xref: /linux/arch/arm/mm/mmu.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/setup.h>
21 #include <asm/sizes.h>
22 #include <asm/tlb.h>
23 
24 #include <asm/mach/arch.h>
25 #include <asm/mach/map.h>
26 
27 #include "mm.h"
28 
29 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
30 
31 /*
32  * empty_zero_page is a special page that is used for
33  * zero-initialized data and COW.
34  */
35 struct page *empty_zero_page;
36 EXPORT_SYMBOL(empty_zero_page);
37 
38 /*
39  * The pmd table for the upper-most set of pages.
40  */
41 pmd_t *top_pmd;
42 
43 #define CPOLICY_UNCACHED	0
44 #define CPOLICY_BUFFERED	1
45 #define CPOLICY_WRITETHROUGH	2
46 #define CPOLICY_WRITEBACK	3
47 #define CPOLICY_WRITEALLOC	4
48 
49 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
50 static unsigned int ecc_mask __initdata = 0;
51 pgprot_t pgprot_user;
52 pgprot_t pgprot_kernel;
53 
54 EXPORT_SYMBOL(pgprot_user);
55 EXPORT_SYMBOL(pgprot_kernel);
56 
57 struct cachepolicy {
58 	const char	policy[16];
59 	unsigned int	cr_mask;
60 	unsigned int	pmd;
61 	unsigned int	pte;
62 };
63 
64 static struct cachepolicy cache_policies[] __initdata = {
65 	{
66 		.policy		= "uncached",
67 		.cr_mask	= CR_W|CR_C,
68 		.pmd		= PMD_SECT_UNCACHED,
69 		.pte		= L_PTE_MT_UNCACHED,
70 	}, {
71 		.policy		= "buffered",
72 		.cr_mask	= CR_C,
73 		.pmd		= PMD_SECT_BUFFERED,
74 		.pte		= L_PTE_MT_BUFFERABLE,
75 	}, {
76 		.policy		= "writethrough",
77 		.cr_mask	= 0,
78 		.pmd		= PMD_SECT_WT,
79 		.pte		= L_PTE_MT_WRITETHROUGH,
80 	}, {
81 		.policy		= "writeback",
82 		.cr_mask	= 0,
83 		.pmd		= PMD_SECT_WB,
84 		.pte		= L_PTE_MT_WRITEBACK,
85 	}, {
86 		.policy		= "writealloc",
87 		.cr_mask	= 0,
88 		.pmd		= PMD_SECT_WBWA,
89 		.pte		= L_PTE_MT_WRITEALLOC,
90 	}
91 };
92 
93 /*
94  * These are useful for identifying cache coherency
95  * problems by allowing the cache or the cache and
96  * writebuffer to be turned off.  (Note: the write
97  * buffer should not be on and the cache off).
98  */
99 static void __init early_cachepolicy(char **p)
100 {
101 	int i;
102 
103 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
104 		int len = strlen(cache_policies[i].policy);
105 
106 		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
107 			cachepolicy = i;
108 			cr_alignment &= ~cache_policies[i].cr_mask;
109 			cr_no_alignment &= ~cache_policies[i].cr_mask;
110 			*p += len;
111 			break;
112 		}
113 	}
114 	if (i == ARRAY_SIZE(cache_policies))
115 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
116 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
117 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
118 		cachepolicy = CPOLICY_WRITEBACK;
119 	}
120 	flush_cache_all();
121 	set_cr(cr_alignment);
122 }
123 __early_param("cachepolicy=", early_cachepolicy);
124 
125 static void __init early_nocache(char **__unused)
126 {
127 	char *p = "buffered";
128 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
129 	early_cachepolicy(&p);
130 }
131 __early_param("nocache", early_nocache);
132 
133 static void __init early_nowrite(char **__unused)
134 {
135 	char *p = "uncached";
136 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
137 	early_cachepolicy(&p);
138 }
139 __early_param("nowb", early_nowrite);
140 
141 static void __init early_ecc(char **p)
142 {
143 	if (memcmp(*p, "on", 2) == 0) {
144 		ecc_mask = PMD_PROTECTION;
145 		*p += 2;
146 	} else if (memcmp(*p, "off", 3) == 0) {
147 		ecc_mask = 0;
148 		*p += 3;
149 	}
150 }
151 __early_param("ecc=", early_ecc);
152 
153 static int __init noalign_setup(char *__unused)
154 {
155 	cr_alignment &= ~CR_A;
156 	cr_no_alignment &= ~CR_A;
157 	set_cr(cr_alignment);
158 	return 1;
159 }
160 __setup("noalign", noalign_setup);
161 
162 #ifndef CONFIG_SMP
163 void adjust_cr(unsigned long mask, unsigned long set)
164 {
165 	unsigned long flags;
