xref: /linux/arch/arm/mm/ioremap.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/ioremap.c
4  *
5  * Re-map IO memory to kernel address space so that we can access it.
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  *
9  * Hacked for ARM by Phil Blundell <philb@gnu.org>
10  * Hacked to allow all architectures to build, and various cleanups
11  * by Russell King
12  *
13  * This allows a driver to remap an arbitrary region of bus memory into
14  * virtual space.  One should *only* use readl, writel, memcpy_toio and
15  * so on with such remapped areas.
16  *
17  * Because the ARM only has a 32-bit address space we can't address the
18  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
19  * allows us to circumvent this restriction by splitting PCI space into
20  * two 2GB chunks and mapping only one at a time into processor memory.
21  * We use MMU protection domains to trap any attempt to access the bank
22  * that is not currently mapped.  (This isn't fully implemented yet.)
23  */
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/mm.h>
27 #include <linux/vmalloc.h>
28 #include <linux/io.h>
29 #include <linux/sizes.h>
30 #include <linux/memblock.h>
31 
32 #include <asm/cp15.h>
33 #include <asm/cputype.h>
34 #include <asm/cacheflush.h>
35 #include <asm/early_ioremap.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlbflush.h>
39 #include <asm/system_info.h>
40 
41 #include <asm/mach/map.h>
42 #include <asm/mach/pci.h>
43 #include "mm.h"
44 
45 
46 LIST_HEAD(static_vmlist);
47 
48 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
49 			size_t size, unsigned int mtype)
50 {
51 	struct static_vm *svm;
52 	struct vm_struct *vm;
53 
54 	list_for_each_entry(svm, &static_vmlist, list) {
55 		vm = &svm->vm;
56 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
57 			continue;
58 		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
59 			continue;
60 
61 		if (vm->phys_addr > paddr ||
62 			paddr + size - 1 > vm->phys_addr + vm->size - 1)
63 			continue;
64 
65 		return svm;
66 	}
67 
68 	return NULL;
69 }
70 
71 struct static_vm *find_static_vm_vaddr(void *vaddr)
72 {
73 	struct static_vm *svm;
74 	struct vm_struct *vm;
75 
76 	list_for_each_entry(svm, &static_vmlist, list) {
77 		vm = &svm->vm;
78 
79 		/* static_vmlist is ascending order */
80 		if (vm->addr > vaddr)
81 			break;
82 
83 		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
84 			return svm;
85 	}
86 
87 	return NULL;
88 }
89 
90 void __init add_static_vm_early(struct static_vm *svm)
91 {
92 	struct static_vm *curr_svm;
93 	struct vm_struct *vm;
94 	void *vaddr;
95 
96 	vm = &svm->vm;
97 	vm_area_add_early(vm);
98 	vaddr = vm->addr;
99 
100 	list_for_each_entry(curr_svm, &static_vmlist, list) {
101 		vm = &curr_svm->vm;
102 
103 		if (vm->addr > vaddr)
104 			break;
105 	}
106 	list_add_tail(&svm->list, &curr_svm->list);
107 }
108 
109 int ioremap_page(unsigned long virt, unsigned long phys,
110 		 const struct mem_type *mtype)
111 {
112 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
113 				  __pgprot(mtype->prot_pte));
114 }
115 EXPORT_SYMBOL(ioremap_page);
116 
117 void __check_vmalloc_seq(struct mm_struct *mm)
118 {
119 	unsigned int seq;
120 
121 	do {
122 		seq = init_mm.context.vmalloc_seq;
123 		memcpy(pgd_offset(mm, VMALLOC_START),
124 		       pgd_offset_k(VMALLOC_START),
125 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
126 					pgd_index(VMALLOC_START)));
127 		mm->context.vmalloc_seq = seq;
128 	} while (seq != init_mm.context.vmalloc_seq);
129 }
130 
131 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
132 /*
133  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
134  * the other CPUs will not see this change until their next context switch.
135  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
136  * which requires the new ioremap'd region to be referenced, the CPU will
137  * reference the _old_ region.
138  *
139  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
140  * mask the size back to 1MB aligned or we will overflow in the loop below.
141  */
142 static void unmap_area_sections(unsigned long virt, unsigned long size)
143 {
144 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
145 	pmd_t *pmdp = pmd_off_k(addr);
146 
147 	do {
148 		pmd_t pmd = *pmdp;
149 
150 		if (!pmd_none(pmd)) {
151 			/*
152 			 * Clear the PMD from the page table, and
153 			 * increment the vmalloc sequence so others
154 			 * notice this change.
