xref: /linux/arch/arm/mm/mmu.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 
20 #include <asm/cp15.h>
21 #include <asm/cputype.h>
22 #include <asm/sections.h>
23 #include <asm/cachetype.h>
24 #include <asm/setup.h>
25 #include <asm/sizes.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31 
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 
35 #include "mm.h"
36 
37 /*
38  * empty_zero_page is a special page that is used for
39  * zero-initialized data and COW.
40  */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43 
44 /*
45  * The pmd table for the upper-most set of pages.
46  */
47 pmd_t *top_pmd;
48 
49 #define CPOLICY_UNCACHED	0
50 #define CPOLICY_BUFFERED	1
51 #define CPOLICY_WRITETHROUGH	2
52 #define CPOLICY_WRITEBACK	3
53 #define CPOLICY_WRITEALLOC	4
54 
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59 
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62 
63 struct cachepolicy {
64 	const char	policy[16];
65 	unsigned int	cr_mask;
66 	pmdval_t	pmd;
67 	pteval_t	pte;
68 };
69 
70 static struct cachepolicy cache_policies[] __initdata = {
71 	{
72 		.policy		= "uncached",
73 		.cr_mask	= CR_W|CR_C,
74 		.pmd		= PMD_SECT_UNCACHED,
75 		.pte		= L_PTE_MT_UNCACHED,
76 	}, {
77 		.policy		= "buffered",
78 		.cr_mask	= CR_C,
79 		.pmd		= PMD_SECT_BUFFERED,
80 		.pte		= L_PTE_MT_BUFFERABLE,
81 	}, {
82 		.policy		= "writethrough",
83 		.cr_mask	= 0,
84 		.pmd		= PMD_SECT_WT,
85 		.pte		= L_PTE_MT_WRITETHROUGH,
86 	}, {
87 		.policy		= "writeback",
88 		.cr_mask	= 0,
89 		.pmd		= PMD_SECT_WB,
90 		.pte		= L_PTE_MT_WRITEBACK,
91 	}, {
92 		.policy		= "writealloc",
93 		.cr_mask	= 0,
94 		.pmd		= PMD_SECT_WBWA,
95 		.pte		= L_PTE_MT_WRITEALLOC,
96 	}
97 };
98 
99 /*
100  * These are useful for identifying cache coherency
101  * problems by allowing the cache or the cache and
102  * writebuffer to be turned off.  (Note: the write
103  * buffer should not be on and the cache off).
104  */
105 static int __init early_cachepolicy(char *p)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 		int len = strlen(cache_policies[i].policy);
111 
112 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 			cachepolicy = i;
114 			cr_alignment &= ~cache_policies[i].cr_mask;
115 			cr_no_alignment &= ~cache_policies[i].cr_mask;
116 			break;
117 		}
118 	}
119 	if (i == ARRAY_SIZE(cache_policies))
120 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 	/*
122 	 * This restriction is partly to do with the way we boot; it is
123 	 * unpredictable to have memory mapped using two different sets of
124 	 * memory attributes (shared, type, and cache attribs).  We can not
125 	 * change these attributes once the initial assembly has setup the
126 	 * page tables.
127 	 */
128 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 		cachepolicy = CPOLICY_WRITEBACK;
131 	}
132 	flush_cache_all();
133 	set_cr(cr_alignment);
134 	return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137 
138 static int __init early_nocache(char *__unused)
139 {
140 	char *p = "buffered";
141 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 	early_cachepolicy(p);
143 	return 0;
144 }
145 early_param("nocache", early_nocache);
146 
147 static int __init early_nowrite(char *__unused)
148 {
149 	char *p = "uncached";
150 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 	early_cachepolicy(p);
152 	return 0;
153 }
154 early_param("nowb", early_nowrite);
155 
156 #ifndef CONFIG_ARM_LPAE
157 static int __init early_ecc(char *p)
158 {
159 	if (memcmp(p, "on", 2) == 0)
160 		ecc_mask = PMD_PROTECTION;
161 	else if (memcmp(p, "off", 3) == 0)
162 		ecc_mask = 0;
163 	return 0;
164 }
165 early_param("ecc", early_ecc);
166 #endif
167 
168 static int __init noalign_setup(char *__unused)
169 {
170 	cr_alignment &= ~CR_A;
171 	cr_no_alignment &= ~CR_A;
172 	set_cr(cr_alignment);
173 	return 1;
174 }
175 __setup("noalign", noalign_setup);
176 
177 #ifndef CONFIG_SMP
178 void adjust_cr(unsigned long mask, unsigned long set)
179 {
180 	unsigned long flags;
181 
182 	mask &= ~CR_A;
183 
184 	set &= mask;
185 
186 	local_irq_save(flags);
187 
188 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 	cr_alignment = (cr_alignment & ~mask) | set;
190 
191 	set_cr((get_cr() & ~mask) | set);
192 
193 	local_irq_restore(flags);
194 }
195 #endif
