xref: /linux/arch/arm/mm/mmu.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 #include <asm/system_info.h>
27 #include <asm/traps.h>
28 #include <asm/procinfo.h>
29 #include <asm/memory.h>
30 #include <asm/pgalloc.h>
31 #include <asm/kasan_def.h>
32 
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37 
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41 
42 extern unsigned long __atags_pointer;
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 };
78 
79 static struct cachepolicy cache_policies[] __initdata = {
80 	{
81 		.policy		= "uncached",
82 		.cr_mask	= CR_W|CR_C,
83 		.pmd		= PMD_SECT_UNCACHED,
84 		.pte		= L_PTE_MT_UNCACHED,
85 	}, {
86 		.policy		= "buffered",
87 		.cr_mask	= CR_C,
88 		.pmd		= PMD_SECT_BUFFERED,
89 		.pte		= L_PTE_MT_BUFFERABLE,
90 	}, {
91 		.policy		= "writethrough",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WT,
94 		.pte		= L_PTE_MT_WRITETHROUGH,
95 	}, {
96 		.policy		= "writeback",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WB,
99 		.pte		= L_PTE_MT_WRITEBACK,
100 	}, {
101 		.policy		= "writealloc",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WBWA,
104 		.pte		= L_PTE_MT_WRITEALLOC,
105 	}
106 };
107 
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110 
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 	int i;
121 
122 	initial_pmd_value = pmd;
123 
124 	pmd &= PMD_SECT_CACHE_MASK;
125 
126 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 		if (cache_policies[i].pmd == pmd) {
128 			cachepolicy = i;
129 			break;
130 		}
131 
132 	if (i == ARRAY_SIZE(cache_policies))
133 		pr_err("ERROR: could not find cache policy\n");
134 }
135 
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
141 static int __init early_cachepolicy(char *p)
142 {
143 	int i, selected = -1;
144 
145 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 		int len = strlen(cache_policies[i].policy);
147 
148 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 			selected = i;
150 			break;
151 		}
152 	}
153 
154 	if (selected == -1)
155 		pr_err("ERROR: unknown or unsupported cache policy\n");
156 
157 	/*
158 	 * This restriction is partly to do with the way we boot; it is
159 	 * unpredictable to have memory mapped using two different sets of
160 	 * memory attributes (shared, type, and cache attribs).  We can not
161 	 * change these attributes once the initial assembly has setup the
162 	 * page tables.
163 	 */
164 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 			cache_policies[cachepolicy].policy);
167 		return 0;
168 	}
169 
170 	if (selected != cachepolicy) {
171 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 		cachepolicy = selected;
173 		flush_cache_all();
174 		set_cr(cr);
175 	}
176 	return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179 
180 static int __init early_nocache(char *__unused)
181 {
182 	char *p = "buffered";
183 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 	early_cachepolicy(p);
185 	return 0;
186 }
187 early_param("nocache", early_nocache);
188 
189 static int __init early_nowrite(char *__unused)
190 {
191 	char *p = "uncached";
192 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 	early_cachepolicy(p);
194 	return 0;
195 }
196 early_param("nowb", early_nowrite);
197 
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
200 {
201 	if (memcmp(p, "on", 2) == 0)
202 		ecc_mask = PMD_PROTECTION;
203 	else if (memcmp(p, "off", 3) == 0)
204 		ecc_mask = 0;
205 	return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209 
210 #else /* ifdef CONFIG_CPU_CP15 */
211 
212 static int __init early_cachepolicy(char *p)
213 {
214 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 	return 0;
216 }
217 early_param("cachepolicy", early_cachepolicy);
218 
219 static int __init noalign_setup(char *__unused)
220 {
221 	pr_warn("noalign kernel parameter not supported without cp15\n");
222 	return 1;
223 }
224 __setup("noalign", noalign_setup);
225 
226 #endif /* ifdef CONFIG_CPU_CP15 / else */
227 
228 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
230 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231 
232 static struct mem_type mem_types[] __ro_after_init = {
233 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
234 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 				  L_PTE_SHARED,
236 		.prot_l1	= PMD_TYPE_TABLE,
237 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
238 		.domain		= DOMAIN_IO,
239 	},
240 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 		.prot_l1	= PMD_TYPE_TABLE,
243 		.prot_sect	= PROT_SECT_DEVICE,
244 		.domain		= DOMAIN_IO,
245 	},
246 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
247 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 		.prot_l1	= PMD_TYPE_TABLE,
249 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
250 		.domain		= DOMAIN_IO,
251 	},
252 	[MT_DEVICE_WC] = {	/* ioremap_wc */
253 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 		.prot_l1	= PMD_TYPE_TABLE,
255 		.prot_sect	= PROT_SECT_DEVICE,
256 		.domain		= DOMAIN_IO,
257 	},
258 	[MT_UNCACHED] = {
259 		.prot_pte	= PROT_PTE_DEVICE,
260 		.prot_l1	= PMD_TYPE_TABLE,
261 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
262 		.domain		= DOMAIN_IO,
263 	},
264 	[MT_CACHECLEAN] = {
265 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 		.domain    = DOMAIN_KERNEL,
267 	},
268 #ifndef CONFIG_ARM_LPAE
269 	[MT_MINICLEAN] = {
270 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 		.domain    = DOMAIN_KERNEL,
272 	},
273 #endif
274 	[MT_LOW_VECTORS] = {
275 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 				L_PTE_RDONLY,
277 		.prot_l1   = PMD_TYPE_TABLE,
278 		.domain    = DOMAIN_VECTORS,
279 	},
280 	[MT_HIGH_VECTORS] = {
281 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 				L_PTE_USER | L_PTE_RDONLY,
283 		.prot_l1   = PMD_TYPE_TABLE,
284 		.domain    = DOMAIN_VECTORS,
285 	},
286 	[MT_MEMORY_RWX] = {
287 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 		.prot_l1   = PMD_TYPE_TABLE,
289 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 		.domain    = DOMAIN_KERNEL,
291 	},
292 	[MT_MEMORY_RW] = {
293 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 			     L_PTE_XN,
295 		.prot_l1   = PMD_TYPE_TABLE,
296 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 		.domain    = DOMAIN_KERNEL,
298 	},
299 	[MT_ROM] = {
300 		.prot_sect = PMD_TYPE_SECT,
301 		.domain    = DOMAIN_KERNEL,
302 	},
303 	[MT_MEMORY_RWX_NONCACHED] = {
304 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
305 				L_PTE_MT_BUFFERABLE,
306 		.prot_l1   = PMD_TYPE_TABLE,
307 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
308 		.domain    = DOMAIN_KERNEL,
309 	},
310 	[MT_MEMORY_RW_DTCM] = {
311 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
312 				L_PTE_XN,
313 		.prot_l1   = PMD_TYPE_TABLE,
314 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
315 		.domain    = DOMAIN_KERNEL,