155 			 *
156 			 * Note: this is still racy on SMP machines.
157 			 */
158 			pmd_clear(pmdp);
159 			init_mm.context.vmalloc_seq++;
160 
161 			/*
162 			 * Free the page table, if there was one.
163 			 */
164 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
165 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
166 		}
167 
168 		addr += PMD_SIZE;
169 		pmdp += 2;
170 	} while (addr < end);
171 
172 	/*
173 	 * Ensure that the active_mm is up to date - we want to
174 	 * catch any use-after-iounmap cases.
175 	 */
176 	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
177 		__check_vmalloc_seq(current->active_mm);
178 
179 	flush_tlb_kernel_range(virt, end);
180 }
181 
182 static int
183 remap_area_sections(unsigned long virt, unsigned long pfn,
184 		    size_t size, const struct mem_type *type)
185 {
186 	unsigned long addr = virt, end = virt + size;
187 	pmd_t *pmd = pmd_off_k(addr);
188 
189 	/*
190 	 * Remove and free any PTE-based mapping, and
191 	 * sync the current kernel mapping.
192 	 */
193 	unmap_area_sections(virt, size);
194 
195 	do {
196 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
197 		pfn += SZ_1M >> PAGE_SHIFT;
198 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
199 		pfn += SZ_1M >> PAGE_SHIFT;
200 		flush_pmd_entry(pmd);
201 
202 		addr += PMD_SIZE;
203 		pmd += 2;
204 	} while (addr < end);
205 
206 	return 0;
207 }
208 
209 static int
210 remap_area_supersections(unsigned long virt, unsigned long pfn,
211 			 size_t size, const struct mem_type *type)
212 {
213 	unsigned long addr = virt, end = virt + size;
214 	pmd_t *pmd = pmd_off_k(addr);
215 
216 	/*
217 	 * Remove and free any PTE-based mapping, and
218 	 * sync the current kernel mapping.
219 	 */
220 	unmap_area_sections(virt, size);
221 	do {
222 		unsigned long super_pmd_val, i;
223 
224 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
225 				PMD_SECT_SUPER;
226 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
227 
228 		for (i = 0; i < 8; i++) {
229 			pmd[0] = __pmd(super_pmd_val);
230 			pmd[1] = __pmd(super_pmd_val);
231 			flush_pmd_entry(pmd);
232 
233 			addr += PMD_SIZE;
234 			pmd += 2;
235 		}
236 
237 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
238 	} while (addr < end);
239 
240 	return 0;
241 }
242 #endif
243 
244 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
245 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
246 {
247 	const struct mem_type *type;
248 	int err;
249 	unsigned long addr;
250 	struct vm_struct *area;
251 	phys_addr_t paddr = __pfn_to_phys(pfn);
252 
253 #ifndef CONFIG_ARM_LPAE
254 	/*
255 	 * High mappings must be supersection aligned
256 	 */
257 	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
258 		return NULL;
259 #endif
260 
261 	type = get_mem_type(mtype);
262 	if (!type)
263 		return NULL;
264 
265 	/*
266 	 * Page align the mapping size, taking account of any offset.
267 	 */
268 	size = PAGE_ALIGN(offset + size);
269 
270 	/*
271 	 * Try to reuse one of the static mapping whenever possible.
272 	 */
273 	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
274 		struct static_vm *svm;
275 
276 		svm = find_static_vm_paddr(paddr, size, mtype);
277 		if (svm) {
278 			addr = (unsigned long)svm->vm.addr;
279 			addr += paddr - svm->vm.phys_addr;
280 			return (void __iomem *) (offset + addr);
281 		}
282 	}
283 
284 	/*
285 	 * Don't allow RAM to be mapped with mismatched attributes - this
286 	 * causes problems with ARMv6+
287 	 */
288 	if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
289 		    mtype != MT_MEMORY_RW))
290 		return NULL;
291 
292 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
293  	if (!area)
294  		return NULL;
295  	addr = (unsigned long)area->addr;
296 	area->phys_addr = paddr;
297 
298 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
299 	if (DOMAIN_IO == 0 &&
300 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
301 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
302 	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
303 		area->flags |= VM_ARM_SECTION_MAPPING;
304 		err = remap_area_supersections(addr, pfn, size, type);
305 	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
306 		area->flags |= VM_ARM_SECTION_MAPPING;
307 		err = remap_area_sections(addr, pfn, size, type);
308 	} else
309 #endif
310 		err = ioremap_page_range(addr, addr + size, paddr,
311 					 __pgprot(type->prot_pte));
312 
313 	if (err) {
314  		vunmap((void *)addr);
315  		return NULL;
316  	}
317 
318 	flush_cache_vmap(addr, addr + size);
319 	return (void __iomem *) (offset + addr);
320 }
321 
322 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
323 	unsigned int mtype, void *caller)
324 {
325 	phys_addr_t last_addr;
326  	unsigned long offset = phys_addr & ~PAGE_MASK;
327  	unsigned long pfn = __phys_to_pfn(phys_addr);
328 
329  	/*
330  	 * Don't allow wraparound or zero size
331 	 */
332 	last_addr = phys_addr + size - 1;
333 	if (!size || last_addr < phys_addr)
334 		return NULL;
335 
336 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
337 			caller);
338 }
339 
340 /*
341  * Remap an arbitrary physical address space into the kernel virtual
342  * address space. Needed when the kernel wants to access high addresses
343  * directly.
