to_phys(md->pfn);
1042 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1043 		vm->flags |= VM_ARM_MTYPE(md->type);
1044 		vm->caller = iotable_init;
1045 		add_static_vm_early(svm++);
1046 	}
1047 }
1048 
1049 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1050 				  void *caller)
1051 {
1052 	struct vm_struct *vm;
1053 	struct static_vm *svm;
1054 
1055 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1056 	if (!svm)
1057 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1058 		      __func__, sizeof(*svm), __alignof__(*svm));
1059 
1060 	vm = &svm->vm;
1061 	vm->addr = (void *)addr;
1062 	vm->size = size;
1063 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1064 	vm->caller = caller;
1065 	add_static_vm_early(svm);
1066 }
1067 
1068 #ifndef CONFIG_ARM_LPAE
1069 
1070 /*
1071  * The Linux PMD is made of two consecutive section entries covering 2MB
1072  * (see definition in include/asm/pgtable-2level.h).  However a call to
1073  * create_mapping() may optimize static mappings by using individual
1074  * 1MB section mappings.  This leaves the actual PMD potentially half
1075  * initialized if the top or bottom section entry isn't used, leaving it
1076  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1077  * the virtual space left free by that unused section entry.
1078  *
1079  * Let's avoid the issue by inserting dummy vm entries covering the unused
1080  * PMD halves once the static mappings are in place.
1081  */
1082 
1083 static void __init pmd_empty_section_gap(unsigned long addr)
1084 {
1085 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1086 }
1087 
1088 static void __init fill_pmd_gaps(void)
1089 {
1090 	struct static_vm *svm;
1091 	struct vm_struct *vm;
1092 	unsigned long addr, next = 0;
1093 	pmd_t *pmd;
1094 
1095 	list_for_each_entry(svm, &static_vmlist, list) {
1096 		vm = &svm->vm;
1097 		addr = (unsigned long)vm->addr;
1098 		if (addr < next)
1099 			continue;
1100 
1101 		/*
1102 		 * Check if this vm starts on an odd section boundary.
1103 		 * If so and the first section entry for this PMD is free
1104 		 * then we block the corresponding virtual address.
1105 		 */
1106 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1107 			pmd = pmd_off_k(addr);
1108 			if (pmd_none(*pmd))
1109 				pmd_empty_section_gap(addr & PMD_MASK);
1110 		}
1111 
1112 		/*
1113 		 * Then check if this vm ends on an odd section boundary.
1114 		 * If so and the second section entry for this PMD is empty
1115 		 * then we block the corresponding virtual address.
1116 		 */
1117 		addr += vm->size;
1118 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1119 			pmd = pmd_off_k(addr) + 1;
1120 			if (pmd_none(*pmd))
1121 				pmd_empty_section_gap(addr);
1122 		}
1123 
1124 		/* no need to look at any vm entry until we hit the next PMD */
1125 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1126 	}
1127 }
1128 
1129 #else
1130 #define fill_pmd_gaps() do { } while (0)
1131 #endif
1132 
1133 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1134 static void __init pci_reserve_io(void)
1135 {
1136 	struct static_vm *svm;
1137 
1138 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1139 	if (svm)
1140 		return;
1141 
1142 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1143 }
1144 #else
1145 #define pci_reserve_io() do { } while (0)
1146 #endif
1147 
1148 #ifdef CONFIG_DEBUG_LL
1149 void __init debug_ll_io_init(void)
1150 {
1151 	struct map_desc map;
1152 
1153 	debug_ll_addr(&map.pfn, &map.virtual);
1154 	if (!map.pfn || !map.virtual)
1155 		return;
1156 	map.pfn = __phys_to_pfn(map.pfn);
1157 	map.virtual &= PAGE_MASK;
1158 	map.length = PAGE_SIZE;
1159 	map.type = MT_DEVICE;
1160 	iotable_init(&map, 1);
1161 }
1162 #endif
1163 
1164 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1165 
1166 /*
1167  * vmalloc=size forces the vmalloc area to be exactly 'size'
1168  * bytes. This can be used to increase (or decrease) the vmalloc
1169  * area - the default is 240MiB.
