xref: /linux/arch/arm/mm/mmu.c (revision be370302742ff9948f2a42b15cb2ba174d97b930)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/sort.h>
18 
19 #include <asm/cputype.h>
20 #include <asm/mach-types.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28 
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31 
32 #include "mm.h"
33 
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35 
36 /*
37  * empty_zero_page is a special page that is used for
38  * zero-initialized data and COW.
39  */
40 struct page *empty_zero_page;
41 EXPORT_SYMBOL(empty_zero_page);
42 
43 /*
44  * The pmd table for the upper-most set of pages.
45  */
46 pmd_t *top_pmd;
47 
48 #define CPOLICY_UNCACHED	0
49 #define CPOLICY_BUFFERED	1
50 #define CPOLICY_WRITETHROUGH	2
51 #define CPOLICY_WRITEBACK	3
52 #define CPOLICY_WRITEALLOC	4
53 
54 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55 static unsigned int ecc_mask __initdata = 0;
56 pgprot_t pgprot_user;
57 pgprot_t pgprot_kernel;
58 
59 EXPORT_SYMBOL(pgprot_user);
60 EXPORT_SYMBOL(pgprot_kernel);
61 
62 struct cachepolicy {
63 	const char	policy[16];
64 	unsigned int	cr_mask;
65 	unsigned int	pmd;
66 	unsigned int	pte;
67 };
68 
69 static struct cachepolicy cache_policies[] __initdata = {
70 	{
71 		.policy		= "uncached",
72 		.cr_mask	= CR_W|CR_C,
73 		.pmd		= PMD_SECT_UNCACHED,
74 		.pte		= L_PTE_MT_UNCACHED,
75 	}, {
76 		.policy		= "buffered",
77 		.cr_mask	= CR_C,
78 		.pmd		= PMD_SECT_BUFFERED,
79 		.pte		= L_PTE_MT_BUFFERABLE,
80 	}, {
81 		.policy		= "writethrough",
82 		.cr_mask	= 0,
83 		.pmd		= PMD_SECT_WT,
84 		.pte		= L_PTE_MT_WRITETHROUGH,
85 	}, {
86 		.policy		= "writeback",
87 		.cr_mask	= 0,
88 		.pmd		= PMD_SECT_WB,
89 		.pte		= L_PTE_MT_WRITEBACK,
90 	}, {
91 		.policy		= "writealloc",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WBWA,
94 		.pte		= L_PTE_MT_WRITEALLOC,
95 	}
96 };
97 
98 /*
99  * These are useful for identifying cache coherency
100  * problems by allowing the cache or the cache and
101  * writebuffer to be turned off.  (Note: the write
102  * buffer should not be on and the cache off).
103  */
104 static int __init early_cachepolicy(char *p)
105 {
106 	int i;
107 
108 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109 		int len = strlen(cache_policies[i].policy);
110 
111 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
112 			cachepolicy = i;
113 			cr_alignment &= ~cache_policies[i].cr_mask;
114 			cr_no_alignment &= ~cache_policies[i].cr_mask;
115 			break;
116 		}
117 	}
118 	if (i == ARRAY_SIZE(cache_policies))
119 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120 	/*
121 	 * This restriction is partly to do with the way we boot; it is
122 	 * unpredictable to have memory mapped using two different sets of
123 	 * memory attributes (shared, type, and cache attribs).  We can not
124 	 * change these attributes once the initial assembly has setup the
125 	 * page tables.