166 
167 	mask &= ~CR_A;
168 
169 	set &= mask;
170 
171 	local_irq_save(flags);
172 
173 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
174 	cr_alignment = (cr_alignment & ~mask) | set;
175 
176 	set_cr((get_cr() & ~mask) | set);
177 
178 	local_irq_restore(flags);
179 }
180 #endif
181 
182 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
183 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
184 
185 static struct mem_type mem_types[] = {
186 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
187 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
188 				  L_PTE_SHARED,
189 		.prot_l1	= PMD_TYPE_TABLE,
190 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
191 		.domain		= DOMAIN_IO,
192 	},
193 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
194 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
195 		.prot_l1	= PMD_TYPE_TABLE,
196 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_TEX(2),
197 		.domain		= DOMAIN_IO,
198 	},
199 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
200 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
201 		.prot_l1	= PMD_TYPE_TABLE,
202 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
203 		.domain		= DOMAIN_IO,
204 	},
205 	[MT_DEVICE_WC] = {	/* ioremap_wc */
206 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
207 		.prot_l1	= PMD_TYPE_TABLE,
208 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE,
209 		.domain		= DOMAIN_IO,
210 	},
211 	[MT_CACHECLEAN] = {
212 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
213 		.domain    = DOMAIN_KERNEL,
214 	},
215 	[MT_MINICLEAN] = {
216 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
217 		.domain    = DOMAIN_KERNEL,
218 	},
219 	[MT_LOW_VECTORS] = {
220 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
221 				L_PTE_EXEC,
222 		.prot_l1   = PMD_TYPE_TABLE,
223 		.domain    = DOMAIN_USER,
224 	},
225 	[MT_HIGH_VECTORS] = {
226 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
227 				L_PTE_USER | L_PTE_EXEC,
228 		.prot_l1   = PMD_TYPE_TABLE,
229 		.domain    = DOMAIN_USER,
230 	},
231 	[MT_MEMORY] = {
232 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
233 		.domain    = DOMAIN_KERNEL,
234 	},
235 	[MT_ROM] = {
236 		.prot_sect = PMD_TYPE_SECT,
237 		.domain    = DOMAIN_KERNEL,
238 	},
239 };
240 
241 const struct mem_type *get_mem_type(unsigned int type)
242 {
243 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
244 }
245 
246 /*
247  * Adjust the PMD section entries according to the CPU in use.
248  */
249 static void __init build_mem_type_table(void)
250 {
251 	struct cachepolicy *cp;
252 	unsigned int cr = get_cr();
253 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
254 	int cpu_arch = cpu_architecture();
255 	int i;
256 
257 	if (cpu_arch < CPU_ARCH_ARMv6) {
258 #if defined(CONFIG_CPU_DCACHE_DISABLE)
259 		if (cachepolicy > CPOLICY_BUFFERED)
260 			cachepolicy = CPOLICY_BUFFERED;
261 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
262 		if (cachepolicy > CPOLICY_WRITETHROUGH)
263 			cachepolicy = CPOLICY_WRITETHROUGH;
264 #endif
265 	}
266 	if (cpu_arch < CPU_ARCH_ARMv5) {
267 		if (cachepolicy >= CPOLICY_WRITEALLOC)
268 			cachepolicy = CPOLICY_WRITEBACK;
269 		ecc_mask = 0;
270 	}
271 #ifdef CONFIG_SMP
272 	cachepolicy = CPOLICY_WRITEALLOC;
273 #endif
274 
275 	/*
276 	 * On non-Xscale3 ARMv5-and-older systems, use CB=01
277 	 * (Uncached/Buffered) for ioremap_wc() mappings.  On XScale3
278 	 * and ARMv6+, use TEXCB=00100 mappings (Inner/Outer Uncacheable
279 	 * in xsc3 parlance, Uncached Normal in ARMv6 parlance).
280 	 */
281 	if (cpu_is_xsc3() || cpu_arch >= CPU_ARCH_ARMv6) {
282 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
283 		mem_types[MT_DEVICE_WC].prot_sect &= ~PMD_SECT_BUFFERABLE;
284 	}
285 
286 	/*
287 	 * ARMv5 and lower, bit 4 must be set for page tables.