316 	},
317 	[MT_MEMORY_RWX_ITCM] = {
318 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
319 		.prot_l1   = PMD_TYPE_TABLE,
320 		.domain    = DOMAIN_KERNEL,
321 	},
322 	[MT_MEMORY_RW_SO] = {
323 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
324 				L_PTE_MT_UNCACHED | L_PTE_XN,
325 		.prot_l1   = PMD_TYPE_TABLE,
326 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
327 				PMD_SECT_UNCACHED | PMD_SECT_XN,
328 		.domain    = DOMAIN_KERNEL,
329 	},
330 	[MT_MEMORY_DMA_READY] = {
331 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
332 				L_PTE_XN,
333 		.prot_l1   = PMD_TYPE_TABLE,
334 		.domain    = DOMAIN_KERNEL,
335 	},
336 };
337 
338 const struct mem_type *get_mem_type(unsigned int type)
339 {
340 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
341 }
342 EXPORT_SYMBOL(get_mem_type);
343 
344 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
345 
346 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
347 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
348 
349 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
350 {
351 	return &bm_pte[pte_index(addr)];
352 }
353 
354 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
355 {
356 	return pte_offset_kernel(dir, addr);
357 }
358 
359 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
360 {
361 	return pmd_off_k(addr);
362 }
363 
364 void __init early_fixmap_init(void)
365 {
366 	pmd_t *pmd;
367 
368 	/*
369 	 * The early fixmap range spans multiple pmds, for which
370 	 * we are not prepared:
371 	 */
372 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
373 		     != FIXADDR_TOP >> PMD_SHIFT);
374 
375 	pmd = fixmap_pmd(FIXADDR_TOP);
376 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
377 
378 	pte_offset_fixmap = pte_offset_early_fixmap;
379 }
380 
381 /*
382  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
383  * As a result, this can only be called with preemption disabled, as under
384  * stop_machine().
385  */
386 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
387 {
388 	unsigned long vaddr = __fix_to_virt(idx);
389 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
390 
391 	/* Make sure fixmap region does not exceed available allocation. */
392 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
393 	BUG_ON(idx >= __end_of_fixed_addresses);
394 
395 	/* We support only device mappings before pgprot_kernel is set. */
396 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
397 		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
398 		return;
399 
400 	if (pgprot_val(prot))
401 		set_pte_at(NULL, vaddr, pte,
402 			pfn_pte(phys >> PAGE_SHIFT, prot));
403 	else
404 		pte_clear(NULL, vaddr, pte);
405 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
406 }
407 
408 /*
409  * Adjust the PMD section entries according to the CPU in use.
410  */
411 static void __init build_mem_type_table(void)
412 {
413 	struct cachepolicy *cp;
414 	unsigned int cr = get_cr();
415 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
416 	int cpu_arch = cpu_architecture();
417 	int i;
418 
419 	if (cpu_arch < CPU_ARCH_ARMv6) {
420 #if defined(CONFIG_CPU_DCACHE_DISABLE)
421 		if (cachepolicy > CPOLICY_BUFFERED)
422 			cachepolicy = CPOLICY_BUFFERED;
423 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
424 		if (cachepolicy > CPOLICY_WRITETHROUGH)
425 			cachepolicy = CPOLICY_WRITETHROUGH;
426 #endif
427 	}
428 	if (cpu_arch < CPU_ARCH_ARMv5) {
429 		if (cachepolicy >= CPOLICY_WRITEALLOC)
430 			cachepolicy = CPOLICY_WRITEBACK;
431 		ecc_mask = 0;
432 	}
433 
434 	if (is_smp()) {
435 		if (cachepolicy != CPOLICY_WRITEALLOC) {
436 			pr_warn("Forcing write-allocate cache policy for SMP\n");
437 			cachepolicy = CPOLICY_WRITEALLOC;
438 		}
439 		if (!(initial_pmd_value & PMD_SECT_S)) {
440 			pr_warn("Forcing shared mappings for SMP\n");
441 			initial_pmd_value |= PMD_SECT_S;
442 		}
443 	}
444 
445 	/*
446 	 * Strip out features not present on earlier architectures.
447 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
448 	 * without extended page tables don't have the 'Shared' bit.
449 	 */
450 	if (cpu_arch < CPU_ARCH_ARMv5)
451 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
452 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
453 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
454 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
455 			mem_types[i].prot_sect &= ~PMD_SECT_S;
456 
457 	/*
458 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
459 	 * "update-able on write" bit on ARM610).  However, Xscale and
460 	 * Xscale3 require this bit to be cleared.
461 	 */
462 	if (cpu_is_xscale_family()) {
463 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
464 			mem_types[i].prot_sect &= ~PMD_BIT4;
465 			mem_types[i].prot_l1 &= ~PMD_BIT4;
466 		}
467 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
468 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
469 			if (mem_types[i].prot_l1)
470 				mem_types[i].prot_l1 |= PMD_BIT4;
471 			if (mem_types[i].prot_sect)
472 				mem_types[i].prot_sect |= PMD_BIT4;
473 		}
474 	}
475 
476 	/*
477 	 * Mark the device areas according to the CPU/architecture.
478 	 */
479 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
480 		if (!cpu_is_xsc3()) {
481 			/*
482 			 * Mark device regions on ARMv6+ as execute-never
483 			 * to prevent speculative instruction fetches.
484 			 */
485 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
486 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
487 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
488 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
489 
490 			/* Also setup NX memory mapping */
491 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
492 		}
493 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
494 			/*
495 			 * For ARMv7 with TEX remapping,
496 			 * - shared device is SXCB=1100
497 			 * - nonshared device is SXCB=0100
498 			 * - write combine device mem is SXCB=0001
499 			 * (Uncached Normal memory)
500 			 */
501 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
502 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
503 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
504 		} else if (cpu_is_xsc3()) {
505 			/*
506 			 * For Xscale3,
507 			 * - shared device is TEXCB=00101
508 			 * - nonshared device is TEXCB=01000
509 			 * - write combine device mem is TEXCB=00100
510 			 * (Inner/Outer Uncacheable in xsc3 parlance)
511 			 */
512 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
513 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
514 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
515 		} else {
516 			/*
517 			 * For ARMv6 and ARMv7 without TEX remapping,
518 			 * - shared device is TEXCB=00001
519 			 * - nonshared device is TEXCB=01000
520 			 * - write combine device mem is TEXCB=00100
521 			 * (Uncached Normal in ARMv6 parlance).