126 	 */
127 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 		cachepolicy = CPOLICY_WRITEBACK;
130 	}
131 	flush_cache_all();
132 	set_cr(cr_alignment);
133 	return 0;
134 }
135 early_param("cachepolicy", early_cachepolicy);
136 
137 static int __init early_nocache(char *__unused)
138 {
139 	char *p = "buffered";
140 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
141 	early_cachepolicy(p);
142 	return 0;
143 }
144 early_param("nocache", early_nocache);
145 
146 static int __init early_nowrite(char *__unused)
147 {
148 	char *p = "uncached";
149 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
150 	early_cachepolicy(p);
151 	return 0;
152 }
153 early_param("nowb", early_nowrite);
154 
155 static int __init early_ecc(char *p)
156 {
157 	if (memcmp(p, "on", 2) == 0)
158 		ecc_mask = PMD_PROTECTION;
159 	else if (memcmp(p, "off", 3) == 0)
160 		ecc_mask = 0;
161 	return 0;
162 }
163 early_param("ecc", early_ecc);
164 
165 static int __init noalign_setup(char *__unused)
166 {
167 	cr_alignment &= ~CR_A;
168 	cr_no_alignment &= ~CR_A;
169 	set_cr(cr_alignment);
170 	return 1;
171 }
172 __setup("noalign", noalign_setup);
173 
174 #ifndef CONFIG_SMP
175 void adjust_cr(unsigned long mask, unsigned long set)
176 {
177 	unsigned long flags;
178 
179 	mask &= ~CR_A;
180 
181 	set &= mask;
182 
183 	local_irq_save(flags);
184 
185 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
186 	cr_alignment = (cr_alignment & ~mask) | set;
187 
188 	set_cr((get_cr() & ~mask) | set);
189 
190 	local_irq_restore(flags);
191 }
192 #endif
193 
194 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
195 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196 
197 static struct mem_type mem_types[] = {
198 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
199 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200 				  L_PTE_SHARED,
201 		.prot_l1	= PMD_TYPE_TABLE,
202 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
203 		.domain		= DOMAIN_IO,
204 	},
205 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207 		.prot_l1	= PMD_TYPE_TABLE,
208 		.prot_sect	= PROT_SECT_DEVICE,
209 		.domain		= DOMAIN_IO,
210 	},
211 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
212 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213 		.prot_l1	= PMD_TYPE_TABLE,
214 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
215 		.domain		= DOMAIN_IO,
216 	},
217 	[MT_DEVICE_WC] = {	/* ioremap_wc */
218 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219 		.prot_l1	= PMD_TYPE_TABLE,
220 		.prot_sect	= PROT_SECT_DEVICE,
221 		.domain		= DOMAIN_IO,
222 	},
223 	[MT_UNCACHED] = {
224 		.prot_pte	= PROT_PTE_DEVICE,
225 		.prot_l1	= PMD_TYPE_TABLE,
226 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
227 		.domain		= DOMAIN_IO,
228 	},
229 	[MT_CACHECLEAN] = {
230 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231 		.domain    = DOMAIN_KERNEL,
232 	},
233 	[MT_MINICLEAN] = {
234 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
235 		.domain    = DOMAIN_KERNEL,
236 	},
237 	[MT_LOW_VECTORS] = {
238 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239 				L_PTE_EXEC,
240 		.prot_l1   = PMD_TYPE_TABLE,
241 		.domain    = DOMAIN_USER,
242 	},
243 	[MT_HIGH_VECTORS] = {
244 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245 				L_PTE_USER | L_PTE_EXEC,
246 		.prot_l1   = PMD_TYPE_TABLE,
247 		.domain    = DOMAIN_USER,
248 	},
249 	[MT_MEMORY] = {
250 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
251 		.domain    = DOMAIN_KERNEL,
252 	},
253 	[MT_ROM] = {
254 		.prot_sect = PMD_TYPE_SECT,
255 		.domain    = DOMAIN_KERNEL,
256 	},
257 	[MT_MEMORY_NONCACHED] = {
258 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259 		.domain    = DOMAIN_KERNEL,
260 	},
261 };
262 
263 const struct mem_type *get_mem_type(unsigned int type)
264 {
265 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
266 }
267 EXPORT_SYMBOL(get_mem_type);
268 
269 /*
270  * Adjust the PMD section entries according to the CPU in use.
271  */
272 static void __init build_mem_type_table(void)
273 {
274 	struct cachepolicy *cp;
275 	unsigned int cr = get_cr();
276 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
277 	int cpu_arch = cpu_architecture();
278 	int i;
279 
280 	if (cpu_arch < CPU_ARCH_ARMv6) {
281 #if defined(CONFIG_CPU_DCACHE_DISABLE)
282 		if (cachepolicy > CPOLICY_BUFFERED)
283 			cachepolicy = CPOLICY_BUFFERED;
284 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
285 		if (cachepolicy > CPOLICY_WRITETHROUGH)
286 			cachepolicy = CPOLICY_WRITETHROUGH;
287 #endif
288 	}
289 	if (cpu_arch < CPU_ARCH_ARMv5) {
290 		if (cachepolicy >= CPOLICY_WRITEALLOC)
291 			cachepolicy = CPOLICY_WRITEBACK;
292 		ecc_mask = 0;
293 	}
294 #ifdef CONFIG_SMP
295 	cachepolicy = CPOLICY_WRITEALLOC;
296 #endif
297 
298 	/*
299 	 * Strip out features not present on earlier architectures.