288 	 * (was: cache "update-able on write" bit on ARM610)
289 	 * However, Xscale cores require this bit to be cleared.
290 	 */
291 	if (cpu_is_xscale()) {
292 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
293 			mem_types[i].prot_sect &= ~PMD_BIT4;
294 			mem_types[i].prot_l1 &= ~PMD_BIT4;
295 		}
296 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
297 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
298 			if (mem_types[i].prot_l1)
299 				mem_types[i].prot_l1 |= PMD_BIT4;
300 			if (mem_types[i].prot_sect)
301 				mem_types[i].prot_sect |= PMD_BIT4;
302 		}
303 	}
304 
305 	cp = &cache_policies[cachepolicy];
306 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
307 
308 #ifndef CONFIG_SMP
309 	/*
310 	 * Only use write-through for non-SMP systems
311 	 */
312 	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
313 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
314 #endif
315 
316 	/*
317 	 * Enable CPU-specific coherency if supported.
318 	 * (Only available on XSC3 at the moment.)
319 	 */
320 	if (arch_is_coherent()) {
321 		if (cpu_is_xsc3()) {
322 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
323 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
324 		}
325 	}
326 
327 	/*
328 	 * ARMv6 and above have extended page tables.
329 	 */
330 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
331 		/*
332 		 * Mark cache clean areas and XIP ROM read only
333 		 * from SVC mode and no access from userspace.
334 		 */
335 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
336 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
337 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
338 
339 		/*
340 		 * Mark the device area as "shared device"
341 		 */
342 		mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
343 
344 #ifdef CONFIG_SMP
345 		/*
346 		 * Mark memory with the "shared" attribute for SMP systems
347 		 */
348 		user_pgprot |= L_PTE_SHARED;
349 		kern_pgprot |= L_PTE_SHARED;
350 		vecs_pgprot |= L_PTE_SHARED;
351 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
352 #endif
353 	}
354 
355 	for (i = 0; i < 16; i++) {
356 		unsigned long v = pgprot_val(protection_map[i]);
357 		protection_map[i] = __pgprot(v | user_pgprot);
358 	}
359 
360 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
361 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
362 
363 	if (cpu_arch < CPU_ARCH_ARMv5)
364 		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
365 
366 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
367 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
368 				 L_PTE_DIRTY | L_PTE_WRITE |
369 				 L_PTE_EXEC | kern_pgprot);
370 
371 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
372 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
373 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
374 	mem_types[MT_ROM].prot_sect |= cp->pmd;
375 
376 	switch (cp->pmd) {
377 	case PMD_SECT_WT:
378 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
379 		break;
380 	case PMD_SECT_WB:
381 	case PMD_SECT_WBWA:
382 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
383 		break;
384 	}
385 	printk("Memory policy: ECC %sabled, Data cache %s\n",
386 		ecc_mask ? "en" : "dis", cp->policy);
387 
388 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
389 		struct mem_type *t = &mem_types[i];
390 		if (t->prot_l1)
391 			t->prot_l1 |= PMD_DOMAIN(t->domain);
392 		if (t->prot_sect)
393 			t->prot_sect |= PMD_DOMAIN(t->domain);
394 	}
395 }
396 
397 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
398 
399 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
400 				  unsigned long end, unsigned long pfn,
401 				  const struct mem_type *type)
402 {
403 	pte_t *pte;
404 
405 	if (pmd_none(*pmd)) {
406 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
407 		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
408 	}
409 
410 	pte = pte_offset_kernel(pmd, addr);
411 	do {
412 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
413 		pfn++;
414 	} while (pte++, addr += PAGE_SIZE, addr != end);
415 }
416 
417 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
418 				      unsigned long end, unsigned long phys,
419 				      const struct mem_type *type)
420 {
421 	pmd_t *pmd = pmd_offset(pgd, addr);
422 
423 	/*
424 	 * Try a section mapping - end, addr and phys must all be aligned
425 	 * to a section boundary.  Note that PMDs refer to the individual
426 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
427 	 * up one logical pointer to an L2 table.
428 	 */
429 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
430 		pmd_t *p = pmd;
431 
432 		if (addr & SECTION_SIZE)
433 			pmd++;
434 
435 		do {
436 			*pmd = __pmd(phys | type->prot_sect);
437 			phys += SECTION_SIZE;
438 		} while (pmd++, addr += SECTION_SIZE, addr != end);
439 
440 		flush_pmd_entry(p);
441 	} else {
442 		/*
443 		 * No need to loop; pte's aren't interested in the
444 		 * individual L1 entries.