196 
197 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199 
200 static struct mem_type mem_types[] = {
201 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
202 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 				  L_PTE_SHARED,
204 		.prot_l1	= PMD_TYPE_TABLE,
205 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
206 		.domain		= DOMAIN_IO,
207 	},
208 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210 		.prot_l1	= PMD_TYPE_TABLE,
211 		.prot_sect	= PROT_SECT_DEVICE,
212 		.domain		= DOMAIN_IO,
213 	},
214 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
215 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 		.prot_l1	= PMD_TYPE_TABLE,
217 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
218 		.domain		= DOMAIN_IO,
219 	},
220 	[MT_DEVICE_WC] = {	/* ioremap_wc */
221 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222 		.prot_l1	= PMD_TYPE_TABLE,
223 		.prot_sect	= PROT_SECT_DEVICE,
224 		.domain		= DOMAIN_IO,
225 	},
226 	[MT_UNCACHED] = {
227 		.prot_pte	= PROT_PTE_DEVICE,
228 		.prot_l1	= PMD_TYPE_TABLE,
229 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
230 		.domain		= DOMAIN_IO,
231 	},
232 	[MT_CACHECLEAN] = {
233 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 		.domain    = DOMAIN_KERNEL,
235 	},
236 #ifndef CONFIG_ARM_LPAE
237 	[MT_MINICLEAN] = {
238 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 		.domain    = DOMAIN_KERNEL,
240 	},
241 #endif
242 	[MT_LOW_VECTORS] = {
243 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 				L_PTE_RDONLY,
245 		.prot_l1   = PMD_TYPE_TABLE,
246 		.domain    = DOMAIN_USER,
247 	},
248 	[MT_HIGH_VECTORS] = {
249 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250 				L_PTE_USER | L_PTE_RDONLY,
251 		.prot_l1   = PMD_TYPE_TABLE,
252 		.domain    = DOMAIN_USER,
253 	},
254 	[MT_MEMORY] = {
255 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256 		.prot_l1   = PMD_TYPE_TABLE,
257 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 		.domain    = DOMAIN_KERNEL,
259 	},
260 	[MT_ROM] = {
261 		.prot_sect = PMD_TYPE_SECT,
262 		.domain    = DOMAIN_KERNEL,
263 	},
264 	[MT_MEMORY_NONCACHED] = {
265 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 				L_PTE_MT_BUFFERABLE,
267 		.prot_l1   = PMD_TYPE_TABLE,
268 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 		.domain    = DOMAIN_KERNEL,
270 	},
271 	[MT_MEMORY_DTCM] = {
272 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273 				L_PTE_XN,
274 		.prot_l1   = PMD_TYPE_TABLE,
275 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 		.domain    = DOMAIN_KERNEL,
277 	},
278 	[MT_MEMORY_ITCM] = {
279 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280 		.prot_l1   = PMD_TYPE_TABLE,
281 		.domain    = DOMAIN_KERNEL,
282 	},
283 	[MT_MEMORY_SO] = {
284 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 				L_PTE_MT_UNCACHED,
286 		.prot_l1   = PMD_TYPE_TABLE,
287 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 				PMD_SECT_UNCACHED | PMD_SECT_XN,
289 		.domain    = DOMAIN_KERNEL,
290 	},
291 	[MT_MEMORY_DMA_READY] = {
292 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 		.prot_l1   = PMD_TYPE_TABLE,
294 		.domain    = DOMAIN_KERNEL,
295 	},
296 };
297 
298 const struct mem_type *get_mem_type(unsigned int type)
299 {
300 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
301 }
302 EXPORT_SYMBOL(get_mem_type);
303 
304 /*
305  * Adjust the PMD section entries according to the CPU in use.
306  */
307 static void __init build_mem_type_table(void)
308 {
309 	struct cachepolicy *cp;
310 	unsigned int cr = get_cr();
311 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
312 	int cpu_arch = cpu_architecture();
313 	int i;
314 
315 	if (cpu_arch < CPU_ARCH_ARMv6) {
316 #if defined(CONFIG_CPU_DCACHE_DISABLE)
317 		if (cachepolicy > CPOLICY_BUFFERED)
318 			cachepolicy = CPOLICY_BUFFERED;
319 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
320 		if (cachepolicy > CPOLICY_WRITETHROUGH)
321 			cachepolicy = CPOLICY_WRITETHROUGH;
322 #endif
323 	}
324 	if (cpu_arch < CPU_ARCH_ARMv5) {
325 		if (cachepolicy >= CPOLICY_WRITEALLOC)
326 			cachepolicy = CPOLICY_WRITEBACK;
327 		ecc_mask = 0;
328 	}
329 	if (is_smp())
330 		cachepolicy = CPOLICY_WRITEALLOC;
331 
332 	/*
333 	 * Strip out features not present on earlier architectures.