522 			 */
523 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
524 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
525 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
526 		}
527 	} else {
528 		/*
529 		 * On others, write combining is "Uncached/Buffered"
530 		 */
531 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
532 	}
533 
534 	/*
535 	 * Now deal with the memory-type mappings
536 	 */
537 	cp = &cache_policies[cachepolicy];
538 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
539 
540 #ifndef CONFIG_ARM_LPAE
541 	/*
542 	 * We don't use domains on ARMv6 (since this causes problems with
543 	 * v6/v7 kernels), so we must use a separate memory type for user
544 	 * r/o, kernel r/w to map the vectors page.
545 	 */
546 	if (cpu_arch == CPU_ARCH_ARMv6)
547 		vecs_pgprot |= L_PTE_MT_VECTORS;
548 
549 	/*
550 	 * Check is it with support for the PXN bit
551 	 * in the Short-descriptor translation table format descriptors.
552 	 */
553 	if (cpu_arch == CPU_ARCH_ARMv7 &&
554 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
555 		user_pmd_table |= PMD_PXNTABLE;
556 	}
557 #endif
558 
559 	/*
560 	 * ARMv6 and above have extended page tables.
561 	 */
562 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
563 #ifndef CONFIG_ARM_LPAE
564 		/*
565 		 * Mark cache clean areas and XIP ROM read only
566 		 * from SVC mode and no access from userspace.
567 		 */
568 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
569 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
570 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
571 #endif
572 
573 		/*
574 		 * If the initial page tables were created with the S bit
575 		 * set, then we need to do the same here for the same
576 		 * reasons given in early_cachepolicy().
577 		 */
578 		if (initial_pmd_value & PMD_SECT_S) {
579 			user_pgprot |= L_PTE_SHARED;
580 			kern_pgprot |= L_PTE_SHARED;
581 			vecs_pgprot |= L_PTE_SHARED;
582 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
583 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
584 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
585 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
586 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
587 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
588 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
589 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
590 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
591 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
592 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
593 		}
594 	}
595 
596 	/*
597 	 * Non-cacheable Normal - intended for memory areas that must
598 	 * not cause dirty cache line writebacks when used
599 	 */
600 	if (cpu_arch >= CPU_ARCH_ARMv6) {
601 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
602 			/* Non-cacheable Normal is XCB = 001 */
603 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
604 				PMD_SECT_BUFFERED;
605 		} else {
606 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
607 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
608 				PMD_SECT_TEX(1);
609 		}
610 	} else {
611 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
612 	}
613 
614 #ifdef CONFIG_ARM_LPAE
615 	/*
616 	 * Do not generate access flag faults for the kernel mappings.
617 	 */
618 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
619 		mem_types[i].prot_pte |= PTE_EXT_AF;
620 		if (mem_types[i].prot_sect)
621 			mem_types[i].prot_sect |= PMD_SECT_AF;
622 	}
623 	kern_pgprot |= PTE_EXT_AF;
624 	vecs_pgprot |= PTE_EXT_AF;
625 
626 	/*
627 	 * Set PXN for user mappings
628 	 */
629 	user_pgprot |= PTE_EXT_PXN;
630 #endif
631 
632 	for (i = 0; i < 16; i++) {
633 		pteval_t v = pgprot_val(protection_map[i]);
634 		protection_map[i] = __pgprot(v | user_pgprot);
635 	}
636 
637 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
638 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
639 
640 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
641 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
642 				 L_PTE_DIRTY | kern_pgprot);
643 
644 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
645 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
646 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
647 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
648 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
649 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
650 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
651 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
652 	mem_types[MT_ROM].prot_sect |= cp->pmd;
653 
654 	switch (cp->pmd) {
655 	case PMD_SECT_WT:
656 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
657 		break;
658 	case PMD_SECT_WB:
659 	case PMD_SECT_WBWA:
660 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
661 		break;
662 	}
663 	pr_info("Memory policy: %sData cache %s\n",
664 		ecc_mask ? "ECC enabled, " : "", cp->policy);
665 
666 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
667 		struct mem_type *t = &mem_types[i];
668 		if (t->prot_l1)
669 			t->prot_l1 |= PMD_DOMAIN(t->domain);
670 		if (t->prot_sect)
671 			t->prot_sect |= PMD_DOMAIN(t->domain);
672 	}
673 }
674 
675 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
676 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
677 			      unsigned long size, pgprot_t vma_prot)
678 {
679 	if (!pfn_valid(pfn))
680 		return pgprot_noncached(vma_prot);
681 	else if (file->f_flags & O_SYNC)
682 		return pgprot_writecombine(vma_prot);
683 	return vma_prot;
684 }
685 EXPORT_SYMBOL(phys_mem_access_prot);
686 #endif
687 
688 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
689 
690 static void __init *early_alloc(unsigned long sz)
691 {
692 	void *ptr = memblock_alloc(sz, sz);
693 
694 	if (!ptr)
695 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
696 		      __func__, sz, sz);
697 
698 	return ptr;
699 }
700 
701 static void *__init late_alloc(unsigned long sz)
702 {
703 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
704 
705 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
706 		BUG();
707 	return ptr;
708 }
709 
710 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
711 				unsigned long prot,
712 				void *(*alloc)(unsigned long sz))
713 {
714 	if (pmd_none(*pmd)) {
715 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
716 		__pmd_populate(pmd, __pa(pte), prot);
717 	}
718 	BUG_ON(pmd_bad(*pmd));
719 	return pte_offset_kernel(pmd, addr);
720 }
721 
722 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
723 				      unsigned long prot)
724 {
725 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
726 }
727 
728 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
729 				  unsigned long end, unsigned long pfn,
730 				  const struct mem_type *type,
731 				  void *(*alloc)(unsigned long sz),
732 				  bool ng)
733 {
734 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
735 	do {
736 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
737 			    ng ? PTE_EXT_NG : 0);
738 		pfn++;
739 	} while (pte++, addr += PAGE_SIZE, addr != end);
740 }
741 
742 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
743 			unsigned long end, phys_addr_t phys,
744 			const struct mem_type *type, bool ng)
745 {
746 	pmd_t *p = pmd;
747 
748 #ifndef CONFIG_ARM_LPAE
749 	/*
750 	 * In classic MMU format, puds and pmds are folded in to
751 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
752 	 * group of L1 entries making up one logical pointer to
753 	 * an L2 table (2MB), where as PMDs refer to the individual
754 	 * L1 entries (1MB). Hence increment to get the correct
755 	 * offset for odd 1MB sections.