445 		 */
446 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
447 	}
448 }
449 
450 static void __init create_36bit_mapping(struct map_desc *md,
451 					const struct mem_type *type)
452 {
453 	unsigned long phys, addr, length, end;
454 	pgd_t *pgd;
455 
456 	addr = md->virtual;
457 	phys = (unsigned long)__pfn_to_phys(md->pfn);
458 	length = PAGE_ALIGN(md->length);
459 
460 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
461 		printk(KERN_ERR "MM: CPU does not support supersection "
462 		       "mapping for 0x%08llx at 0x%08lx\n",
463 		       __pfn_to_phys((u64)md->pfn), addr);
464 		return;
465 	}
466 
467 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
468 	 *	Since domain assignments can in fact be arbitrary, the
469 	 *	'domain == 0' check below is required to insure that ARMv6
470 	 *	supersections are only allocated for domain 0 regardless
471 	 *	of the actual domain assignments in use.
472 	 */
473 	if (type->domain) {
474 		printk(KERN_ERR "MM: invalid domain in supersection "
475 		       "mapping for 0x%08llx at 0x%08lx\n",
476 		       __pfn_to_phys((u64)md->pfn), addr);
477 		return;
478 	}
479 
480 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
481 		printk(KERN_ERR "MM: cannot create mapping for "
482 		       "0x%08llx at 0x%08lx invalid alignment\n",
483 		       __pfn_to_phys((u64)md->pfn), addr);
484 		return;
485 	}
486 
487 	/*
488 	 * Shift bits [35:32] of address into bits [23:20] of PMD
489 	 * (See ARMv6 spec).
490 	 */
491 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
492 
493 	pgd = pgd_offset_k(addr);
494 	end = addr + length;
495 	do {
496 		pmd_t *pmd = pmd_offset(pgd, addr);
497 		int i;
498 
499 		for (i = 0; i < 16; i++)
500 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
501 
502 		addr += SUPERSECTION_SIZE;
503 		phys += SUPERSECTION_SIZE;
504 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
505 	} while (addr != end);
506 }
507 
508 /*
509  * Create the page directory entries and any necessary
510  * page tables for the mapping specified by `md'.  We
511  * are able to cope here with varying sizes and address
512  * offsets, and we take full advantage of sections and
513  * supersections.
514  */
515 void __init create_mapping(struct map_desc *md)
516 {
517 	unsigned long phys, addr, length, end;
518 	const struct mem_type *type;
519 	pgd_t *pgd;
520 
521 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
522 		printk(KERN_WARNING "BUG: not creating mapping for "
523 		       "0x%08llx at 0x%08lx in user region\n",
524 		       __pfn_to_phys((u64)md->pfn), md->virtual);
525 		return;
526 	}
527 
528 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
529 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
530 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
531 		       "overlaps vmalloc space\n",
532 		       __pfn_to_phys((u64)md->pfn), md->virtual);
533 	}
534 
535 	type = &mem_types[md->type];
536 
537 	/*
538 	 * Catch 36-bit addresses
539 	 */
540 	if (md->pfn >= 0x100000) {
541 		create_36bit_mapping(md, type);
542 		return;
543 	}
544 
545 	addr = md->virtual & PAGE_MASK;
546 	phys = (unsigned long)__pfn_to_phys(md->pfn);
547 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
548 
549 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
550 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
551 		       "be mapped using pages, ignoring.\n",
552 		       __pfn_to_phys(md->pfn), addr);
553 		return;
554 	}
555 
556 	pgd = pgd_offset_k(addr);
557 	end = addr + length;
558 	do {
559 		unsigned long next = pgd_addr_end(addr, end);
560 
561 		alloc_init_section(pgd, addr, next, phys, type);
562 
563 		phys += next - addr;
564 		addr = next;
565 	} while (pgd++, addr != end);
566 }
567 
568 /*
569  * Create the architecture specific mappings
570  */
571 void __init iotable_init(struct map_desc *io_desc, int nr)
572 {
573 	int i;
574 
575 	for (i = 0; i < nr; i++)
576 		create_mapping(io_desc + i);
577 }
578 
579 static unsigned long __initdata vmalloc_reserve = SZ_128M;
580 
581 /*
582  * vmalloc=size forces the vmalloc area to be exactly 'size'
583  * bytes. This can be used to increase (or decrease) the vmalloc
584  * area - the default is 128m.