300 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
301 	 * without extended page tables don't have the 'Shared' bit.
302 	 */
303 	if (cpu_arch < CPU_ARCH_ARMv5)
304 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
305 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
306 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
307 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
308 			mem_types[i].prot_sect &= ~PMD_SECT_S;
309 
310 	/*
311 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
312 	 * "update-able on write" bit on ARM610).  However, Xscale and
313 	 * Xscale3 require this bit to be cleared.
314 	 */
315 	if (cpu_is_xscale() || cpu_is_xsc3()) {
316 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
317 			mem_types[i].prot_sect &= ~PMD_BIT4;
318 			mem_types[i].prot_l1 &= ~PMD_BIT4;
319 		}
320 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
321 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
322 			if (mem_types[i].prot_l1)
323 				mem_types[i].prot_l1 |= PMD_BIT4;
324 			if (mem_types[i].prot_sect)
325 				mem_types[i].prot_sect |= PMD_BIT4;
326 		}
327 	}
328 
329 	/*
330 	 * Mark the device areas according to the CPU/architecture.
331 	 */
332 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
333 		if (!cpu_is_xsc3()) {
334 			/*
335 			 * Mark device regions on ARMv6+ as execute-never
336 			 * to prevent speculative instruction fetches.
337 			 */
338 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
339 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
340 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
341 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
342 		}
343 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
344 			/*
345 			 * For ARMv7 with TEX remapping,
346 			 * - shared device is SXCB=1100
347 			 * - nonshared device is SXCB=0100
348 			 * - write combine device mem is SXCB=0001
349 			 * (Uncached Normal memory)
350 			 */
351 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
352 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
353 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
354 		} else if (cpu_is_xsc3()) {
355 			/*
356 			 * For Xscale3,
357 			 * - shared device is TEXCB=00101
358 			 * - nonshared device is TEXCB=01000
359 			 * - write combine device mem is TEXCB=00100
360 			 * (Inner/Outer Uncacheable in xsc3 parlance)
361 			 */
362 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
363 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
364 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
365 		} else {
366 			/*
367 			 * For ARMv6 and ARMv7 without TEX remapping,
368 			 * - shared device is TEXCB=00001
369 			 * - nonshared device is TEXCB=01000
370 			 * - write combine device mem is TEXCB=00100
371 			 * (Uncached Normal in ARMv6 parlance).
372 			 */
373 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
374 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
375 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
376 		}
377 	} else {
378 		/*
379 		 * On others, write combining is "Uncached/Buffered"
380 		 */
381 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
382 	}
383 
384 	/*
385 	 * Now deal with the memory-type mappings
386 	 */
387 	cp = &cache_policies[cachepolicy];
388 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
389 
390 #ifndef CONFIG_SMP
391 	/*
392 	 * Only use write-through for non-SMP systems
393 	 */
394 	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
395 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
396 #endif
397 
398 	/*
399 	 * Enable CPU-specific coherency if supported.
400 	 * (Only available on XSC3 at the moment.)
401 	 */
402 	if (arch_is_coherent() && cpu_is_xsc3())
403 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
404 
405 	/*
406 	 * ARMv6 and above have extended page tables.
407 	 */
408 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
409 		/*
410 		 * Mark cache clean areas and XIP ROM read only
411 		 * from SVC mode and no access from userspace.