756 	 * (See arch/arm/include/asm/pgtable-2level.h)
757 	 */
758 	if (addr & SECTION_SIZE)
759 		pmd++;
760 #endif
761 	do {
762 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
763 		phys += SECTION_SIZE;
764 	} while (pmd++, addr += SECTION_SIZE, addr != end);
765 
766 	flush_pmd_entry(p);
767 }
768 
769 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
770 				      unsigned long end, phys_addr_t phys,
771 				      const struct mem_type *type,
772 				      void *(*alloc)(unsigned long sz), bool ng)
773 {
774 	pmd_t *pmd = pmd_offset(pud, addr);
775 	unsigned long next;
776 
777 	do {
778 		/*
779 		 * With LPAE, we must loop over to map
780 		 * all the pmds for the given range.
781 		 */
782 		next = pmd_addr_end(addr, end);
783 
784 		/*
785 		 * Try a section mapping - addr, next and phys must all be
786 		 * aligned to a section boundary.
787 		 */
788 		if (type->prot_sect &&
789 				((addr | next | phys) & ~SECTION_MASK) == 0) {
790 			__map_init_section(pmd, addr, next, phys, type, ng);
791 		} else {
792 			alloc_init_pte(pmd, addr, next,
793 				       __phys_to_pfn(phys), type, alloc, ng);
794 		}
795 
796 		phys += next - addr;
797 
798 	} while (pmd++, addr = next, addr != end);
799 }
800 
801 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
802 				  unsigned long end, phys_addr_t phys,
803 				  const struct mem_type *type,
804 				  void *(*alloc)(unsigned long sz), bool ng)
805 {
806 	pud_t *pud = pud_offset(p4d, addr);
807 	unsigned long next;
808 
809 	do {
810 		next = pud_addr_end(addr, end);
811 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
812 		phys += next - addr;
813 	} while (pud++, addr = next, addr != end);
814 }
815 
816 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
817 				  unsigned long end, phys_addr_t phys,
818 				  const struct mem_type *type,
819 				  void *(*alloc)(unsigned long sz), bool ng)
820 {
821 	p4d_t *p4d = p4d_offset(pgd, addr);
822 	unsigned long next;
823 
824 	do {
825 		next = p4d_addr_end(addr, end);
826 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
827 		phys += next - addr;
828 	} while (p4d++, addr = next, addr != end);
829 }
830 
831 #ifndef CONFIG_ARM_LPAE
832 static void __init create_36bit_mapping(struct mm_struct *mm,
833 					struct map_desc *md,
834 					const struct mem_type *type,
835 					bool ng)
836 {
837 	unsigned long addr, length, end;
838 	phys_addr_t phys;
839 	pgd_t *pgd;
840 
841 	addr = md->virtual;
842 	phys = __pfn_to_phys(md->pfn);
843 	length = PAGE_ALIGN(md->length);
844 
845 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
846 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
847 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
848 		return;
849 	}
850 
851 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
852 	 *	Since domain assignments can in fact be arbitrary, the
853 	 *	'domain == 0' check below is required to insure that ARMv6
854 	 *	supersections are only allocated for domain 0 regardless
855 	 *	of the actual domain assignments in use.
856 	 */
857 	if (type->domain) {
858 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
859 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
860 		return;
861 	}
862 
863 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
864 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
865 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
866 		return;
867 	}
868 
869 	/*
870 	 * Shift bits [35:32] of address into bits [23:20] of PMD
871 	 * (See ARMv6 spec).
872 	 */
873 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
874 
875 	pgd = pgd_offset(mm, addr);
876 	end = addr + length;
877 	do {
878 		p4d_t *p4d = p4d_offset(pgd, addr);
879 		pud_t *pud = pud_offset(p4d, addr);
880 		pmd_t *pmd = pmd_offset(pud, addr);
881 		int i;
882 
883 		for (i = 0; i < 16; i++)
884 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
885 				       (ng ? PMD_SECT_nG : 0));
886 
887 		addr += SUPERSECTION_SIZE;
888 		phys += SUPERSECTION_SIZE;
889 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
890 	} while (addr != end);
891 }
892 #endif	/* !CONFIG_ARM_LPAE */
893 
894 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
895 				    void *(*alloc)(unsigned long sz),
896 				    bool ng)
897 {
898 	unsigned long addr, length, end;
899 	phys_addr_t phys;
900 	const struct mem_type *type;
901 	pgd_t *pgd;
902 
903 	type = &mem_types[md->type];
904 
905 #ifndef CONFIG_ARM_LPAE
906 	/*
907 	 * Catch 36-bit addresses
908 	 */
909 	if (md->pfn >= 0x100000) {
910 		create_36bit_mapping(mm, md, type, ng);
911 		return;
912 	}
913 #endif
914 
915 	addr = md->virtual & PAGE_MASK;
916 	phys = __pfn_to_phys(md->pfn);
917 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
918 
919 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
920 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
921 			(long long)__pfn_to_phys(md->pfn), addr);
922 		return;
923 	}
924 
925 	pgd = pgd_offset(mm, addr);
926 	end = addr + length;
927 	do {
928 		unsigned long next = pgd_addr_end(addr, end);
929 
930 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
931 
932 		phys += next - addr;
933 		addr = next;
934 	} while (pgd++, addr != end);
935 }
936 
937 /*
938  * Create the page directory entries and any necessary
939  * page tables for the mapping specified by `md'.  We
940  * are able to cope here with varying sizes and address
941  * offsets, and we take full advantage of sections and
942  * supersections.
