xref: /linux/arch/arm/mm/kasan_init.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file contains kasan initialization code for ARM.
4  *
5  * Copyright (c) 2018 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  * Author: Linus Walleij <linus.walleij@linaro.org>
8  */
9 
10 #define pr_fmt(fmt) "kasan: " fmt
11 #include <linux/kasan.h>
12 #include <linux/kernel.h>
13 #include <linux/memblock.h>
14 #include <linux/sched/task.h>
15 #include <linux/start_kernel.h>
16 #include <linux/pgtable.h>
17 #include <asm/cputype.h>
18 #include <asm/highmem.h>
19 #include <asm/mach/map.h>
20 #include <asm/page.h>
21 #include <asm/pgalloc.h>
22 #include <asm/procinfo.h>
23 #include <asm/proc-fns.h>
24 
25 #include "mm.h"
26 
27 static pgd_t tmp_pgd_table[PTRS_PER_PGD] __initdata __aligned(PGD_SIZE);
28 
29 pmd_t tmp_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
30 
31 static __init void *kasan_alloc_block(size_t size)
32 {
33 	return memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
34 				      MEMBLOCK_ALLOC_NOLEAKTRACE, NUMA_NO_NODE);
35 }
36 
37 static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr,
38 				      unsigned long end, bool early)
39 {
40 	unsigned long next;
41 	pte_t *ptep = pte_offset_kernel(pmdp, addr);
42 
43 	do {
44 		pte_t entry;
45 		void *p;
46 
47 		next = addr + PAGE_SIZE;
48 
49 		if (!early) {
50 			if (!pte_none(READ_ONCE(*ptep)))
51 				continue;
52 
53 			p = kasan_alloc_block(PAGE_SIZE);
54 			if (!p) {
55 				panic("%s failed to allocate shadow page for address 0x%lx\n",
56 				      __func__, addr);
57 				return;
58 			}
59 			memset(p, KASAN_SHADOW_INIT, PAGE_SIZE);
60 			entry = pfn_pte(virt_to_pfn(p),
61 					__pgprot(pgprot_val(PAGE_KERNEL)));
62 		} else if (pte_none(READ_ONCE(*ptep))) {
63 			/*
64 			 * The early shadow memory is mapping all KASan
65 			 * operations to one and the same page in memory,
66 			 * "kasan_early_shadow_page" so that the instrumentation
67 			 * will work on a scratch area until we can set up the
68 			 * proper KASan shadow memory.
69 			 */
70 			entry = pfn_pte(virt_to_pfn(kasan_early_shadow_page),
71 					__pgprot(_L_PTE_DEFAULT | L_PTE_DIRTY | L_PTE_XN));
72 		} else {
73 			/*
74 			 * Early shadow mappings are PMD_SIZE aligned, so if the
75 			 * first entry is already set, they must all be set.
76 			 */
77 			return;
78 		}
79 
80 		set_pte_at(&init_mm, addr, ptep, entry);
81 	} while (ptep++, addr = next, addr != end);
82 }
83 
84 /*
85  * The pmd (page middle directory) is only used on LPAE
86  */
87 static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr,
88 				      unsigned long end, bool early)
89 {
90 	unsigned long next;
91 	pmd_t *pmdp = pmd_offset(pudp, addr);
92 
93 	do {
94 		if (pmd_none(*pmdp)) {
95 			/*
96 			 * We attempt to allocate a shadow block for the PMDs
97 			 * used by the PTEs for this address if it isn't already
98 			 * allocated.