334 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
335 	 * without extended page tables don't have the 'Shared' bit.
336 	 */
337 	if (cpu_arch < CPU_ARCH_ARMv5)
338 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
339 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
340 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
341 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
342 			mem_types[i].prot_sect &= ~PMD_SECT_S;
343 
344 	/*
345 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
346 	 * "update-able on write" bit on ARM610).  However, Xscale and
347 	 * Xscale3 require this bit to be cleared.
348 	 */
349 	if (cpu_is_xscale() || cpu_is_xsc3()) {
350 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351 			mem_types[i].prot_sect &= ~PMD_BIT4;
352 			mem_types[i].prot_l1 &= ~PMD_BIT4;
353 		}
354 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
355 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
356 			if (mem_types[i].prot_l1)
357 				mem_types[i].prot_l1 |= PMD_BIT4;
358 			if (mem_types[i].prot_sect)
359 				mem_types[i].prot_sect |= PMD_BIT4;
360 		}
361 	}
362 
363 	/*
364 	 * Mark the device areas according to the CPU/architecture.
365 	 */
366 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
367 		if (!cpu_is_xsc3()) {
368 			/*
369 			 * Mark device regions on ARMv6+ as execute-never
370 			 * to prevent speculative instruction fetches.
371 			 */
372 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
373 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
374 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
375 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
376 		}
377 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
378 			/*
379 			 * For ARMv7 with TEX remapping,
380 			 * - shared device is SXCB=1100
381 			 * - nonshared device is SXCB=0100
382 			 * - write combine device mem is SXCB=0001
383 			 * (Uncached Normal memory)
384 			 */
385 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
386 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
387 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
388 		} else if (cpu_is_xsc3()) {
389 			/*
390 			 * For Xscale3,
391 			 * - shared device is TEXCB=00101
392 			 * - nonshared device is TEXCB=01000
393 			 * - write combine device mem is TEXCB=00100
394 			 * (Inner/Outer Uncacheable in xsc3 parlance)
395 			 */
396 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
397 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399 		} else {
400 			/*
401 			 * For ARMv6 and ARMv7 without TEX remapping,
402 			 * - shared device is TEXCB=00001
403 			 * - nonshared device is TEXCB=01000
404 			 * - write combine device mem is TEXCB=00100
405 			 * (Uncached Normal in ARMv6 parlance).
406 			 */
407 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
408 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
409 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
410 		}
411 	} else {
412 		/*
413 		 * On others, write combining is "Uncached/Buffered"
414 		 */
415 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
416 	}
417 
418 	/*
419 	 * Now deal with the memory-type mappings
420 	 */
421 	cp = &cache_policies[cachepolicy];
422 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
423 
424 	/*
425 	 * Only use write-through for non-SMP systems
426 	 */
427 	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
428 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
429 
430 	/*
431 	 * Enable CPU-specific coherency if supported.
432 	 * (Only available on XSC3 at the moment.)
433 	 */
434 	if (arch_is_coherent() && cpu_is_xsc3()) {
435 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
436 		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
437 		mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
438 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
439 		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
440 	}
441 	/*
442 	 * ARMv6 and above have extended page tables.
443 	 */
444 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
445 #ifndef CONFIG_ARM_LPAE
446 		/*
447 		 * Mark cache clean areas and XIP ROM read only
448 		 * from SVC mode and no access from userspace.
449 		 */
450 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
451 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
452 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
453 #endif
454 
455 		if (is_smp()) {
456 			/*
457 			 * Mark memory with the "shared" attribute
458 			 * for SMP systems
459 			 */
460 			user_pgprot |= L_PTE_SHARED;
461 			kern_pgprot |= L_PTE_SHARED;
462 			vecs_pgprot |= L_PTE_SHARED;
463 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
464 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
465 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
466 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
467 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
468 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
469 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
470 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
471 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
472 		}
473 	}
474 
475 	/*
476 	 * Non-cacheable Normal - intended for memory areas that must
477 	 * not cause dirty cache line writebacks when used
478 	 */
479 	if (cpu_arch >= CPU_ARCH_ARMv6) {
480 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
481 			/* Non-cacheable Normal is XCB = 001 */
482 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
483 				PMD_SECT_BUFFERED;
484 		} else {
485 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
486 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
487 				PMD_SECT_TEX(1);
488 		}
489 	} else {
490 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
491 	}
492 
493 #ifdef CONFIG_ARM_LPAE
494 	/*
495 	 * Do not generate access flag faults for the kernel mappings.