1170  */
1171 static int __init early_vmalloc(char *arg)
1172 {
1173 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1174 	unsigned long vmalloc_max;
1175 
1176 	if (vmalloc_reserve < SZ_16M) {
1177 		vmalloc_reserve = SZ_16M;
1178 		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1179 			vmalloc_reserve >> 20);
1180 	}
1181 
1182 	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1183 	if (vmalloc_reserve > vmalloc_max) {
1184 		vmalloc_reserve = vmalloc_max;
1185 		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1186 			vmalloc_reserve >> 20);
1187 	}
1188 
1189 	vmalloc_size = vmalloc_reserve;
1190 	return 0;
1191 }
1192 early_param("vmalloc", early_vmalloc);
1193 
1194 phys_addr_t arm_lowmem_limit __initdata = 0;
1195 
1196 void __init adjust_lowmem_bounds(void)
1197 {
1198 	phys_addr_t block_start, block_end, memblock_limit = 0;
1199 	u64 vmalloc_limit, i;
1200 	phys_addr_t lowmem_limit = 0;
1201 
1202 	/*
1203 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1204 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1205 	 * The result is used as the upper bound on physical memory address
1206 	 * and may itself be outside the valid range for which phys_addr_t
1207 	 * and therefore __pa() is defined.
1208 	 */
1209 	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1210 			PAGE_OFFSET + PHYS_OFFSET;
1211 
1212 	/*
1213 	 * The first usable region must be PMD aligned. Mark its start
1214 	 * as MEMBLOCK_NOMAP if it isn't
1215 	 */
1216 	for_each_mem_range(i, &block_start, &block_end) {
1217 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1218 			phys_addr_t len;
1219 
1220 			len = round_up(block_start, PMD_SIZE) - block_start;
1221 			memblock_mark_nomap(block_start, len);
1222 		}
1223 		break;
1224 	}
1225 
1226 	for_each_mem_range(i, &block_start, &block_end) {
1227 		if (block_start < vmalloc_limit) {
1228 			if (block_end > lowmem_limit)
1229 				/*
1230 				 * Compare as u64 to ensure vmalloc_limit does
1231 				 * not get truncated. block_end should always
1232 				 * fit in phys_addr_t so there should be no
1233 				 * issue with assignment.
1234 				 */
1235 				lowmem_limit = min_t(u64,
1236 							 vmalloc_limit,
1237 							 block_end);
1238 
1239 			/*
1240 			 * Find the first non-pmd-aligned page, and point
1241 			 * memblock_limit at it. This relies on rounding the
1242 			 * limit down to be pmd-aligned, which happens at the
1243 			 * end of this function.
1244 			 *
1245 			 * With this algorithm, the start or end of almost any
1246 			 * bank can be non-pmd-aligned. The only exception is
1247 			 * that the start of the bank 0 must be section-
1248 			 * aligned, since otherwise memory would need to be
1249 			 * allocated when mapping the start of bank 0, which
1250 			 * occurs before any free memory is mapped.
1251 			 */
1252 			if (!memblock_limit) {
1253 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1254 					memblock_limit = block_start;
1255 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1256 					memblock_limit = lowmem_limit;
1257 			}
1258 
1259 		}
1260 	}
1261 
1262 	arm_lowmem_limit = lowmem_limit;
1263 
1264 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1265 
1266 	if (!memblock_limit)
1267 		memblock_limit = arm_lowmem_limit;
1268 
1269 	/*
1270 	 * Round the memblock limit down to a pmd size.  This
1271 	 * helps to ensure that we will allocate memory from the
1272 	 * last full pmd, which should be mapped.