344  *
345  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
346  * have to convert them into an offset in a page-aligned mapping, but the
347  * caller shouldn't need to know that small detail.
348  */
349 void __iomem *
350 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
351 		  unsigned int mtype)
352 {
353 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
354 					__builtin_return_address(0));
355 }
356 EXPORT_SYMBOL(__arm_ioremap_pfn);
357 
358 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
359 				      unsigned int, void *) =
360 	__arm_ioremap_caller;
361 
362 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
363 {
364 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
365 				   __builtin_return_address(0));
366 }
367 EXPORT_SYMBOL(ioremap);
368 
369 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
370 {
371 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
372 				   __builtin_return_address(0));
373 }
374 EXPORT_SYMBOL(ioremap_cache);
375 
376 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
377 {
378 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
379 				   __builtin_return_address(0));
380 }
381 EXPORT_SYMBOL(ioremap_wc);
382 
383 /*
384  * Remap an arbitrary physical address space into the kernel virtual
385  * address space as memory. Needed when the kernel wants to execute
386  * code in external memory. This is needed for reprogramming source
387  * clocks that would affect normal memory for example. Please see
388  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
389  */
390 void __iomem *
391 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
392 {
393 	unsigned int mtype;
394 
395 	if (cached)
396 		mtype = MT_MEMORY_RWX;
397 	else
398 		mtype = MT_MEMORY_RWX_NONCACHED;
399 
400 	return __arm_ioremap_caller(phys_addr, size, mtype,
401 			__builtin_return_address(0));
402 }
403 
404 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
405 {
406 	return (__force void *)arch_ioremap_caller(phys_addr, size,
407 						   MT_MEMORY_RW,
408 						   __builtin_return_address(0));
409 }
410 
411 void __iounmap(volatile void __iomem *io_addr)
412 {
413 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
414 	struct static_vm *svm;
415 
416 	/* If this is a static mapping, we must leave it alone */
417 	svm = find_static_vm_vaddr(addr);
418 	if (svm)
419 		return;
420 
421 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
422 	{
423 		struct vm_struct *vm;
424 
425 		vm = find_vm_area(addr);
426 
427 		/*
428 		 * If this is a section based mapping we need to handle it
429 		 * specially as the VM subsystem does not know how to handle
430 		 * such a beast.
431 		 */
432 		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
433 			unmap_area_sections((unsigned long)vm->addr, vm->size);
434 	}
435 #endif
436 
437 	vunmap(addr);
438 }
439 
440 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
441 
442 void iounmap(volatile void __iomem *cookie)
443 {
444 	arch_iounmap(cookie);
445 }
446 EXPORT_SYMBOL(iounmap);
447 
448 #ifdef CONFIG_PCI
449 static int pci_ioremap_mem_type = MT_DEVICE;
450 
451 void pci_ioremap_set_mem_type(int mem_type)
452 {
453 	pci_ioremap_mem_type = mem_type;
454 }
455 
456 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
457 {
458 	BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
459 
460 	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
461 				  PCI_IO_VIRT_BASE + offset + SZ_64K,
462 				  phys_addr,
463 				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
464 }
465 EXPORT_SYMBOL_GPL(pci_ioremap_io);
466 
467 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
468 {
469 	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
470 				   __builtin_return_address(0));
471 }
472 EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
473 #endif
474 
475 /*
476  * Must be called after early_fixmap_init
477  */
478 void __init early_ioremap_init(void)
479 {
480 	early_ioremap_setup();
481 }
482