496 	 */
497 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
498 		mem_types[i].prot_pte |= PTE_EXT_AF;
499 		if (mem_types[i].prot_sect)
500 			mem_types[i].prot_sect |= PMD_SECT_AF;
501 	}
502 	kern_pgprot |= PTE_EXT_AF;
503 	vecs_pgprot |= PTE_EXT_AF;
504 #endif
505 
506 	for (i = 0; i < 16; i++) {
507 		unsigned long v = pgprot_val(protection_map[i]);
508 		protection_map[i] = __pgprot(v | user_pgprot);
509 	}
510 
511 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
512 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
513 
514 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
515 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
516 				 L_PTE_DIRTY | kern_pgprot);
517 
518 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
519 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
520 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
521 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
522 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
523 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
524 	mem_types[MT_ROM].prot_sect |= cp->pmd;
525 
526 	switch (cp->pmd) {
527 	case PMD_SECT_WT:
528 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
529 		break;
530 	case PMD_SECT_WB:
531 	case PMD_SECT_WBWA:
532 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
533 		break;
534 	}
535 	printk("Memory policy: ECC %sabled, Data cache %s\n",
536 		ecc_mask ? "en" : "dis", cp->policy);
537 
538 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
539 		struct mem_type *t = &mem_types[i];
540 		if (t->prot_l1)
541 			t->prot_l1 |= PMD_DOMAIN(t->domain);
542 		if (t->prot_sect)
543 			t->prot_sect |= PMD_DOMAIN(t->domain);
544 	}
545 }
546 
547 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
548 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
549 			      unsigned long size, pgprot_t vma_prot)
550 {
551 	if (!pfn_valid(pfn))
552 		return pgprot_noncached(vma_prot);
553 	else if (file->f_flags & O_SYNC)
554 		return pgprot_writecombine(vma_prot);
555 	return vma_prot;
556 }
557 EXPORT_SYMBOL(phys_mem_access_prot);
558 #endif
559 
560 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
561 
562 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
563 {
564 	void *ptr = __va(memblock_alloc(sz, align));
565 	memset(ptr, 0, sz);
566 	return ptr;
567 }
568 
569 static void __init *early_alloc(unsigned long sz)
570 {
571 	return early_alloc_aligned(sz, sz);
572 }
573 
574 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
575 {
576 	if (pmd_none(*pmd)) {
577 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
578 		__pmd_populate(pmd, __pa(pte), prot);
579 	}
580 	BUG_ON(pmd_bad(*pmd));
581 	return pte_offset_kernel(pmd, addr);
582 }
583 
584 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
585 				  unsigned long end, unsigned long pfn,
586 				  const struct mem_type *type)
587 {
588 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
589 	do {
590 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
591 		pfn++;
592 	} while (pte++, addr += PAGE_SIZE, addr != end);
593 }
594 
595 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
596 				      unsigned long end, phys_addr_t phys,
597 				      const struct mem_type *type)
598 {
599 	pmd_t *pmd = pmd_offset(pud, addr);
600 
601 	/*
602 	 * Try a section mapping - end, addr and phys must all be aligned
603 	 * to a section boundary.  Note that PMDs refer to the individual
604 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
605 	 * up one logical pointer to an L2 table.
606 	 */
607 	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
608 		pmd_t *p = pmd;
609 
610 #ifndef CONFIG_ARM_LPAE
611 		if (addr & SECTION_SIZE)
612 			pmd++;
613 #endif
614 
615 		do {
616 			*pmd = __pmd(phys | type->prot_sect);
617 			phys += SECTION_SIZE;
618 		} while (pmd++, addr += SECTION_SIZE, addr != end);
619 
620 		flush_pmd_entry(p);
621 	} else {
622 		/*
623 		 * No need to loop; pte's aren't interested in the
624 		 * individual L1 entries.