585  */
586 static void __init early_vmalloc(char **arg)
587 {
588 	vmalloc_reserve = memparse(*arg, arg);
589 
590 	if (vmalloc_reserve < SZ_16M) {
591 		vmalloc_reserve = SZ_16M;
592 		printk(KERN_WARNING
593 			"vmalloc area too small, limiting to %luMB\n",
594 			vmalloc_reserve >> 20);
595 	}
596 }
597 __early_param("vmalloc=", early_vmalloc);
598 
599 #define VMALLOC_MIN	(void *)(VMALLOC_END - vmalloc_reserve)
600 
601 static int __init check_membank_valid(struct membank *mb)
602 {
603 	/*
604 	 * Check whether this memory region has non-zero size or
605 	 * invalid node number.
606 	 */
607 	if (mb->size == 0 || mb->node >= MAX_NUMNODES)
608 		return 0;
609 
610 	/*
611 	 * Check whether this memory region would entirely overlap
612 	 * the vmalloc area.
613 	 */
614 	if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
615 		printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
616 			"(vmalloc region overlap).\n",
617 			mb->start, mb->start + mb->size - 1);
618 		return 0;
619 	}
620 
621 	/*
622 	 * Check whether this memory region would partially overlap
623 	 * the vmalloc area.
624 	 */
625 	if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
626 	    phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
627 		unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);
628 
629 		printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
630 			"to -%.8lx (vmalloc region overlap).\n",
631 			mb->start, mb->start + mb->size - 1,
632 			mb->start + newsize - 1);
633 		mb->size = newsize;
634 	}
635 
636 	return 1;
637 }
638 
639 static void __init sanity_check_meminfo(struct meminfo *mi)
640 {
641 	int i, j;
642 
643 	for (i = 0, j = 0; i < mi->nr_banks; i++) {
644 		if (check_membank_valid(&mi->bank[i]))
645 			mi->bank[j++] = mi->bank[i];
646 	}
647 	mi->nr_banks = j;
648 }
649 
650 static inline void prepare_page_table(struct meminfo *mi)
651 {
652 	unsigned long addr;
653 
654 	/*
655 	 * Clear out all the mappings below the kernel image.
656 	 */
657 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
658 		pmd_clear(pmd_off_k(addr));
659 
660 #ifdef CONFIG_XIP_KERNEL
661 	/* The XIP kernel is mapped in the module area -- skip over it */
662 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
663 #endif
664 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
665 		pmd_clear(pmd_off_k(addr));
666 
667 	/*
668 	 * Clear out all the kernel space mappings, except for the first
669 	 * memory bank, up to the end of the vmalloc region.
670 	 */
671 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
672 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
673 		pmd_clear(pmd_off_k(addr));
674 }
675 
676 /*
677  * Reserve the various regions of node 0
678  */
679 void __init reserve_node_zero(pg_data_t *pgdat)
680 {
681 	unsigned long res_size = 0;
682 
683 	/*
684 	 * Register the kernel text and data with bootmem.
685 	 * Note that this can only be in node 0.
686 	 */
687 #ifdef CONFIG_XIP_KERNEL
688 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
689 			BOOTMEM_DEFAULT);
690 #else
691 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
692 			BOOTMEM_DEFAULT);
693 #endif
694 
695 	/*
696 	 * Reserve the page tables.  These are already in use,
697 	 * and can only be in node 0.
698 	 */
699 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
700 			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
701 
702 	/*
703 	 * Hmm... This should go elsewhere, but we really really need to
704 	 * stop things allocating the low memory; ideally we need a better
705 	 * implementation of GFP_DMA which does not assume that DMA-able
706 	 * memory starts at zero.
707 	 */
708 	if (machine_is_integrator() || machine_is_cintegrator())
709 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
710 
711 	/*
712 	 * These should likewise go elsewhere.  They pre-reserve the
713 	 * screen memory region at the start of main system memory.
714 	 */
715 	if (machine_is_edb7211())
716 		res_size = 0x00020000;
717 	if (machine_is_p720t())
718 		res_size = 0x00014000;
719 
720 	/* H1940 and RX3715 need to reserve this for suspend */
721 
722 	if (machine_is_h1940() || machine_is_rx3715()) {
723 		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
724 				BOOTMEM_DEFAULT);
725 		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
726 				BOOTMEM_DEFAULT);
727 	}
728 
729 #ifdef CONFIG_SA1111
730 	/*
731 	 * Because of the SA1111 DMA bug, we want to preserve our
732 	 * precious DMA-able memory...