1273 	 */
1274 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1275 
1276 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1277 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1278 			phys_addr_t end = memblock_end_of_DRAM();
1279 
1280 			pr_notice("Ignoring RAM at %pa-%pa\n",
1281 				  &memblock_limit, &end);
1282 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1283 
1284 			memblock_remove(memblock_limit, end - memblock_limit);
1285 		}
1286 	}
1287 
1288 	memblock_set_current_limit(memblock_limit);
1289 }
1290 
1291 static __init void prepare_page_table(void)
1292 {
1293 	unsigned long addr;
1294 	phys_addr_t end;
1295 
1296 	/*
1297 	 * Clear out all the mappings below the kernel image.
1298 	 */
1299 #ifdef CONFIG_KASAN
1300 	/*
1301 	 * KASan's shadow memory inserts itself between the TASK_SIZE
1302 	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1303 	 */
1304 	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1305 		pmd_clear(pmd_off_k(addr));
1306 	/*
1307 	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1308 	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1309 	 * are using a thumb-compiled kernel, there there will be 8MB more
1310 	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1311 	 */
1312 	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1313 		pmd_clear(pmd_off_k(addr));
1314 #else
1315 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1316 		pmd_clear(pmd_off_k(addr));
1317 #endif
1318 
1319 #ifdef CONFIG_XIP_KERNEL
1320 	/* The XIP kernel is mapped in the module area -- skip over it */
1321 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1322 #endif
1323 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1324 		pmd_clear(pmd_off_k(addr));
1325 
1326 	/*
1327 	 * Find the end of the first block of lowmem.
1328 	 */
1329 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1330 	if (end >= arm_lowmem_limit)
1331 		end = arm_lowmem_limit;
1332 
1333 	/*
1334 	 * Clear out all the kernel space mappings, except for the first
1335 	 * memory bank, up to the vmalloc region.
1336 	 */
1337 	for (addr = __phys_to_virt(end);
1338 	     addr < VMALLOC_START; addr += PMD_SIZE)
1339 		pmd_clear(pmd_off_k(addr));
1340 }
1341 
1342 #ifdef CONFIG_ARM_LPAE
1343 /* the first page is reserved for pgd */
1344 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1345 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1346 #else
1347 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1348 #endif
1349 
1350 /*
1351  * Reserve the special regions of memory
1352  */
1353 void __init arm_mm_memblock_reserve(void)
1354 {
1355 	/*
1356 	 * Reserve the page tables.  These are already in use,
1357 	 * and can only be in node 0.
1358 	 */
1359 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1360 
1361 #ifdef CONFIG_SA1111
1362 	/*
1363 	 * Because of the SA1111 DMA bug, we want to preserve our
1364 	 * precious DMA-able memory...
1365 	 */
1366 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1367 #endif
1368 }
1369 
1370 /*
1371  * Set up the device mappings.  Since we clear out the page tables for all
1372  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1373  * device mappings.  This means earlycon can be used to debug this function
1374  * Any other function or debugging method which may touch any device _will_
1375  * crash the kernel.
1376  */
1377 static void __init devicemaps_init(const struct machine_desc *mdesc)
1378 {
1379 	struct map_desc map;
1380 	unsigned long addr;
1381 	void *vectors;
1382 
1383 	/*
1384 	 * Allocate the vector page early.
1385 	 */
1386 	vectors = early_alloc(PAGE_SIZE * 2);
1387 
1388 	early_trap_init(vectors);
1389 
1390 	/*
1391 	 * Clear page table except top pmd used by early fixmaps
1392 	 */
1393 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1394 		pmd_clear(pmd_off_k(addr));
1395 
1396 	if (__atags_pointer) {
1397 		/* create a read-only mapping of the device tree */
1398 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1399 		map.virtual = FDT_FIXED_BASE;
1400 		map.length = FDT_FIXED_SIZE;
1401 		map.type = MT_MEMORY_RO;
1402 		create_mapping(&map);
1403 	}
1404 
1405 	/*
1406 	 * Map the kernel if it is XIP.