625 		 */
626 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
627 	}
628 }
629 
630 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
631 	unsigned long end, unsigned long phys, const struct mem_type *type)
632 {
633 	pud_t *pud = pud_offset(pgd, addr);
634 	unsigned long next;
635 
636 	do {
637 		next = pud_addr_end(addr, end);
638 		alloc_init_section(pud, addr, next, phys, type);
639 		phys += next - addr;
640 	} while (pud++, addr = next, addr != end);
641 }
642 
643 #ifndef CONFIG_ARM_LPAE
644 static void __init create_36bit_mapping(struct map_desc *md,
645 					const struct mem_type *type)
646 {
647 	unsigned long addr, length, end;
648 	phys_addr_t phys;
649 	pgd_t *pgd;
650 
651 	addr = md->virtual;
652 	phys = __pfn_to_phys(md->pfn);
653 	length = PAGE_ALIGN(md->length);
654 
655 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
656 		printk(KERN_ERR "MM: CPU does not support supersection "
657 		       "mapping for 0x%08llx at 0x%08lx\n",
658 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
659 		return;
660 	}
661 
662 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
663 	 *	Since domain assignments can in fact be arbitrary, the
664 	 *	'domain == 0' check below is required to insure that ARMv6
665 	 *	supersections are only allocated for domain 0 regardless
666 	 *	of the actual domain assignments in use.
667 	 */
668 	if (type->domain) {
669 		printk(KERN_ERR "MM: invalid domain in supersection "
670 		       "mapping for 0x%08llx at 0x%08lx\n",
671 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
672 		return;
673 	}
674 
675 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
676 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
677 		       " at 0x%08lx invalid alignment\n",
678 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
679 		return;
680 	}
681 
682 	/*
683 	 * Shift bits [35:32] of address into bits [23:20] of PMD
684 	 * (See ARMv6 spec).
685 	 */
686 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
687 
688 	pgd = pgd_offset_k(addr);
689 	end = addr + length;
690 	do {
691 		pud_t *pud = pud_offset(pgd, addr);
692 		pmd_t *pmd = pmd_offset(pud, addr);
693 		int i;
694 
695 		for (i = 0; i < 16; i++)
696 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
697 
698 		addr += SUPERSECTION_SIZE;
699 		phys += SUPERSECTION_SIZE;
700 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
701 	} while (addr != end);
702 }
703 #endif	/* !CONFIG_ARM_LPAE */
704 
705 /*
706  * Create the page directory entries and any necessary
707  * page tables for the mapping specified by `md'.  We
708  * are able to cope here with varying sizes and address
709  * offsets, and we take full advantage of sections and
710  * supersections.
711  */
712 static void __init create_mapping(struct map_desc *md)
713 {
714 	unsigned long addr, length, end;
715 	phys_addr_t phys;
716 	const struct mem_type *type;
717 	pgd_t *pgd;
718 
719 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
720 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
721 		       " at 0x%08lx in user region\n",
722 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
723 		return;
724 	}
725 
726 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
727 	    md->virtual >= PAGE_OFFSET &&
728 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
729 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
730 		       " at 0x%08lx out of vmalloc space\n",
731 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
732 	}
733 
734 	type = &mem_types[md->type];
735 
736 #ifndef CONFIG_ARM_LPAE
737 	/*
738 	 * Catch 36-bit addresses
739 	 */
740 	if (md->pfn >= 0x100000) {
741 		create_36bit_mapping(md, type);
742 		return;
743 	}
744 #endif
745 
746 	addr = md->virtual & PAGE_MASK;
747 	phys = __pfn_to_phys(md->pfn);
748 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
749 
750 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
751 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
752 		       "be mapped using pages, ignoring.\n",
753 		       (long long)__pfn_to_phys(md->pfn), addr);
754 		return;
755 	}
756 
757 	pgd = pgd_offset_k(addr);
758 	end = addr + length;
759 	do {
760 		unsigned long next = pgd_addr_end(addr, end);
761 
762 		alloc_init_pud(pgd, addr, next, phys, type);
763 
764 		phys += next - addr;
765 		addr = next;
766 	} while (pgd++, addr != end);
767 }
768 
769 /*
770  * Create the architecture specific mappings
771  */
772 void __init iotable_init(struct map_desc *io_desc, int nr)
773 {
774 	struct map_desc *md;
775 	struct vm_struct *vm;
776 
777 	if (!nr)
778 		return;
779 
780 	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
781 
782 	for (md = io_desc; nr; md++, nr--) {
783 		create_mapping(md);
784 		vm->addr = (void *)(md->virtual & PAGE_MASK);
785 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
786 		vm->phys_addr = __pfn_to_phys(md->pfn);
787 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
788 		vm->flags |= VM_ARM_MTYPE(md->type);
789 		vm->caller = iotable_init;
790 		vm_area_add_early(vm++);
791 	}
792 }
793 
794 #ifndef CONFIG_ARM_LPAE
795 
796 /*
797  * The Linux PMD is made of two consecutive section entries covering 2MB
798  * (see definition in include/asm/pgtable-2level.h).  However a call to
799  * create_mapping() may optimize static mappings by using individual
800  * 1MB section mappings.  This leaves the actual PMD potentially half
801  * initialized if the top or bottom section entry isn't used, leaving it
802  * open to problems if a subsequent ioremap() or vmalloc() tries to use
803  * the virtual space left free by that unused section entry.