943  */
944 static void __init create_mapping(struct map_desc *md)
945 {
946 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
947 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
948 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
949 		return;
950 	}
951 
952 	if (md->type == MT_DEVICE &&
953 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
954 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
955 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
956 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
957 	}
958 
959 	__create_mapping(&init_mm, md, early_alloc, false);
960 }
961 
962 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
963 				bool ng)
964 {
965 #ifdef CONFIG_ARM_LPAE
966 	p4d_t *p4d;
967 	pud_t *pud;
968 
969 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
970 	if (WARN_ON(!p4d))
971 		return;
972 	pud = pud_alloc(mm, p4d, md->virtual);
973 	if (WARN_ON(!pud))
974 		return;
975 	pmd_alloc(mm, pud, 0);
976 #endif
977 	__create_mapping(mm, md, late_alloc, ng);
978 }
979 
980 /*
981  * Create the architecture specific mappings
982  */
983 void __init iotable_init(struct map_desc *io_desc, int nr)
984 {
985 	struct map_desc *md;
986 	struct vm_struct *vm;
987 	struct static_vm *svm;
988 
989 	if (!nr)
990 		return;
991 
992 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
993 	if (!svm)
994 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
995 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
996 
997 	for (md = io_desc; nr; md++, nr--) {
998 		create_mapping(md);
999 
1000 		vm = &svm->vm;
1001 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1002 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1003 		vm->phys_addr = __pfn_to_phys(md->pfn);
1004 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1005 		vm->flags |= VM_ARM_MTYPE(md->type);
1006 		vm->caller = iotable_init;
1007 		add_static_vm_early(svm++);
1008 	}
1009 }
1010 
1011 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1012 				  void *caller)
1013 {
1014 	struct vm_struct *vm;
1015 	struct static_vm *svm;
1016 
1017 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1018 	if (!svm)
1019 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1020 		      __func__, sizeof(*svm), __alignof__(*svm));
1021 
1022 	vm = &svm->vm;
1023 	vm->addr = (void *)addr;
1024 	vm->size = size;
1025 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1026 	vm->caller = caller;
1027 	add_static_vm_early(svm);
1028 }
1029 
1030 #ifndef CONFIG_ARM_LPAE
1031 
1032 /*
1033  * The Linux PMD is made of two consecutive section entries covering 2MB
1034  * (see definition in include/asm/pgtable-2level.h).  However a call to
1035  * create_mapping() may optimize static mappings by using individual
1036  * 1MB section mappings.  This leaves the actual PMD potentially half
1037  * initialized if the top or bottom section entry isn't used, leaving it
1038  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1039  * the virtual space left free by that unused section entry.
1040  *
1041  * Let's avoid the issue by inserting dummy vm entries covering the unused
1042  * PMD halves once the static mappings are in place.
1043  */
1044 
1045 static void __init pmd_empty_section_gap(unsigned long addr)
1046 {
1047 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1048 }
1049 
1050 static void __init fill_pmd_gaps(void)
1051 {
1052 	struct static_vm *svm;
1053 	struct vm_struct *vm;
1054 	unsigned long addr, next = 0;
1055 	pmd_t *pmd;
1056 
1057 	list_for_each_entry(svm, &static_vmlist, list) {
1058 		vm = &svm->vm;
1059 		addr = (unsigned long)vm->addr;
1060 		if (addr < next)
1061 			continue;
1062 
1063 		/*
1064 		 * Check if this vm starts on an odd section boundary.
1065 		 * If so and the first section entry for this PMD is free
1066 		 * then we block the corresponding virtual address.
1067 		 */
1068 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1069 			pmd = pmd_off_k(addr);
1070 			if (pmd_none(*pmd))
1071 				pmd_empty_section_gap(addr & PMD_MASK);
1072 		}
1073 
1074 		/*
1075 		 * Then check if this vm ends on an odd section boundary.
1076 		 * If so and the second section entry for this PMD is empty
1077 		 * then we block the corresponding virtual address.
1078 		 */
1079 		addr += vm->size;
1080 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1081 			pmd = pmd_off_k(addr) + 1;
1082 			if (pmd_none(*pmd))
1083 				pmd_empty_section_gap(addr);
1084 		}
1085 
1086 		/* no need to look at any vm entry until we hit the next PMD */
1087 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1088 	}
1089 }
1090 
1091 #else
1092 #define fill_pmd_gaps() do { } while (0)
1093 #endif
1094 
1095 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1096 static void __init pci_reserve_io(void)
1097 {
1098 	struct static_vm *svm;
1099 
1100 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1101 	if (svm)
1102 		return;
1103 
1104 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1105 }
1106 #else
1107 #define pci_reserve_io() do { } while (0)
1108 #endif
1109 
1110 #ifdef CONFIG_DEBUG_LL
1111 void __init debug_ll_io_init(void)
1112 {
1113 	struct map_desc map;
1114 
1115 	debug_ll_addr(&map.pfn, &map.virtual);
1116 	if (!map.pfn || !map.virtual)
1117 		return;
1118 	map.pfn = __phys_to_pfn(map.pfn);
1119 	map.virtual &= PAGE_MASK;
1120 	map.length = PAGE_SIZE;
1121 	map.type = MT_DEVICE;
1122 	iotable_init(&map, 1);
1123 }
1124 #endif
1125 
1126 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1127 
1128 /*
1129  * vmalloc=size forces the vmalloc area to be exactly 'size'
1130  * bytes. This can be used to increase (or decrease) the vmalloc
1131  * area - the default is 240MiB.
1132  */
1133 static int __init early_vmalloc(char *arg)
1134 {
1135 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1136 	unsigned long vmalloc_max;
1137 
1138 	if (vmalloc_reserve < SZ_16M) {
1139 		vmalloc_reserve = SZ_16M;
1140 		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1141 			vmalloc_reserve >> 20);
1142 	}
1143 
1144 	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1145 	if (vmalloc_reserve > vmalloc_max) {
1146 		vmalloc_reserve = vmalloc_max;
1147 		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1148 			vmalloc_reserve >> 20);
1149 	}
1150 
1151 	vmalloc_size = vmalloc_reserve;
1152 	return 0;
1153 }
1154 early_param("vmalloc", early_vmalloc);
1155 
1156 phys_addr_t arm_lowmem_limit __initdata = 0;
1157 
1158 void __init adjust_lowmem_bounds(void)
1159 {
1160 	phys_addr_t block_start, block_end, memblock_limit = 0;
1161 	u64 vmalloc_limit, i;
1162 	phys_addr_t lowmem_limit = 0;
1163 
1164 	/*
1165 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1166 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1167 	 * The result is used as the upper bound on physical memory address
1168 	 * and may itself be outside the valid range for which phys_addr_t
1169 	 * and therefore __pa() is defined.
1170 	 */
1171 	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1172 			PAGE_OFFSET + PHYS_OFFSET;
1173 
1174 	/*
1175 	 * The first usable region must be PMD aligned. Mark its start
1176 	 * as MEMBLOCK_NOMAP if it isn't
1177 	 */
1178 	for_each_mem_range(i, &block_start, &block_end) {
1179 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1180 			phys_addr_t len;
1181 
1182 			len = round_up(block_start, PMD_SIZE) - block_start;
1183 			memblock_mark_nomap(block_start, len);
1184 		}
1185 		break;
1186 	}
1187 
1188 	for_each_mem_range(i, &block_start, &block_end) {
1189 		if (block_start < vmalloc_limit) {
1190 			if (block_end > lowmem_limit)
1191 				/*
1192 				 * Compare as u64 to ensure vmalloc_limit does
1193 				 * not get truncated. block_end should always
1194 				 * fit in phys_addr_t so there should be no
1195 				 * issue with assignment.