1407 	 * It is always first in the modulearea.
1408 	 */
1409 #ifdef CONFIG_XIP_KERNEL
1410 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1411 	map.virtual = MODULES_VADDR;
1412 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1413 	map.type = MT_ROM;
1414 	create_mapping(&map);
1415 #endif
1416 
1417 	/*
1418 	 * Map the cache flushing regions.
1419 	 */
1420 #ifdef FLUSH_BASE
1421 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1422 	map.virtual = FLUSH_BASE;
1423 	map.length = SZ_1M;
1424 	map.type = MT_CACHECLEAN;
1425 	create_mapping(&map);
1426 #endif
1427 #ifdef FLUSH_BASE_MINICACHE
1428 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1429 	map.virtual = FLUSH_BASE_MINICACHE;
1430 	map.length = SZ_1M;
1431 	map.type = MT_MINICLEAN;
1432 	create_mapping(&map);
1433 #endif
1434 
1435 	/*
1436 	 * Create a mapping for the machine vectors at the high-vectors
1437 	 * location (0xffff0000).  If we aren't using high-vectors, also
1438 	 * create a mapping at the low-vectors virtual address.
1439 	 */
1440 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1441 	map.virtual = 0xffff0000;
1442 	map.length = PAGE_SIZE;
1443 #ifdef CONFIG_KUSER_HELPERS
1444 	map.type = MT_HIGH_VECTORS;
1445 #else
1446 	map.type = MT_LOW_VECTORS;
1447 #endif
1448 	create_mapping(&map);
1449 
1450 	if (!vectors_high()) {
1451 		map.virtual = 0;
1452 		map.length = PAGE_SIZE * 2;
1453 		map.type = MT_LOW_VECTORS;
1454 		create_mapping(&map);
1455 	}
1456 
1457 	/* Now create a kernel read-only mapping */
1458 	map.pfn += 1;
1459 	map.virtual = 0xffff0000 + PAGE_SIZE;
1460 	map.length = PAGE_SIZE;
1461 	map.type = MT_LOW_VECTORS;
1462 	create_mapping(&map);
1463 
1464 	/*
1465 	 * Ask the machine support to map in the statically mapped devices.
1466 	 */
1467 	if (mdesc->map_io)
1468 		mdesc->map_io();
1469 	else
1470 		debug_ll_io_init();
1471 	fill_pmd_gaps();
1472 
1473 	/* Reserve fixed i/o space in VMALLOC region */
1474 	pci_reserve_io();
1475 
1476 	/*
1477 	 * Finally flush the caches and tlb to ensure that we're in a
1478 	 * consistent state wrt the writebuffer.  This also ensures that
1479 	 * any write-allocated cache lines in the vector page are written
1480 	 * back.  After this point, we can start to touch devices again.
1481 	 */
1482 	local_flush_tlb_all();
1483 	flush_cache_all();
1484 
1485 	/* Enable asynchronous aborts */
1486 	early_abt_enable();
1487 }
1488 
1489 static void __init kmap_init(void)
1490 {
1491 #ifdef CONFIG_HIGHMEM
1492 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1493 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1494 #endif
1495 
1496 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1497 			_PAGE_KERNEL_TABLE);
1498 }
1499 
1500 static void __init map_lowmem(void)
1501 {
1502 	phys_addr_t start, end;
1503 	u64 i;
1504 
1505 	/* Map all the lowmem memory banks. */
1506 	for_each_mem_range(i, &start, &end) {
1507 		struct map_desc map;
1508 
1509 		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1510 			 (long long)start, (long long)end);
1511 		if (end > arm_lowmem_limit)
1512 			end = arm_lowmem_limit;
1513 		if (start >= end)
1514 			break;
1515 
1516 		/*
1517 		 * If our kernel image is in the VMALLOC area we need to remove
1518 		 * the kernel physical memory from lowmem since the kernel will
1519 		 * be mapped separately.