804  *
805  * Let's avoid the issue by inserting dummy vm entries covering the unused
806  * PMD halves once the static mappings are in place.
807  */
808 
809 static void __init pmd_empty_section_gap(unsigned long addr)
810 {
811 	struct vm_struct *vm;
812 
813 	vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
814 	vm->addr = (void *)addr;
815 	vm->size = SECTION_SIZE;
816 	vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
817 	vm->caller = pmd_empty_section_gap;
818 	vm_area_add_early(vm);
819 }
820 
821 static void __init fill_pmd_gaps(void)
822 {
823 	struct vm_struct *vm;
824 	unsigned long addr, next = 0;
825 	pmd_t *pmd;
826 
827 	/* we're still single threaded hence no lock needed here */
828 	for (vm = vmlist; vm; vm = vm->next) {
829 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
830 			continue;
831 		addr = (unsigned long)vm->addr;
832 		if (addr < next)
833 			continue;
834 
835 		/*
836 		 * Check if this vm starts on an odd section boundary.
837 		 * If so and the first section entry for this PMD is free
838 		 * then we block the corresponding virtual address.
839 		 */
840 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
841 			pmd = pmd_off_k(addr);
842 			if (pmd_none(*pmd))
843 				pmd_empty_section_gap(addr & PMD_MASK);
844 		}
845 
846 		/*
847 		 * Then check if this vm ends on an odd section boundary.
848 		 * If so and the second section entry for this PMD is empty
849 		 * then we block the corresponding virtual address.
850 		 */
851 		addr += vm->size;
852 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
853 			pmd = pmd_off_k(addr) + 1;
854 			if (pmd_none(*pmd))
855 				pmd_empty_section_gap(addr);
856 		}
857 
858 		/* no need to look at any vm entry until we hit the next PMD */
859 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
860 	}
861 }
862 
863 #else
864 #define fill_pmd_gaps() do { } while (0)
865 #endif
866 
867 static void * __initdata vmalloc_min =
868 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
869 
870 /*
871  * vmalloc=size forces the vmalloc area to be exactly 'size'
872  * bytes. This can be used to increase (or decrease) the vmalloc
873  * area - the default is 240m.
874  */
875 static int __init early_vmalloc(char *arg)
876 {
877 	unsigned long vmalloc_reserve = memparse(arg, NULL);
878 
879 	if (vmalloc_reserve < SZ_16M) {
880 		vmalloc_reserve = SZ_16M;
881 		printk(KERN_WARNING
882 			"vmalloc area too small, limiting to %luMB\n",
883 			vmalloc_reserve >> 20);
884 	}
885 
886 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
887 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
888 		printk(KERN_WARNING
889 			"vmalloc area is too big, limiting to %luMB\n",
890 			vmalloc_reserve >> 20);
891 	}
892 
893 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
894 	return 0;
895 }
896 early_param("vmalloc", early_vmalloc);
897 
898 phys_addr_t arm_lowmem_limit __initdata = 0;
899 
900 void __init sanity_check_meminfo(void)
901 {
902 	int i, j, highmem = 0;
903 
904 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
905 		struct membank *bank = &meminfo.bank[j];
906 		*bank = meminfo.bank[i];
907 
908 		if (bank->start > ULONG_MAX)
909 			highmem = 1;
910 
911 #ifdef CONFIG_HIGHMEM
912 		if (__va(bank->start) >= vmalloc_min ||
913 		    __va(bank->start) < (void *)PAGE_OFFSET)
914 			highmem = 1;
915 
916 		bank->highmem = highmem;
917 
918 		/*
919 		 * Split those memory banks which are partially overlapping
920 		 * the vmalloc area greatly simplifying things later.
921 		 */
922 		if (!highmem && __va(bank->start) < vmalloc_min &&
923 		    bank->size > vmalloc_min - __va(bank->start)) {
924 			if (meminfo.nr_banks >= NR_BANKS) {
925 				printk(KERN_CRIT "NR_BANKS too low, "
926 						 "ignoring high memory\n");
927 			} else {
928 				memmove(bank + 1, bank,
929 					(meminfo.nr_banks - i) * sizeof(*bank));
930 				meminfo.nr_banks++;
931 				i++;
932 				bank[1].size -= vmalloc_min - __va(bank->start);
933 				bank[1].start = __pa(vmalloc_min - 1) + 1;
934 				bank[1].highmem = highmem = 1;
935 				j++;
936 			}
937 			bank->size = vmalloc_min - __va(bank->start);
938 		}
939 #else
940 		bank->highmem = highmem;
941 
942 		/*
943 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
944 		 */
945 		if (highmem) {
946 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
947 			       "(!CONFIG_HIGHMEM).\n",
948 			       (unsigned long long)bank->start,
949 			       (unsigned long long)bank->start + bank->size - 1);
950 			continue;
951 		}
952 
953 		/*
954 		 * Check whether this memory bank would entirely overlap
955 		 * the vmalloc area.