1196 				 */
1197 				lowmem_limit = min_t(u64,
1198 							 vmalloc_limit,
1199 							 block_end);
1200 
1201 			/*
1202 			 * Find the first non-pmd-aligned page, and point
1203 			 * memblock_limit at it. This relies on rounding the
1204 			 * limit down to be pmd-aligned, which happens at the
1205 			 * end of this function.
1206 			 *
1207 			 * With this algorithm, the start or end of almost any
1208 			 * bank can be non-pmd-aligned. The only exception is
1209 			 * that the start of the bank 0 must be section-
1210 			 * aligned, since otherwise memory would need to be
1211 			 * allocated when mapping the start of bank 0, which
1212 			 * occurs before any free memory is mapped.
1213 			 */
1214 			if (!memblock_limit) {
1215 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1216 					memblock_limit = block_start;
1217 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1218 					memblock_limit = lowmem_limit;
1219 			}
1220 
1221 		}
1222 	}
1223 
1224 	arm_lowmem_limit = lowmem_limit;
1225 
1226 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1227 
1228 	if (!memblock_limit)
1229 		memblock_limit = arm_lowmem_limit;
1230 
1231 	/*
1232 	 * Round the memblock limit down to a pmd size.  This
1233 	 * helps to ensure that we will allocate memory from the
1234 	 * last full pmd, which should be mapped.
1235 	 */
1236 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1237 
1238 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1239 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1240 			phys_addr_t end = memblock_end_of_DRAM();
1241 
1242 			pr_notice("Ignoring RAM at %pa-%pa\n",
1243 				  &memblock_limit, &end);
1244 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1245 
1246 			memblock_remove(memblock_limit, end - memblock_limit);
1247 		}
1248 	}
1249 
1250 	memblock_set_current_limit(memblock_limit);
1251 }
1252 
1253 static __init void prepare_page_table(void)
1254 {
1255 	unsigned long addr;
1256 	phys_addr_t end;
1257 
1258 	/*
1259 	 * Clear out all the mappings below the kernel image.
1260 	 */
1261 #ifdef CONFIG_KASAN
1262 	/*
1263 	 * KASan's shadow memory inserts itself between the TASK_SIZE
1264 	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1265 	 */
1266 	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1267 		pmd_clear(pmd_off_k(addr));
1268 	/*
1269 	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1270 	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1271 	 * are using a thumb-compiled kernel, there there will be 8MB more
1272 	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1273 	 */
1274 	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1275 		pmd_clear(pmd_off_k(addr));
1276 #else
1277 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1278 		pmd_clear(pmd_off_k(addr));
1279 #endif
1280 
1281 #ifdef CONFIG_XIP_KERNEL
1282 	/* The XIP kernel is mapped in the module area -- skip over it */
1283 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1284 #endif
1285 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1286 		pmd_clear(pmd_off_k(addr));
1287 
1288 	/*
1289 	 * Find the end of the first block of lowmem.
1290 	 */
1291 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1292 	if (end >= arm_lowmem_limit)
1293 		end = arm_lowmem_limit;
1294 
1295 	/*
1296 	 * Clear out all the kernel space mappings, except for the first
1297 	 * memory bank, up to the vmalloc region.
1298 	 */
1299 	for (addr = __phys_to_virt(end);
1300 	     addr < VMALLOC_START; addr += PMD_SIZE)
1301 		pmd_clear(pmd_off_k(addr));
1302 }
1303 
1304 #ifdef CONFIG_ARM_LPAE
1305 /* the first page is reserved for pgd */
1306 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1307 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1308 #else
1309 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1310 #endif
1311 
1312 /*
1313  * Reserve the special regions of memory
1314  */
1315 void __init arm_mm_memblock_reserve(void)
1316 {
1317 	/*
1318 	 * Reserve the page tables.  These are already in use,
1319 	 * and can only be in node 0.
1320 	 */
1321 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1322 
1323 #ifdef CONFIG_SA1111
1324 	/*
1325 	 * Because of the SA1111 DMA bug, we want to preserve our
1326 	 * precious DMA-able memory...
1327 	 */
1328 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1329 #endif
1330 }
1331 
1332 /*
1333  * Set up the device mappings.  Since we clear out the page tables for all
1334  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1335  * device mappings.  This means earlycon can be used to debug this function
1336  * Any other function or debugging method which may touch any device _will_
1337  * crash the kernel.
1338  */
1339 static void __init devicemaps_init(const struct machine_desc *mdesc)
1340 {
1341 	struct map_desc map;
1342 	unsigned long addr;
1343 	void *vectors;
1344 
1345 	/*
1346 	 * Allocate the vector page early.
1347 	 */
1348 	vectors = early_alloc(PAGE_SIZE * 2);
1349 
1350 	early_trap_init(vectors);
1351 
1352 	/*
1353 	 * Clear page table except top pmd used by early fixmaps
1354 	 */
1355 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1356 		pmd_clear(pmd_off_k(addr));
1357 
1358 	if (__atags_pointer) {
1359 		/* create a read-only mapping of the device tree */
1360 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1361 		map.virtual = FDT_FIXED_BASE;
1362 		map.length = FDT_FIXED_SIZE;
1363 		map.type = MT_ROM;
1364 		create_mapping(&map);
1365 	}
1366 
1367 	/*
1368 	 * Map the kernel if it is XIP.
1369 	 * It is always first in the modulearea.
1370 	 */
1371 #ifdef CONFIG_XIP_KERNEL
1372 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1373 	map.virtual = MODULES_VADDR;
1374 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1375 	map.type = MT_ROM;
1376 	create_mapping(&map);
1377 #endif
1378 
1379 	/*
1380 	 * Map the cache flushing regions.
1381 	 */
1382 #ifdef FLUSH_BASE
1383 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1384 	map.virtual = FLUSH_BASE;
1385 	map.length = SZ_1M;
1386 	map.type = MT_CACHECLEAN;
1387 	create_mapping(&map);
1388 #endif
1389 #ifdef FLUSH_BASE_MINICACHE
1390 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1391 	map.virtual = FLUSH_BASE_MINICACHE;
1392 	map.length = SZ_1M;
1393 	map.type = MT_MINICLEAN;
1394 	create_mapping(&map);
1395 #endif
1396 
1397 	/*
1398 	 * Create a mapping for the machine vectors at the high-vectors
1399 	 * location (0xffff0000).  If we aren't using high-vectors, also
1400 	 * create a mapping at the low-vectors virtual address.