1520 		 *
1521 		 * The kernel will typically be at the very start of lowmem,
1522 		 * but any placement relative to memory ranges is possible.
1523 		 *
1524 		 * If the memblock contains the kernel, we have to chisel out
1525 		 * the kernel memory from it and map each part separately. We
1526 		 * get 6 different theoretical cases:
1527 		 *
1528 		 *                            +--------+ +--------+
1529 		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1530 		 *  |           |  | Kernel | | case 2 | | case 5 |
1531 		 *  |           |  | case 1 | +--------+ |        | +--------+
1532 		 *  |  Memory   |  +--------+            |        | | Kernel |
1533 		 *  |  range    |  +--------+            |        | | case 6 |
1534 		 *  |           |  | Kernel | +--------+ |        | +--------+
1535 		 *  |           |  | case 3 | | Kernel | |        |
1536 		 *  +-- end ----+  +--------+ | case 4 | |        |
1537 		 *                            +--------+ +--------+
1538 		 */
1539 
1540 		/* Case 5: kernel covers range, don't map anything, should be rare */
1541 		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1542 			break;
1543 
1544 		/* Cases where the kernel is starting inside the range */
1545 		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1546 			/* Case 6: kernel is embedded in the range, we need two mappings */
1547 			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1548 				/* Map memory below the kernel */
1549 				map.pfn = __phys_to_pfn(start);
1550 				map.virtual = __phys_to_virt(start);
1551 				map.length = kernel_sec_start - start;
1552 				map.type = MT_MEMORY_RW;
1553 				create_mapping(&map);
1554 				/* Map memory above the kernel */
1555 				map.pfn = __phys_to_pfn(kernel_sec_end);
1556 				map.virtual = __phys_to_virt(kernel_sec_end);
1557 				map.length = end - kernel_sec_end;
1558 				map.type = MT_MEMORY_RW;
1559 				create_mapping(&map);
1560 				break;
1561 			}
1562 			/* Case 1: kernel and range start at the same address, should be common */
1563 			if (kernel_sec_start == start)
1564 				start = kernel_sec_end;
1565 			/* Case 3: kernel and range end at the same address, should be rare */
1566 			if (kernel_sec_end == end)
1567 				end = kernel_sec_start;
1568 		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1569 			/* Case 2: kernel ends inside range, starts below it */
1570 			start = kernel_sec_end;
1571 		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1572 			/* Case 4: kernel starts inside range, ends above it */
1573 			end = kernel_sec_start;
1574 		}
1575 		map.pfn = __phys_to_pfn(start);
1576 		map.virtual = __phys_to_virt(start);
1577 		map.length = end - start;
1578 		map.type = MT_MEMORY_RW;
1579 		create_mapping(&map);
1580 	}
1581 }
1582 
1583 static void __init map_kernel(void)
1584 {
1585 	/*
1586 	 * We use the well known kernel section start and end and split the area in the
1587 	 * middle like this:
1588 	 *  .                .
1589 	 *  | RW memory      |
1590 	 *  +----------------+ kernel_x_start
1591 	 *  | Executable     |
1592 	 *  | kernel memory  |
1593 	 *  +----------------+ kernel_x_end / kernel_nx_start
1594 	 *  | Non-executable |
1595 	 *  | kernel memory  |
1596 	 *  +----------------+ kernel_nx_end
1597 	 *  | RW memory      |
1598 	 *  .                .
1599 	 *
1600 	 * Notice that we are dealing with section sized mappings here so all of this
1601 	 * will be bumped to the closest section boundary. This means that some of the
1602 	 * non-executable part of the kernel memory is actually mapped as executable.
1603 	 * This will only persist until we turn on proper memory management later on
1604 	 * and we remap the whole kernel with page granularity.