412 		 */
413 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
416 
417 #ifdef CONFIG_SMP
418 		/*
419 		 * Mark memory with the "shared" attribute for SMP systems
420 		 */
421 		user_pgprot |= L_PTE_SHARED;
422 		kern_pgprot |= L_PTE_SHARED;
423 		vecs_pgprot |= L_PTE_SHARED;
424 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
425 		mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
426 		mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
427 		mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
428 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
429 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
430 #endif
431 	}
432 
433 	/*
434 	 * Non-cacheable Normal - intended for memory areas that must
435 	 * not cause dirty cache line writebacks when used
436 	 */
437 	if (cpu_arch >= CPU_ARCH_ARMv6) {
438 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
439 			/* Non-cacheable Normal is XCB = 001 */
440 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
441 				PMD_SECT_BUFFERED;
442 		} else {
443 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
444 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
445 				PMD_SECT_TEX(1);
446 		}
447 	} else {
448 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
449 	}
450 
451 	for (i = 0; i < 16; i++) {
452 		unsigned long v = pgprot_val(protection_map[i]);
453 		protection_map[i] = __pgprot(v | user_pgprot);
454 	}
455 
456 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
457 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
458 
459 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
460 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
461 				 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
462 
463 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
464 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
465 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
466 	mem_types[MT_ROM].prot_sect |= cp->pmd;
467 
468 	switch (cp->pmd) {
469 	case PMD_SECT_WT:
470 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
471 		break;
472 	case PMD_SECT_WB:
473 	case PMD_SECT_WBWA:
474 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
475 		break;
476 	}
477 	printk("Memory policy: ECC %sabled, Data cache %s\n",
478 		ecc_mask ? "en" : "dis", cp->policy);
479 
480 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
481 		struct mem_type *t = &mem_types[i];
482 		if (t->prot_l1)
483 			t->prot_l1 |= PMD_DOMAIN(t->domain);
484 		if (t->prot_sect)
485 			t->prot_sect |= PMD_DOMAIN(t->domain);
486 	}
487 }
488 
489 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
490 
491 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
492 				  unsigned long end, unsigned long pfn,
493 				  const struct mem_type *type)
494 {
495 	pte_t *pte;
496 
497 	if (pmd_none(*pmd)) {
498 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
499 		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
500 	}
501 
502 	pte = pte_offset_kernel(pmd, addr);
503 	do {
504 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
505 		pfn++;
506 	} while (pte++, addr += PAGE_SIZE, addr != end);
507 }
508 
509 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
510 				      unsigned long end, unsigned long phys,
511 				      const struct mem_type *type)
512 {
513 	pmd_t *pmd = pmd_offset(pgd, addr);
514 
515 	/*
516 	 * Try a section mapping - end, addr and phys must all be aligned
517 	 * to a section boundary.  Note that PMDs refer to the individual
518 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
519 	 * up one logical pointer to an L2 table.
520 	 */
521 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
522 		pmd_t *p = pmd;
523 
524 		if (addr & SECTION_SIZE)
525 			pmd++;
526 
527 		do {
528 			*pmd = __pmd(phys | type->prot_sect);
529 			phys += SECTION_SIZE;
530 		} while (pmd++, addr += SECTION_SIZE, addr != end);
531 
532 		flush_pmd_entry(p);
533 	} else {
534 		/*
535 		 * No need to loop; pte's aren't interested in the
536 		 * individual L1 entries.
537 		 */
538 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
539 	}
540 }
541 
542 static void __init create_36bit_mapping(struct map_desc *md,
543 					const struct mem_type *type)
544 {
545 	unsigned long phys, addr, length, end;
546 	pgd_t *pgd;
547 
548 	addr = md->virtual;
549 	phys = (unsigned long)__pfn_to_phys(md->pfn);
550 	length = PAGE_ALIGN(md->length);
551 
552 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
553 		printk(KERN_ERR "MM: CPU does not support supersection "
554 		       "mapping for 0x%08llx at 0x%08lx\n",
555 		       __pfn_to_phys((u64)md->pfn), addr);
556 		return;
557 	}
558 
559 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
560 	 *	Since domain assignments can in fact be arbitrary, the
561 	 *	'domain == 0' check below is required to insure that ARMv6
562 	 *	supersections are only allocated for domain 0 regardless
563 	 *	of the actual domain assignments in use.
564 	 */
565 	if (type->domain) {
566 		printk(KERN_ERR "MM: invalid domain in supersection "
567 		       "mapping for 0x%08llx at 0x%08lx\n",
568 		       __pfn_to_phys((u64)md->pfn), addr);
569 		return;
570 	}
571 
572 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
573 		printk(KERN_ERR "MM: cannot create mapping for "
574 		       "0x%08llx at 0x%08lx invalid alignment\n",
575 		       __pfn_to_phys((u64)md->pfn), addr);
576 		return;
577 	}
578 
579 	/*
580 	 * Shift bits [35:32] of address into bits [23:20] of PMD
581 	 * (See ARMv6 spec).