1401 	 */
1402 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1403 	map.virtual = 0xffff0000;
1404 	map.length = PAGE_SIZE;
1405 #ifdef CONFIG_KUSER_HELPERS
1406 	map.type = MT_HIGH_VECTORS;
1407 #else
1408 	map.type = MT_LOW_VECTORS;
1409 #endif
1410 	create_mapping(&map);
1411 
1412 	if (!vectors_high()) {
1413 		map.virtual = 0;
1414 		map.length = PAGE_SIZE * 2;
1415 		map.type = MT_LOW_VECTORS;
1416 		create_mapping(&map);
1417 	}
1418 
1419 	/* Now create a kernel read-only mapping */
1420 	map.pfn += 1;
1421 	map.virtual = 0xffff0000 + PAGE_SIZE;
1422 	map.length = PAGE_SIZE;
1423 	map.type = MT_LOW_VECTORS;
1424 	create_mapping(&map);
1425 
1426 	/*
1427 	 * Ask the machine support to map in the statically mapped devices.
1428 	 */
1429 	if (mdesc->map_io)
1430 		mdesc->map_io();
1431 	else
1432 		debug_ll_io_init();
1433 	fill_pmd_gaps();
1434 
1435 	/* Reserve fixed i/o space in VMALLOC region */
1436 	pci_reserve_io();
1437 
1438 	/*
1439 	 * Finally flush the caches and tlb to ensure that we're in a
1440 	 * consistent state wrt the writebuffer.  This also ensures that
1441 	 * any write-allocated cache lines in the vector page are written
1442 	 * back.  After this point, we can start to touch devices again.
1443 	 */
1444 	local_flush_tlb_all();
1445 	flush_cache_all();
1446 
1447 	/* Enable asynchronous aborts */
1448 	early_abt_enable();
1449 }
1450 
1451 static void __init kmap_init(void)
1452 {
1453 #ifdef CONFIG_HIGHMEM
1454 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1455 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1456 #endif
1457 
1458 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1459 			_PAGE_KERNEL_TABLE);
1460 }
1461 
1462 static void __init map_lowmem(void)
1463 {
1464 	phys_addr_t start, end;
1465 	u64 i;
1466 
1467 	/* Map all the lowmem memory banks. */
1468 	for_each_mem_range(i, &start, &end) {
1469 		struct map_desc map;
1470 
1471 		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1472 			 (long long)start, (long long)end);
1473 		if (end > arm_lowmem_limit)
1474 			end = arm_lowmem_limit;
1475 		if (start >= end)
1476 			break;
1477 
1478 		/*
1479 		 * If our kernel image is in the VMALLOC area we need to remove
1480 		 * the kernel physical memory from lowmem since the kernel will
1481 		 * be mapped separately.
1482 		 *
1483 		 * The kernel will typically be at the very start of lowmem,
1484 		 * but any placement relative to memory ranges is possible.
1485 		 *
1486 		 * If the memblock contains the kernel, we have to chisel out
1487 		 * the kernel memory from it and map each part separately. We
1488 		 * get 6 different theoretical cases:
1489 		 *
1490 		 *                            +--------+ +--------+
1491 		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1492 		 *  |           |  | Kernel | | case 2 | | case 5 |
1493 		 *  |           |  | case 1 | +--------+ |        | +--------+
1494 		 *  |  Memory   |  +--------+            |        | | Kernel |
1495 		 *  |  range    |  +--------+            |        | | case 6 |
1496 		 *  |           |  | Kernel | +--------+ |        | +--------+
1497 		 *  |           |  | case 3 | | Kernel | |        |
1498 		 *  +-- end ----+  +--------+ | case 4 | |        |
1499 		 *                            +--------+ +--------+
1500 		 */
1501 
1502 		/* Case 5: kernel covers range, don't map anything, should be rare */
1503 		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1504 			break;
1505 
1506 		/* Cases where the kernel is starting inside the range */
1507 		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1508 			/* Case 6: kernel is embedded in the range, we need two mappings */
1509 			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1510 				/* Map memory below the kernel */
1511 				map.pfn = __phys_to_pfn(start);
1512 				map.virtual = __phys_to_virt(start);
1513 				map.length = kernel_sec_start - start;
1514 				map.type = MT_MEMORY_RW;
1515 				create_mapping(&map);
1516 				/* Map memory above the kernel */
1517 				map.pfn = __phys_to_pfn(kernel_sec_end);
1518 				map.virtual = __phys_to_virt(kernel_sec_end);
1519 				map.length = end - kernel_sec_end;
1520 				map.type = MT_MEMORY_RW;
1521 				create_mapping(&map);
1522 				break;
1523 			}
1524 			/* Case 1: kernel and range start at the same address, should be common */
1525 			if (kernel_sec_start == start)
1526 				start = kernel_sec_end;
1527 			/* Case 3: kernel and range end at the same address, should be rare */
1528 			if (kernel_sec_end == end)
1529 				end = kernel_sec_start;
1530 		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1531 			/* Case 2: kernel ends inside range, starts below it */
1532 			start = kernel_sec_end;
1533 		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1534 			/* Case 4: kernel starts inside range, ends above it */
1535 			end = kernel_sec_start;
1536 		}
1537 		map.pfn = __phys_to_pfn(start);
1538 		map.virtual = __phys_to_virt(start);
1539 		map.length = end - start;
1540 		map.type = MT_MEMORY_RW;
1541 		create_mapping(&map);
1542 	}
1543 }
1544 
1545 static void __init map_kernel(void)
1546 {
1547 	/*
1548 	 * We use the well known kernel section start and end and split the area in the
1549 	 * middle like this:
1550 	 *  .                .
1551 	 *  | RW memory      |
1552 	 *  +----------------+ kernel_x_start
1553 	 *  | Executable     |
1554 	 *  | kernel memory  |
1555 	 *  +----------------+ kernel_x_end / kernel_nx_start
1556 	 *  | Non-executable |
1557 	 *  | kernel memory  |
1558 	 *  +----------------+ kernel_nx_end
1559 	 *  | RW memory      |
1560 	 *  .                .
1561 	 *
1562 	 * Notice that we are dealing with section sized mappings here so all of this
1563 	 * will be bumped to the closest section boundary. This means that some of the
1564 	 * non-executable part of the kernel memory is actually mapped as executable.
1565 	 * This will only persist until we turn on proper memory management later on
1566 	 * and we remap the whole kernel with page granularity.