99 			 */
100 			void *p = early ? kasan_early_shadow_pte :
101 				kasan_alloc_block(PAGE_SIZE);
102 
103 			if (!p) {
104 				panic("%s failed to allocate shadow block for address 0x%lx\n",
105 				      __func__, addr);
106 				return;
107 			}
108 			pmd_populate_kernel(&init_mm, pmdp, p);
109 			flush_pmd_entry(pmdp);
110 		}
111 
112 		next = pmd_addr_end(addr, end);
113 		kasan_pte_populate(pmdp, addr, next, early);
114 	} while (pmdp++, addr = next, addr != end);
115 }
116 
117 static void __init kasan_pgd_populate(unsigned long addr, unsigned long end,
118 				      bool early)
119 {
120 	unsigned long next;
121 	pgd_t *pgdp;
122 	p4d_t *p4dp;
123 	pud_t *pudp;
124 
125 	pgdp = pgd_offset_k(addr);
126 
127 	do {
128 		/*
129 		 * Allocate and populate the shadow block of p4d folded into
130 		 * pud folded into pmd if it doesn't already exist
131 		 */
132 		if (!early && pgd_none(*pgdp)) {
133 			void *p = kasan_alloc_block(PAGE_SIZE);
134 
135 			if (!p) {
136 				panic("%s failed to allocate shadow block for address 0x%lx\n",
137 				      __func__, addr);
138 				return;
139 			}
140 			pgd_populate(&init_mm, pgdp, p);
141 		}
142 
143 		next = pgd_addr_end(addr, end);
144 		/*
145 		 * We just immediately jump over the p4d and pud page
146 		 * directories since we believe ARM32 will never gain four
147 		 * nor five level page tables.
148 		 */
149 		p4dp = p4d_offset(pgdp, addr);
150 		pudp = pud_offset(p4dp, addr);
151 
152 		kasan_pmd_populate(pudp, addr, next, early);
153 	} while (pgdp++, addr = next, addr != end);
154 }
155 
156 extern struct proc_info_list *lookup_processor_type(unsigned int);
157 
158 void __init kasan_early_init(void)
159 {
160 	struct proc_info_list *list;
161 
162 	/*
163 	 * locate processor in the list of supported processor
164 	 * types.  The linker builds this table for us from the
165 	 * entries in arch/arm/mm/proc-*.S
166 	 */
167 	list = lookup_processor_type(read_cpuid_id());
168 	if (list) {
169 #ifdef MULTI_CPU
170 		processor = *list->proc;
171 #endif
172 	}
173 
174 	BUILD_BUG_ON((KASAN_SHADOW_END - (1UL << 29)) != KASAN_SHADOW_OFFSET);
175 	/*
176 	 * We walk the page table and set all of the shadow memory to point
177 	 * to the scratch page.
178 	 */
179 	kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, true);
180 }
181 
182 static void __init clear_pgds(unsigned long start,
183 			unsigned long end)
184 {
185 	for (; start && start < end; start += PMD_SIZE)
186 		pmd_clear(pmd_off_k(start));
187 }
188 
189 static int __init create_mapping(void *start, void *end)
190 {
191 	void *shadow_start, *shadow_end;
192 
193 	shadow_start = kasan_mem_to_shadow(start);
194 	shadow_end = kasan_mem_to_shadow(end);
195 
196 	pr_info("Mapping kernel virtual memory block: %px-%px at shadow: %px-%px\n",
197 		start, end, shadow_start, shadow_end);
198 
199 	kasan_pgd_populate((unsigned long)shadow_start & PAGE_MASK,
200 			   PAGE_ALIGN((unsigned long)shadow_end), false);
201 	return 0;
202 }
203 
204 void __init kasan_init(void)
205 {
206 	phys_addr_t pa_start, pa_end;
207 	u64 i;
208 
209 	/*
210 	 * We are going to perform proper setup of shadow memory.
211 	 *
212 	 * At first we should unmap early shadow (clear_pgds() call bellow).
213 	 * However, instrumented code can't execute without shadow memory.
214 	 *
215 	 * To keep the early shadow memory MMU tables around while setting up
216 	 * the proper shadow memory, we copy swapper_pg_dir (the initial page
217 	 * table) to tmp_pgd_table and use that to keep the early shadow memory
218 	 * mapped until the full shadow setup is finished. Then we swap back
219 	 * to the proper swapper_pg_dir.