582 	 */
583 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
584 
585 	pgd = pgd_offset_k(addr);
586 	end = addr + length;
587 	do {
588 		pmd_t *pmd = pmd_offset(pgd, addr);
589 		int i;
590 
591 		for (i = 0; i < 16; i++)
592 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
593 
594 		addr += SUPERSECTION_SIZE;
595 		phys += SUPERSECTION_SIZE;
596 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
597 	} while (addr != end);
598 }
599 
600 /*
601  * Create the page directory entries and any necessary
602  * page tables for the mapping specified by `md'.  We
603  * are able to cope here with varying sizes and address
604  * offsets, and we take full advantage of sections and
605  * supersections.
606  */
607 static void __init create_mapping(struct map_desc *md)
608 {
609 	unsigned long phys, addr, length, end;
610 	const struct mem_type *type;
611 	pgd_t *pgd;
612 
613 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
614 		printk(KERN_WARNING "BUG: not creating mapping for "
615 		       "0x%08llx at 0x%08lx in user region\n",
616 		       __pfn_to_phys((u64)md->pfn), md->virtual);
617 		return;
618 	}
619 
620 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
621 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
622 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
623 		       "overlaps vmalloc space\n",
624 		       __pfn_to_phys((u64)md->pfn), md->virtual);
625 	}
626 
627 	type = &mem_types[md->type];
628 
629 	/*
630 	 * Catch 36-bit addresses
631 	 */
632 	if (md->pfn >= 0x100000) {
633 		create_36bit_mapping(md, type);
634 		return;
635 	}
636 
637 	addr = md->virtual & PAGE_MASK;
638 	phys = (unsigned long)__pfn_to_phys(md->pfn);
639 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
640 
641 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
642 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
643 		       "be mapped using pages, ignoring.\n",
644 		       __pfn_to_phys(md->pfn), addr);
645 		return;
646 	}
647 
648 	pgd = pgd_offset_k(addr);
649 	end = addr + length;
650 	do {
651 		unsigned long next = pgd_addr_end(addr, end);
652 
653 		alloc_init_section(pgd, addr, next, phys, type);
654 
655 		phys += next - addr;
656 		addr = next;
657 	} while (pgd++, addr != end);
658 }
659 
660 /*
661  * Create the architecture specific mappings
662  */
663 void __init iotable_init(struct map_desc *io_desc, int nr)
664 {
665 	int i;
666 
667 	for (i = 0; i < nr; i++)
668 		create_mapping(io_desc + i);
669 }
670 
671 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
672 
673 /*
674  * vmalloc=size forces the vmalloc area to be exactly 'size'
675  * bytes. This can be used to increase (or decrease) the vmalloc
676  * area - the default is 128m.
677  */
678 static int __init early_vmalloc(char *arg)
679 {
680 	unsigned long vmalloc_reserve = memparse(arg, NULL);
681 
682 	if (vmalloc_reserve < SZ_16M) {
683 		vmalloc_reserve = SZ_16M;
684 		printk(KERN_WARNING
685 			"vmalloc area too small, limiting to %luMB\n",
686 			vmalloc_reserve >> 20);
687 	}
688 
689 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
690 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
691 		printk(KERN_WARNING
692 			"vmalloc area is too big, limiting to %luMB\n",
693 			vmalloc_reserve >> 20);
694 	}
695 
696 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
697 	return 0;
698 }
699 early_param("vmalloc", early_vmalloc);
700 
701 static void __init sanity_check_meminfo(void)
702 {
703 	int i, j, highmem = 0;
704 
705 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
706 		struct membank *bank = &meminfo.bank[j];
707 		*bank = meminfo.bank[i];
708 
709 #ifdef CONFIG_HIGHMEM
710 		if (__va(bank->start) > vmalloc_min ||
711 		    __va(bank->start) < (void *)PAGE_OFFSET)
712 			highmem = 1;
713 
714 		bank->highmem = highmem;
715 
716 		/*
717 		 * Split those memory banks which are partially overlapping
718 		 * the vmalloc area greatly simplifying things later.