956 		 */
957 		if (__va(bank->start) >= vmalloc_min ||
958 		    __va(bank->start) < (void *)PAGE_OFFSET) {
959 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
960 			       "(vmalloc region overlap).\n",
961 			       (unsigned long long)bank->start,
962 			       (unsigned long long)bank->start + bank->size - 1);
963 			continue;
964 		}
965 
966 		/*
967 		 * Check whether this memory bank would partially overlap
968 		 * the vmalloc area.
969 		 */
970 		if (__va(bank->start + bank->size) > vmalloc_min ||
971 		    __va(bank->start + bank->size) < __va(bank->start)) {
972 			unsigned long newsize = vmalloc_min - __va(bank->start);
973 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
974 			       "to -%.8llx (vmalloc region overlap).\n",
975 			       (unsigned long long)bank->start,
976 			       (unsigned long long)bank->start + bank->size - 1,
977 			       (unsigned long long)bank->start + newsize - 1);
978 			bank->size = newsize;
979 		}
980 #endif
981 		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
982 			arm_lowmem_limit = bank->start + bank->size;
983 
984 		j++;
985 	}
986 #ifdef CONFIG_HIGHMEM
987 	if (highmem) {
988 		const char *reason = NULL;
989 
990 		if (cache_is_vipt_aliasing()) {
991 			/*
992 			 * Interactions between kmap and other mappings
993 			 * make highmem support with aliasing VIPT caches
994 			 * rather difficult.
995 			 */
996 			reason = "with VIPT aliasing cache";
997 		}
998 		if (reason) {
999 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1000 				reason);
1001 			while (j > 0 && meminfo.bank[j - 1].highmem)
1002 				j--;
1003 		}
1004 	}
1005 #endif
1006 	meminfo.nr_banks = j;
1007 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1008 	memblock_set_current_limit(arm_lowmem_limit);
1009 }
1010 
1011 static inline void prepare_page_table(void)
1012 {
1013 	unsigned long addr;
1014 	phys_addr_t end;
1015 
1016 	/*
1017 	 * Clear out all the mappings below the kernel image.
1018 	 */
1019 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1020 		pmd_clear(pmd_off_k(addr));
1021 
1022 #ifdef CONFIG_XIP_KERNEL
1023 	/* The XIP kernel is mapped in the module area -- skip over it */
1024 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1025 #endif
1026 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1027 		pmd_clear(pmd_off_k(addr));
1028 
1029 	/*
1030 	 * Find the end of the first block of lowmem.
1031 	 */
1032 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1033 	if (end >= arm_lowmem_limit)
1034 		end = arm_lowmem_limit;
1035 
1036 	/*
1037 	 * Clear out all the kernel space mappings, except for the first
1038 	 * memory bank, up to the vmalloc region.
1039 	 */
1040 	for (addr = __phys_to_virt(end);
1041 	     addr < VMALLOC_START; addr += PMD_SIZE)
1042 		pmd_clear(pmd_off_k(addr));
1043 }
1044 
1045 #ifdef CONFIG_ARM_LPAE
1046 /* the first page is reserved for pgd */
1047 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1048 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1049 #else
1050 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1051 #endif
1052 
1053 /*
1054  * Reserve the special regions of memory
1055  */
1056 void __init arm_mm_memblock_reserve(void)
1057 {
1058 	/*
1059 	 * Reserve the page tables.  These are already in use,
1060 	 * and can only be in node 0.
1061 	 */
1062 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1063 
1064 #ifdef CONFIG_SA1111
1065 	/*
1066 	 * Because of the SA1111 DMA bug, we want to preserve our
1067 	 * precious DMA-able memory...
1068 	 */
1069 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1070 #endif
1071 }
1072 
1073 /*
1074  * Set up the device mappings.  Since we clear out the page tables for all
1075  * mappings above VMALLOC_START, we will remove any debug device mappings.
1076  * This means you have to be careful how you debug this function, or any
1077  * called function.  This means you can't use any function or debugging
1078  * method which may touch any device, otherwise the kernel _will_ crash.