1605 	 */
1606 	phys_addr_t kernel_x_start = kernel_sec_start;
1607 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1608 	phys_addr_t kernel_nx_start = kernel_x_end;
1609 	phys_addr_t kernel_nx_end = kernel_sec_end;
1610 	struct map_desc map;
1611 
1612 	map.pfn = __phys_to_pfn(kernel_x_start);
1613 	map.virtual = __phys_to_virt(kernel_x_start);
1614 	map.length = kernel_x_end - kernel_x_start;
1615 	map.type = MT_MEMORY_RWX;
1616 	create_mapping(&map);
1617 
1618 	/* If the nx part is small it may end up covered by the tail of the RWX section */
1619 	if (kernel_x_end == kernel_nx_end)
1620 		return;
1621 
1622 	map.pfn = __phys_to_pfn(kernel_nx_start);
1623 	map.virtual = __phys_to_virt(kernel_nx_start);
1624 	map.length = kernel_nx_end - kernel_nx_start;
1625 	map.type = MT_MEMORY_RW;
1626 	create_mapping(&map);
1627 }
1628 
1629 #ifdef CONFIG_ARM_PV_FIXUP
1630 typedef void pgtables_remap(long long offset, unsigned long pgd);
1631 pgtables_remap lpae_pgtables_remap_asm;
1632 
1633 /*
1634  * early_paging_init() recreates boot time page table setup, allowing machines
1635  * to switch over to a high (>4G) address space on LPAE systems
1636  */
1637 static void __init early_paging_init(const struct machine_desc *mdesc)
1638 {
1639 	pgtables_remap *lpae_pgtables_remap;
1640 	unsigned long pa_pgd;
1641 	u32 cr, ttbcr, tmp;
1642 	long long offset;
1643 
1644 	if (!mdesc->pv_fixup)
1645 		return;
1646 
1647 	offset = mdesc->pv_fixup();
1648 	if (offset == 0)
1649 		return;
1650 
1651 	/*
1652 	 * Offset the kernel section physical offsets so that the kernel
1653 	 * mapping will work out later on.
1654 	 */
1655 	kernel_sec_start += offset;
1656 	kernel_sec_end += offset;
1657 
1658 	/*
1659 	 * Get the address of the remap function in the 1:1 identity
1660 	 * mapping setup by the early page table assembly code.  We
1661 	 * must get this prior to the pv update.  The following barrier
1662 	 * ensures that this is complete before we fixup any P:V offsets.
1663 	 */
1664 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1665 	pa_pgd = __pa(swapper_pg_dir);
1666 	barrier();
1667 
1668 	pr_info("Switching physical address space to 0x%08llx\n",
1669 		(u64)PHYS_OFFSET + offset);
1670 
1671 	/* Re-set the phys pfn offset, and the pv offset */
1672 	__pv_offset += offset;
1673 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1674 
1675 	/* Run the patch stub to update the constants */
1676 	fixup_pv_table(&__pv_table_begin,
1677 		(&__pv_table_end - &__pv_table_begin) << 2);
1678 
1679 	/*
1680 	 * We changing not only the virtual to physical mapping, but also
1681 	 * the physical addresses used to access memory.  We need to flush
1682 	 * all levels of cache in the system with caching disabled to
1683 	 * ensure that all data is written back, and nothing is prefetched
1684 	 * into the caches.  We also need to prevent the TLB walkers
1685 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1686 	 * specific.
1687 	 */
1688 	cr = get_cr();
1689 	set_cr(cr & ~(CR_I | CR_C));
1690 	ttbcr = cpu_get_ttbcr();
1691 	/* Disable all kind of caching of the translation table */
1692 	tmp = ttbcr & ~(TTBCR_ORGN0_MASK | TTBCR_IRGN0_MASK);
1693 	cpu_set_ttbcr(tmp);
1694 	flush_cache_all();
1695 
1696 	/*
1697 	 * Fixup the page tables - this must be in the idmap region as
1698 	 * we need to disable the MMU to do this safely, and hence it
1699 	 * needs to be assembly.  It's fairly simple, as we're using the
1700 	 * temporary tables setup by the initial assembly code.