719 		 */
720 		if (__va(bank->start) < vmalloc_min &&
721 		    bank->size > vmalloc_min - __va(bank->start)) {
722 			if (meminfo.nr_banks >= NR_BANKS) {
723 				printk(KERN_CRIT "NR_BANKS too low, "
724 						 "ignoring high memory\n");
725 			} else {
726 				memmove(bank + 1, bank,
727 					(meminfo.nr_banks - i) * sizeof(*bank));
728 				meminfo.nr_banks++;
729 				i++;
730 				bank[1].size -= vmalloc_min - __va(bank->start);
731 				bank[1].start = __pa(vmalloc_min - 1) + 1;
732 				bank[1].highmem = highmem = 1;
733 				j++;
734 			}
735 			bank->size = vmalloc_min - __va(bank->start);
736 		}
737 #else
738 		bank->highmem = highmem;
739 
740 		/*
741 		 * Check whether this memory bank would entirely overlap
742 		 * the vmalloc area.
743 		 */
744 		if (__va(bank->start) >= vmalloc_min ||
745 		    __va(bank->start) < (void *)PAGE_OFFSET) {
746 			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
747 			       "(vmalloc region overlap).\n",
748 			       bank->start, bank->start + bank->size - 1);
749 			continue;
750 		}
751 
752 		/*
753 		 * Check whether this memory bank would partially overlap
754 		 * the vmalloc area.
755 		 */
756 		if (__va(bank->start + bank->size) > vmalloc_min ||
757 		    __va(bank->start + bank->size) < __va(bank->start)) {
758 			unsigned long newsize = vmalloc_min - __va(bank->start);
759 			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
760 			       "to -%.8lx (vmalloc region overlap).\n",
761 			       bank->start, bank->start + bank->size - 1,
762 			       bank->start + newsize - 1);
763 			bank->size = newsize;
764 		}
765 #endif
766 		j++;
767 	}
768 #ifdef CONFIG_HIGHMEM
769 	if (highmem) {
770 		const char *reason = NULL;
771 
772 		if (cache_is_vipt_aliasing()) {
773 			/*
774 			 * Interactions between kmap and other mappings
775 			 * make highmem support with aliasing VIPT caches
776 			 * rather difficult.
777 			 */
778 			reason = "with VIPT aliasing cache";
779 #ifdef CONFIG_SMP
780 		} else if (tlb_ops_need_broadcast()) {
781 			/*
782 			 * kmap_high needs to occasionally flush TLB entries,
783 			 * however, if the TLB entries need to be broadcast
784 			 * we may deadlock:
785 			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
786 			 *  flush_tlb_kernel_range->smp_call_function_many
787 			 *   (must not be called with irqs off)
788 			 */
789 			reason = "without hardware TLB ops broadcasting";
790 #endif
791 		}
792 		if (reason) {
793 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
794 				reason);
795 			while (j > 0 && meminfo.bank[j - 1].highmem)
796 				j--;
797 		}
798 	}
799 #endif
800 	meminfo.nr_banks = j;
801 }
802 
803 static inline void prepare_page_table(void)
804 {
805 	unsigned long addr;
806 
807 	/*
808 	 * Clear out all the mappings below the kernel image.
809 	 */
810 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
811 		pmd_clear(pmd_off_k(addr));
812 
813 #ifdef CONFIG_XIP_KERNEL
814 	/* The XIP kernel is mapped in the module area -- skip over it */
815 	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
816 #endif
817 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
818 		pmd_clear(pmd_off_k(addr));
819 
820 	/*
821 	 * Clear out all the kernel space mappings, except for the first
822 	 * memory bank, up to the end of the vmalloc region.
823 	 */
824 	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
825 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
826 		pmd_clear(pmd_off_k(addr));
827 }
828 
829 /*
830  * Reserve the various regions
831  */
832 void __init reserve_special_regions(void)
833 {
834 	unsigned long res_size = 0;
835 
836 	/*
837 	 * Register the kernel text and data with bootmem.
838 	 * Note that this can only be in node 0.
839 	 */
840 #ifdef CONFIG_XIP_KERNEL
841 	reserve_bootmem(__pa(_data), _end - _data, BOOTMEM_DEFAULT);
842 #else
843 	reserve_bootmem(__pa(_stext), _end - _stext, BOOTMEM_DEFAULT);
844 #endif
845 
846 	/*
847 	 * Reserve the page tables.  These are already in use,
848 	 * and can only be in node 0.