733 	 */
734 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
735 #endif
736 	if (res_size)
737 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
738 				BOOTMEM_DEFAULT);
739 }
740 
741 /*
742  * Set up device the mappings.  Since we clear out the page tables for all
743  * mappings above VMALLOC_END, we will remove any debug device mappings.
744  * This means you have to be careful how you debug this function, or any
745  * called function.  This means you can't use any function or debugging
746  * method which may touch any device, otherwise the kernel _will_ crash.
747  */
748 static void __init devicemaps_init(struct machine_desc *mdesc)
749 {
750 	struct map_desc map;
751 	unsigned long addr;
752 	void *vectors;
753 
754 	/*
755 	 * Allocate the vector page early.
756 	 */
757 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
758 	BUG_ON(!vectors);
759 
760 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
761 		pmd_clear(pmd_off_k(addr));
762 
763 	/*
764 	 * Map the kernel if it is XIP.
765 	 * It is always first in the modulearea.
766 	 */
767 #ifdef CONFIG_XIP_KERNEL
768 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
769 	map.virtual = MODULE_START;
770 	map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
771 	map.type = MT_ROM;
772 	create_mapping(&map);
773 #endif
774 
775 	/*
776 	 * Map the cache flushing regions.
777 	 */
778 #ifdef FLUSH_BASE
779 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
780 	map.virtual = FLUSH_BASE;
781 	map.length = SZ_1M;
782 	map.type = MT_CACHECLEAN;
783 	create_mapping(&map);
784 #endif
785 #ifdef FLUSH_BASE_MINICACHE
786 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
787 	map.virtual = FLUSH_BASE_MINICACHE;
788 	map.length = SZ_1M;
789 	map.type = MT_MINICLEAN;
790 	create_mapping(&map);
791 #endif
792 
793 	/*
794 	 * Create a mapping for the machine vectors at the high-vectors
795 	 * location (0xffff0000).  If we aren't using high-vectors, also
796 	 * create a mapping at the low-vectors virtual address.
797 	 */
798 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
799 	map.virtual = 0xffff0000;
800 	map.length = PAGE_SIZE;
801 	map.type = MT_HIGH_VECTORS;
802 	create_mapping(&map);
803 
804 	if (!vectors_high()) {
805 		map.virtual = 0;
806 		map.type = MT_LOW_VECTORS;
807 		create_mapping(&map);
808 	}
809 
810 	/*
811 	 * Ask the machine support to map in the statically mapped devices.
812 	 */
813 	if (mdesc->map_io)
814 		mdesc->map_io();
815 
816 	/*
817 	 * Finally flush the caches and tlb to ensure that we're in a
818 	 * consistent state wrt the writebuffer.  This also ensures that
819 	 * any write-allocated cache lines in the vector page are written
820 	 * back.  After this point, we can start to touch devices again.
821 	 */
822 	local_flush_tlb_all();
823 	flush_cache_all();
824 }
825 
826 /*
827  * paging_init() sets up the page tables, initialises the zone memory
828  * maps, and sets up the zero page, bad page and bad page tables.
829  */
830 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
831 {
832 	void *zero_page;
833 
834 	build_mem_type_table();
835 	sanity_check_meminfo(mi);
836 	prepare_page_table(mi);
837 	bootmem_init(mi);
838 	devicemaps_init(mdesc);
839 
840 	top_pmd = pmd_off_k(0xffff0000);
841 
842 	/*
843 	 * allocate the zero page.  Note that we count on this going ok.
844 	 */
845 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
846 	memzero(zero_page, PAGE_SIZE);
847 	empty_zero_page = virt_to_page(zero_page);
848 	flush_dcache_page(empty_zero_page);
849 }
850 
851 /*
852  * In order to soft-boot, we need to insert a 1:1 mapping in place of
853  * the user-mode pages.  This will then ensure that we have predictable
854  * results when turning the mmu off
855  */
856 void setup_mm_for_reboot(char mode)
857 {
858 	unsigned long base_pmdval;
859 	pgd_t *pgd;
860 	int i;
861 
862 	if (current->mm && current->mm->pgd)
863 		pgd = current->mm->pgd;
864 	else
865 		pgd = init_mm.pgd;
866 
867 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
868 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
869 		base_pmdval |= PMD_BIT4;
870 
871 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
872 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
873 		pmd_t *pmd;
874 
875 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
876 		pmd[0] = __pmd(pmdval);
877 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
878 		flush_pmd_entry(pmd);
879 	}
880 }
881