1567 	 */
1568 	phys_addr_t kernel_x_start = kernel_sec_start;
1569 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1570 	phys_addr_t kernel_nx_start = kernel_x_end;
1571 	phys_addr_t kernel_nx_end = kernel_sec_end;
1572 	struct map_desc map;
1573 
1574 	map.pfn = __phys_to_pfn(kernel_x_start);
1575 	map.virtual = __phys_to_virt(kernel_x_start);
1576 	map.length = kernel_x_end - kernel_x_start;
1577 	map.type = MT_MEMORY_RWX;
1578 	create_mapping(&map);
1579 
1580 	/* If the nx part is small it may end up covered by the tail of the RWX section */
1581 	if (kernel_x_end == kernel_nx_end)
1582 		return;
1583 
1584 	map.pfn = __phys_to_pfn(kernel_nx_start);
1585 	map.virtual = __phys_to_virt(kernel_nx_start);
1586 	map.length = kernel_nx_end - kernel_nx_start;
1587 	map.type = MT_MEMORY_RW;
1588 	create_mapping(&map);
1589 }
1590 
1591 #ifdef CONFIG_ARM_PV_FIXUP
1592 typedef void pgtables_remap(long long offset, unsigned long pgd);
1593 pgtables_remap lpae_pgtables_remap_asm;
1594 
1595 /*
1596  * early_paging_init() recreates boot time page table setup, allowing machines
1597  * to switch over to a high (>4G) address space on LPAE systems
1598  */
1599 static void __init early_paging_init(const struct machine_desc *mdesc)
1600 {
1601 	pgtables_remap *lpae_pgtables_remap;
1602 	unsigned long pa_pgd;
1603 	unsigned int cr, ttbcr;
1604 	long long offset;
1605 
1606 	if (!mdesc->pv_fixup)
1607 		return;
1608 
1609 	offset = mdesc->pv_fixup();
1610 	if (offset == 0)
1611 		return;
1612 
1613 	/*
1614 	 * Offset the kernel section physical offsets so that the kernel
1615 	 * mapping will work out later on.
1616 	 */
1617 	kernel_sec_start += offset;
1618 	kernel_sec_end += offset;
1619 
1620 	/*
1621 	 * Get the address of the remap function in the 1:1 identity
1622 	 * mapping setup by the early page table assembly code.  We
1623 	 * must get this prior to the pv update.  The following barrier
1624 	 * ensures that this is complete before we fixup any P:V offsets.
1625 	 */
1626 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1627 	pa_pgd = __pa(swapper_pg_dir);
1628 	barrier();
1629 
1630 	pr_info("Switching physical address space to 0x%08llx\n",
1631 		(u64)PHYS_OFFSET + offset);
1632 
1633 	/* Re-set the phys pfn offset, and the pv offset */
1634 	__pv_offset += offset;
1635 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1636 
1637 	/* Run the patch stub to update the constants */
1638 	fixup_pv_table(&__pv_table_begin,
1639 		(&__pv_table_end - &__pv_table_begin) << 2);
1640 
1641 	/*
1642 	 * We changing not only the virtual to physical mapping, but also
1643 	 * the physical addresses used to access memory.  We need to flush
1644 	 * all levels of cache in the system with caching disabled to
1645 	 * ensure that all data is written back, and nothing is prefetched
1646 	 * into the caches.  We also need to prevent the TLB walkers
1647 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1648 	 * specific.
1649 	 */
1650 	cr = get_cr();
1651 	set_cr(cr & ~(CR_I | CR_C));
1652 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1653 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1654 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1655 	flush_cache_all();
1656 
1657 	/*
1658 	 * Fixup the page tables - this must be in the idmap region as
1659 	 * we need to disable the MMU to do this safely, and hence it
1660 	 * needs to be assembly.  It's fairly simple, as we're using the
1661 	 * temporary tables setup by the initial assembly code.
1662 	 */
1663 	lpae_pgtables_remap(offset, pa_pgd);
1664 
1665 	/* Re-enable the caches and cacheable TLB walks */
1666 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1667 	set_cr(cr);
1668 }
1669 
1670 #else
1671 
1672 static void __init early_paging_init(const struct machine_desc *mdesc)
1673 {
1674 	long long offset;
1675 
1676 	if (!mdesc->pv_fixup)
1677 		return;
1678 
1679 	offset = mdesc->pv_fixup();
1680 	if (offset == 0)
1681 		return;
1682 
1683 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1684 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1685 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1686 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1687 }
1688 
1689 #endif
1690 
1691 static void __init early_fixmap_shutdown(void)
1692 {
1693 	int i;
1694 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1695 
1696 	pte_offset_fixmap = pte_offset_late_fixmap;
1697 	pmd_clear(fixmap_pmd(va));
1698 	local_flush_tlb_kernel_page(va);
1699 
1700 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1701 		pte_t *pte;
1702 		struct map_desc map;
1703 
1704 		map.virtual = fix_to_virt(i);
1705 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1706 
1707 		/* Only i/o device mappings are supported ATM */
1708 		if (pte_none(*pte) ||
1709 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1710 			continue;
1711 
1712 		map.pfn = pte_pfn(*pte);
1713 		map.type = MT_DEVICE;
1714 		map.length = PAGE_SIZE;
1715 
1716 		create_mapping(&map);
1717 	}
1718 }
1719 
1720 /*
1721  * paging_init() sets up the page tables, initialises the zone memory
1722  * maps, and sets up the zero page, bad page and bad page tables.
1723  */
1724 void __init paging_init(const struct machine_desc *mdesc)
1725 {
1726 	void *zero_page;
1727 
1728 	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1729 		 kernel_sec_start, kernel_sec_end);
1730 
1731 	prepare_page_table();
1732 	map_lowmem();
1733 	memblock_set_current_limit(arm_lowmem_limit);
1734 	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1735 	/*
1736 	 * After this point early_alloc(), i.e. the memblock allocator, can
1737 	 * be used
1738 	 */
1739 	map_kernel();
1740 	dma_contiguous_remap();
1741 	early_fixmap_shutdown();
1742 	devicemaps_init(mdesc);
1743 	kmap_init();
1744 	tcm_init();
1745 
1746 	top_pmd = pmd_off_k(0xffff0000);
1747 
1748 	/* allocate the zero page. */
1749 	zero_page = early_alloc(PAGE_SIZE);
1750 
1751 	bootmem_init();
1752 
1753 	empty_zero_page = virt_to_page(zero_page);
1754 	__flush_dcache_page(NULL, empty_zero_page);
1755 }
1756 
1757 void __init early_mm_init(const struct machine_desc *mdesc)
1758 {
1759 	build_mem_type_table();
1760 	early_paging_init(mdesc);
1761 }
1762 
1763 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1764 			      pte_t *ptep, pte_t pteval)
1765 {
1766 	unsigned long ext = 0;
1767 
1768 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1769 		if (!pte_special(pteval))
1770 			__sync_icache_dcache(pteval);
1771 		ext |= PTE_EXT_NG;
1772 	}
1773 
1774 	set_pte_ext(ptep, pteval, ext);
1775 }
1776