1701 	 */
1702 	lpae_pgtables_remap(offset, pa_pgd);
1703 
1704 	/* Re-enable the caches and cacheable TLB walks */
1705 	cpu_set_ttbcr(ttbcr);
1706 	set_cr(cr);
1707 }
1708 
1709 #else
1710 
1711 static void __init early_paging_init(const struct machine_desc *mdesc)
1712 {
1713 	long long offset;
1714 
1715 	if (!mdesc->pv_fixup)
1716 		return;
1717 
1718 	offset = mdesc->pv_fixup();
1719 	if (offset == 0)
1720 		return;
1721 
1722 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1723 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1724 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1725 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1726 }
1727 
1728 #endif
1729 
1730 static void __init early_fixmap_shutdown(void)
1731 {
1732 	int i;
1733 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1734 
1735 	pte_offset_fixmap = pte_offset_late_fixmap;
1736 	pmd_clear(fixmap_pmd(va));
1737 	local_flush_tlb_kernel_page(va);
1738 
1739 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1740 		pte_t *pte;
1741 		struct map_desc map;
1742 
1743 		map.virtual = fix_to_virt(i);
1744 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1745 
1746 		/* Only i/o device mappings are supported ATM */
1747 		if (pte_none(*pte) ||
1748 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1749 			continue;
1750 
1751 		map.pfn = pte_pfn(*pte);
1752 		map.type = MT_DEVICE;
1753 		map.length = PAGE_SIZE;
1754 
1755 		create_mapping(&map);
1756 	}
1757 }
1758 
1759 /*
1760  * paging_init() sets up the page tables, initialises the zone memory
1761  * maps, and sets up the zero page, bad page and bad page tables.
1762  */
1763 void __init paging_init(const struct machine_desc *mdesc)
1764 {
1765 	void *zero_page;
1766 
1767 	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1768 		 kernel_sec_start, kernel_sec_end);
1769 
1770 	prepare_page_table();
1771 	map_lowmem();
1772 	memblock_set_current_limit(arm_lowmem_limit);
1773 	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1774 	/*
1775 	 * After this point early_alloc(), i.e. the memblock allocator, can
1776 	 * be used
1777 	 */
1778 	map_kernel();
1779 	dma_contiguous_remap();
1780 	early_fixmap_shutdown();
1781 	devicemaps_init(mdesc);
1782 	kmap_init();
1783 	tcm_init();
1784 
1785 	top_pmd = pmd_off_k(0xffff0000);
1786 
1787 	/* allocate the zero page. */
1788 	zero_page = early_alloc(PAGE_SIZE);
1789 
1790 	bootmem_init();
1791 
1792 	empty_zero_page = virt_to_page(zero_page);
1793 	__flush_dcache_folio(NULL, page_folio(empty_zero_page));
1794 }
1795 
1796 void __init early_mm_init(const struct machine_desc *mdesc)
1797 {
1798 	build_mem_type_table();
1799 	early_paging_init(mdesc);
1800 }
1801 
1802 void set_ptes(struct mm_struct *mm, unsigned long addr,
1803 			      pte_t *ptep, pte_t pteval, unsigned int nr)
1804 {
1805 	unsigned long ext = 0;
1806 
1807 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1808 		if (!pte_special(pteval))
1809 			__sync_icache_dcache(pteval);
1810 		ext |= PTE_EXT_NG;
1811 	}
1812 
1813 	for (;;) {
1814 		set_pte_ext(ptep, pteval, ext);
1815 		if (--nr == 0)
1816 			break;
1817 		ptep++;
1818 		pteval = pte_next_pfn(pteval);
1819 	}
1820 }
1821