1079  */
1080 static void __init devicemaps_init(struct machine_desc *mdesc)
1081 {
1082 	struct map_desc map;
1083 	unsigned long addr;
1084 	void *vectors;
1085 
1086 	/*
1087 	 * Allocate the vector page early.
1088 	 */
1089 	vectors = early_alloc(PAGE_SIZE);
1090 
1091 	early_trap_init(vectors);
1092 
1093 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1094 		pmd_clear(pmd_off_k(addr));
1095 
1096 	/*
1097 	 * Map the kernel if it is XIP.
1098 	 * It is always first in the modulearea.
1099 	 */
1100 #ifdef CONFIG_XIP_KERNEL
1101 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1102 	map.virtual = MODULES_VADDR;
1103 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1104 	map.type = MT_ROM;
1105 	create_mapping(&map);
1106 #endif
1107 
1108 	/*
1109 	 * Map the cache flushing regions.
1110 	 */
1111 #ifdef FLUSH_BASE
1112 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1113 	map.virtual = FLUSH_BASE;
1114 	map.length = SZ_1M;
1115 	map.type = MT_CACHECLEAN;
1116 	create_mapping(&map);
1117 #endif
1118 #ifdef FLUSH_BASE_MINICACHE
1119 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1120 	map.virtual = FLUSH_BASE_MINICACHE;
1121 	map.length = SZ_1M;
1122 	map.type = MT_MINICLEAN;
1123 	create_mapping(&map);
1124 #endif
1125 
1126 	/*
1127 	 * Create a mapping for the machine vectors at the high-vectors
1128 	 * location (0xffff0000).  If we aren't using high-vectors, also
1129 	 * create a mapping at the low-vectors virtual address.
1130 	 */
1131 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1132 	map.virtual = 0xffff0000;
1133 	map.length = PAGE_SIZE;
1134 	map.type = MT_HIGH_VECTORS;
1135 	create_mapping(&map);
1136 
1137 	if (!vectors_high()) {
1138 		map.virtual = 0;
1139 		map.type = MT_LOW_VECTORS;
1140 		create_mapping(&map);
1141 	}
1142 
1143 	/*
1144 	 * Ask the machine support to map in the statically mapped devices.
1145 	 */
1146 	if (mdesc->map_io)
1147 		mdesc->map_io();
1148 	fill_pmd_gaps();
1149 
1150 	/*
1151 	 * Finally flush the caches and tlb to ensure that we're in a
1152 	 * consistent state wrt the writebuffer.  This also ensures that
1153 	 * any write-allocated cache lines in the vector page are written
1154 	 * back.  After this point, we can start to touch devices again.
1155 	 */
1156 	local_flush_tlb_all();
1157 	flush_cache_all();
1158 }
1159 
1160 static void __init kmap_init(void)
1161 {
1162 #ifdef CONFIG_HIGHMEM
1163 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1164 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1165 #endif
1166 }
1167 
1168 static void __init map_lowmem(void)
1169 {
1170 	struct memblock_region *reg;
1171 
1172 	/* Map all the lowmem memory banks. */
1173 	for_each_memblock(memory, reg) {
1174 		phys_addr_t start = reg->base;
1175 		phys_addr_t end = start + reg->size;
1176 		struct map_desc map;
1177 
1178 		if (end > arm_lowmem_limit)
1179 			end = arm_lowmem_limit;
1180 		if (start >= end)
1181 			break;
1182 
1183 		map.pfn = __phys_to_pfn(start);
1184 		map.virtual = __phys_to_virt(start);
1185 		map.length = end - start;
1186 		map.type = MT_MEMORY;
1187 
1188 		create_mapping(&map);
1189 	}
1190 }
1191 
1192 /*
1193  * paging_init() sets up the page tables, initialises the zone memory
1194  * maps, and sets up the zero page, bad page and bad page tables.
1195  */
1196 void __init paging_init(struct machine_desc *mdesc)
1197 {
1198 	void *zero_page;
1199 
1200 	memblock_set_current_limit(arm_lowmem_limit);
1201 
1202 	build_mem_type_table();
1203 	prepare_page_table();
1204 	map_lowmem();
1205 	dma_contiguous_remap();
1206 	devicemaps_init(mdesc);
1207 	kmap_init();
1208 
1209 	top_pmd = pmd_off_k(0xffff0000);
1210 
1211 	/* allocate the zero page. */
1212 	zero_page = early_alloc(PAGE_SIZE);
1213 
1214 	bootmem_init();
1215 
1216 	empty_zero_page = virt_to_page(zero_page);
1217 	__flush_dcache_page(NULL, empty_zero_page);
1218 }
1219