849 	 */
850 	reserve_bootmem(__pa(swapper_pg_dir),
851 			PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
852 
853 	/*
854 	 * Hmm... This should go elsewhere, but we really really need to
855 	 * stop things allocating the low memory; ideally we need a better
856 	 * implementation of GFP_DMA which does not assume that DMA-able
857 	 * memory starts at zero.
858 	 */
859 	if (machine_is_integrator() || machine_is_cintegrator())
860 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
861 
862 	/*
863 	 * These should likewise go elsewhere.  They pre-reserve the
864 	 * screen memory region at the start of main system memory.
865 	 */
866 	if (machine_is_edb7211())
867 		res_size = 0x00020000;
868 	if (machine_is_p720t())
869 		res_size = 0x00014000;
870 
871 	/* H1940, RX3715 and RX1950 need to reserve this for suspend */
872 
873 	if (machine_is_h1940() || machine_is_rx3715()
874 		|| machine_is_rx1950()) {
875 		reserve_bootmem(0x30003000, 0x1000, BOOTMEM_DEFAULT);
876 		reserve_bootmem(0x30081000, 0x1000, BOOTMEM_DEFAULT);
877 	}
878 
879 	if (machine_is_palmld() || machine_is_palmtx()) {
880 		reserve_bootmem(0xa0000000, 0x1000, BOOTMEM_EXCLUSIVE);
881 		reserve_bootmem(0xa0200000, 0x1000, BOOTMEM_EXCLUSIVE);
882 	}
883 
884 	if (machine_is_treo680() || machine_is_centro()) {
885 		reserve_bootmem(0xa0000000, 0x1000, BOOTMEM_EXCLUSIVE);
886 		reserve_bootmem(0xa2000000, 0x1000, BOOTMEM_EXCLUSIVE);
887 	}
888 
889 	if (machine_is_palmt5())
890 		reserve_bootmem(0xa0200000, 0x1000, BOOTMEM_EXCLUSIVE);
891 
892 	/*
893 	 * U300 - This platform family can share physical memory
894 	 * between two ARM cpus, one running Linux and the other
895 	 * running another OS.
896 	 */
897 	if (machine_is_u300()) {
898 #ifdef CONFIG_MACH_U300_SINGLE_RAM
899 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&	\
900 	CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
901 		res_size = 0x00100000;
902 #endif
903 #endif
904 	}
905 
906 #ifdef CONFIG_SA1111
907 	/*
908 	 * Because of the SA1111 DMA bug, we want to preserve our
909 	 * precious DMA-able memory...
910 	 */
911 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
912 #endif
913 	if (res_size)
914 		reserve_bootmem(PHYS_OFFSET, res_size, BOOTMEM_DEFAULT);
915 }
916 
917 /*
918  * Set up device the mappings.  Since we clear out the page tables for all
919  * mappings above VMALLOC_END, we will remove any debug device mappings.
920  * This means you have to be careful how you debug this function, or any
921  * called function.  This means you can't use any function or debugging
922  * method which may touch any device, otherwise the kernel _will_ crash.
923  */
924 static void __init devicemaps_init(struct machine_desc *mdesc)
925 {
926 	struct map_desc map;
927 	unsigned long addr;
928 	void *vectors;
929 
930 	/*
931 	 * Allocate the vector page early.
932 	 */
933 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
934 
935 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
936 		pmd_clear(pmd_off_k(addr));
937 
938 	/*
939 	 * Map the kernel if it is XIP.
940 	 * It is always first in the modulearea.
941 	 */
942 #ifdef CONFIG_XIP_KERNEL
943 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
944 	map.virtual = MODULES_VADDR;
945 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
946 	map.type = MT_ROM;
947 	create_mapping(&map);
948 #endif
949 
950 	/*
951 	 * Map the cache flushing regions.
952 	 */
953 #ifdef FLUSH_BASE
954 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
955 	map.virtual = FLUSH_BASE;
956 	map.length = SZ_1M;
957 	map.type = MT_CACHECLEAN;
958 	create_mapping(&map);
959 #endif
960 #ifdef FLUSH_BASE_MINICACHE
961 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
962 	map.virtual = FLUSH_BASE_MINICACHE;
963 	map.length = SZ_1M;
964 	map.type = MT_MINICLEAN;
965 	create_mapping(&map);
966 #endif
967 
968 	/*
969 	 * Create a mapping for the machine vectors at the high-vectors
970 	 * location (0xffff0000).  If we aren't using high-vectors, also
971 	 * create a mapping at the low-vectors virtual address.