220 	 */
221 
222 	memcpy(tmp_pgd_table, swapper_pg_dir, sizeof(tmp_pgd_table));
223 #ifdef CONFIG_ARM_LPAE
224 	/* We need to be in the same PGD or this won't work */
225 	BUILD_BUG_ON(pgd_index(KASAN_SHADOW_START) !=
226 		     pgd_index(KASAN_SHADOW_END));
227 	memcpy(tmp_pmd_table,
228 	       (void*)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_START)),
229 	       sizeof(tmp_pmd_table));
230 	set_pgd(&tmp_pgd_table[pgd_index(KASAN_SHADOW_START)],
231 		__pgd(__pa(tmp_pmd_table) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
232 #endif
233 	cpu_switch_mm(tmp_pgd_table, &init_mm);
234 	local_flush_tlb_all();
235 
236 	clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
237 
238 	if (!IS_ENABLED(CONFIG_KASAN_VMALLOC))
239 		kasan_populate_early_shadow(kasan_mem_to_shadow((void *)VMALLOC_START),
240 					    kasan_mem_to_shadow((void *)VMALLOC_END));
241 
242 	kasan_populate_early_shadow(kasan_mem_to_shadow((void *)VMALLOC_END),
243 				    kasan_mem_to_shadow((void *)-1UL) + 1);
244 
245 	for_each_mem_range(i, &pa_start, &pa_end) {
246 		void *start = __va(pa_start);
247 		void *end = __va(pa_end);
248 
249 		/* Do not attempt to shadow highmem */
250 		if (pa_start >= arm_lowmem_limit) {
251 			pr_info("Skip highmem block at %pa-%pa\n", &pa_start, &pa_end);
252 			continue;
253 		}
254 		if (pa_end > arm_lowmem_limit) {
255 			pr_info("Truncating shadow for memory block at %pa-%pa to lowmem region at %pa\n",
256 				&pa_start, &pa_end, &arm_lowmem_limit);
257 			end = __va(arm_lowmem_limit);
258 		}
259 		if (start >= end) {
260 			pr_info("Skipping invalid memory block %pa-%pa (virtual %p-%p)\n",
261 				&pa_start, &pa_end, start, end);
262 			continue;
263 		}
264 
265 		create_mapping(start, end);
266 	}
267 
268 	/*
269 	 * 1. The module global variables are in MODULES_VADDR ~ MODULES_END,
270 	 *    so we need to map this area if CONFIG_KASAN_VMALLOC=n. With
271 	 *    VMALLOC support KASAN will manage this region dynamically,
272 	 *    refer to kasan_populate_vmalloc() and ARM's implementation of
273 	 *    module_alloc().
274 	 * 2. PKMAP_BASE ~ PKMAP_BASE+PMD_SIZE's shadow and MODULES_VADDR
275 	 *    ~ MODULES_END's shadow is in the same PMD_SIZE, so we can't
276 	 *    use kasan_populate_zero_shadow.
277 	 */
278 	if (!IS_ENABLED(CONFIG_KASAN_VMALLOC) && IS_ENABLED(CONFIG_MODULES))
279 		create_mapping((void *)MODULES_VADDR, (void *)(MODULES_END));
280 	create_mapping((void *)PKMAP_BASE, (void *)(PKMAP_BASE + PMD_SIZE));
281 
282 	/*
283 	 * KAsan may reuse the contents of kasan_early_shadow_pte directly, so
284 	 * we should make sure that it maps the zero page read-only.
285 	 */
286 	for (i = 0; i < PTRS_PER_PTE; i++)
287 		set_pte_at(&init_mm, KASAN_SHADOW_START + i*PAGE_SIZE,
288 			   &kasan_early_shadow_pte[i],
289 			   pfn_pte(virt_to_pfn(kasan_early_shadow_page),
290 				__pgprot(pgprot_val(PAGE_KERNEL)
291 					 | L_PTE_RDONLY)));
292 
293 	cpu_switch_mm(swapper_pg_dir, &init_mm);
294 	local_flush_tlb_all();
295 
296 	memset(kasan_early_shadow_page, 0, PAGE_SIZE);
297 	pr_info("Kernel address sanitizer initialized\n");
298 	init_task.kasan_depth = 0;
299 }
300