972 	 */
973 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
974 	map.virtual = 0xffff0000;
975 	map.length = PAGE_SIZE;
976 	map.type = MT_HIGH_VECTORS;
977 	create_mapping(&map);
978 
979 	if (!vectors_high()) {
980 		map.virtual = 0;
981 		map.type = MT_LOW_VECTORS;
982 		create_mapping(&map);
983 	}
984 
985 	/*
986 	 * Ask the machine support to map in the statically mapped devices.
987 	 */
988 	if (mdesc->map_io)
989 		mdesc->map_io();
990 
991 	/*
992 	 * Finally flush the caches and tlb to ensure that we're in a
993 	 * consistent state wrt the writebuffer.  This also ensures that
994 	 * any write-allocated cache lines in the vector page are written
995 	 * back.  After this point, we can start to touch devices again.
996 	 */
997 	local_flush_tlb_all();
998 	flush_cache_all();
999 }
1000 
1001 static void __init kmap_init(void)
1002 {
1003 #ifdef CONFIG_HIGHMEM
1004 	pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1005 	pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1006 	BUG_ON(!pmd_none(*pmd) || !pte);
1007 	__pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1008 	pkmap_page_table = pte + PTRS_PER_PTE;
1009 #endif
1010 }
1011 
1012 static inline void map_memory_bank(struct membank *bank)
1013 {
1014 	struct map_desc map;
1015 
1016 	map.pfn = bank_pfn_start(bank);
1017 	map.virtual = __phys_to_virt(bank_phys_start(bank));
1018 	map.length = bank_phys_size(bank);
1019 	map.type = MT_MEMORY;
1020 
1021 	create_mapping(&map);
1022 }
1023 
1024 static void __init map_lowmem(void)
1025 {
1026 	struct meminfo *mi = &meminfo;
1027 	int i;
1028 
1029 	/* Map all the lowmem memory banks. */
1030 	for (i = 0; i < mi->nr_banks; i++) {
1031 		struct membank *bank = &mi->bank[i];
1032 
1033 		if (!bank->highmem)
1034 			map_memory_bank(bank);
1035 	}
1036 }
1037 
1038 static int __init meminfo_cmp(const void *_a, const void *_b)
1039 {
1040 	const struct membank *a = _a, *b = _b;
1041 	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
1042 	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
1043 }
1044 
1045 /*
1046  * paging_init() sets up the page tables, initialises the zone memory
1047  * maps, and sets up the zero page, bad page and bad page tables.
1048  */
1049 void __init paging_init(struct machine_desc *mdesc)
1050 {
1051 	void *zero_page;
1052 
1053 	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1054 
1055 	build_mem_type_table();
1056 	sanity_check_meminfo();
1057 	prepare_page_table();
1058 	map_lowmem();
1059 	bootmem_init();
1060 	devicemaps_init(mdesc);
1061 	kmap_init();
1062 
1063 	top_pmd = pmd_off_k(0xffff0000);
1064 
1065 	/*
1066 	 * allocate the zero page.  Note that this always succeeds and
1067 	 * returns a zeroed result.
1068 	 */
1069 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1070 	empty_zero_page = virt_to_page(zero_page);
1071 	__flush_dcache_page(NULL, empty_zero_page);
1072 }
1073 
1074 /*
1075  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1076  * the user-mode pages.  This will then ensure that we have predictable
1077  * results when turning the mmu off
1078  */
1079 void setup_mm_for_reboot(char mode)
1080 {
1081 	unsigned long base_pmdval;
1082 	pgd_t *pgd;
1083 	int i;
1084 
1085 	/*
1086 	 * We need to access to user-mode page tables here. For kernel threads
1087 	 * we don't have any user-mode mappings so we use the context that we
1088 	 * "borrowed".
1089 	 */
1090 	pgd = current->active_mm->pgd;
1091 
1092 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1093 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1094 		base_pmdval |= PMD_BIT4;
1095 
1096 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1097 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1098 		pmd_t *pmd;
1099 
1100 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1101 		pmd[0] = __pmd(pmdval);
1102 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1103 		flush_pmd_entry(pmd);
1104 	}
1105 
1106 	local_flush_tlb_all();
1107 }
1108