xref: /linux/arch/arm/mm/ioremap.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/ioremap.c
4  *
5  * Re-map IO memory to kernel address space so that we can access it.
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  *
9  * Hacked for ARM by Phil Blundell <philb@gnu.org>
10  * Hacked to allow all architectures to build, and various cleanups
11  * by Russell King
12  *
13  * This allows a driver to remap an arbitrary region of bus memory into
14  * virtual space.  One should *only* use readl, writel, memcpy_toio and
15  * so on with such remapped areas.
16  *
17  * Because the ARM only has a 32-bit address space we can't address the
18  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
19  * allows us to circumvent this restriction by splitting PCI space into
20  * two 2GB chunks and mapping only one at a time into processor memory.
21  * We use MMU protection domains to trap any attempt to access the bank
22  * that is not currently mapped.  (This isn't fully implemented yet.)
23  */
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/kasan.h>
27 #include <linux/mm.h>
28 #include <linux/vmalloc.h>
29 #include <linux/io.h>
30 #include <linux/sizes.h>
31 #include <linux/memblock.h>
32 
33 #include <asm/cp15.h>
34 #include <asm/cputype.h>
35 #include <asm/cacheflush.h>
36 #include <asm/early_ioremap.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlbflush.h>
40 #include <asm/set_memory.h>
41 #include <asm/system_info.h>
42 
43 #include <asm/mach/map.h>
44 #include <asm/mach/pci.h>
45 #include "mm.h"
46 
47 
48 LIST_HEAD(static_vmlist);
49 
50 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
51 			size_t size, unsigned int mtype)
52 {
53 	struct static_vm *svm;
54 	struct vm_struct *vm;
55 
56 	list_for_each_entry(svm, &static_vmlist, list) {
57 		vm = &svm->vm;
58 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
59 			continue;
60 		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
61 			continue;
62 
63 		if (vm->phys_addr > paddr ||
64 			paddr + size - 1 > vm->phys_addr + vm->size - 1)
65 			continue;
66 
67 		return svm;
68 	}
69 
70 	return NULL;
71 }
72 
73 struct static_vm *find_static_vm_vaddr(void *vaddr)
74 {
75 	struct static_vm *svm;
76 	struct vm_struct *vm;
77 
78 	list_for_each_entry(svm, &static_vmlist, list) {
79 		vm = &svm->vm;
80 
81 		/* static_vmlist is ascending order */
82 		if (vm->addr > vaddr)
83 			break;
84 
85 		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
86 			return svm;
87 	}
88 
89 	return NULL;
90 }
91 
92 void __init add_static_vm_early(struct static_vm *svm)
93 {
94 	struct static_vm *curr_svm;
95 	struct vm_struct *vm;
96 	void *vaddr;
97 
98 	vm = &svm->vm;
99 	vm_area_add_early(vm);
100 	vaddr = vm->addr;
101 
102 	list_for_each_entry(curr_svm, &static_vmlist, list) {
103 		vm = &curr_svm->vm;
104 
105 		if (vm->addr > vaddr)
106 			break;
107 	}
108 	list_add_tail(&svm->list, &curr_svm->list);
109 }
110 
111 int ioremap_page(unsigned long virt, unsigned long phys,
112 		 const struct mem_type *mtype)
113 {
114 	return vmap_page_range(virt, virt + PAGE_SIZE, phys,
115 			       __pgprot(mtype->prot_pte));
116 }
117 EXPORT_SYMBOL(ioremap_page);
118 
119 #ifdef CONFIG_KASAN
120 static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
121 {
122 	return (unsigned long)kasan_mem_to_shadow((void *)addr);
123 }
124 #else
125 static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
126 {
127 	return 0;
128 }
129 #endif
130 
131 static void memcpy_pgd(struct mm_struct *mm, unsigned long start,
132 		       unsigned long end)
133 {
134 	end = ALIGN(end, PGDIR_SIZE);
135 	memcpy(pgd_offset(mm, start), pgd_offset_k(start),
136 	       sizeof(pgd_t) * (pgd_index(end) - pgd_index(start)));
137 }
138 
139 void __check_vmalloc_seq(struct mm_struct *mm)
140 {
141 	int seq;
142 
143 	do {
144 		seq = atomic_read_acquire(&init_mm.context.vmalloc_seq);
145 		memcpy_pgd(mm, VMALLOC_START, VMALLOC_END);
146 		if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) {
147 			unsigned long start =
148 				arm_kasan_mem_to_shadow(VMALLOC_START);
149 			unsigned long end =
150 				arm_kasan_mem_to_shadow(VMALLOC_END);
151 			memcpy_pgd(mm, start, end);
152 		}
153 		/*
154 		 * Use a store-release so that other CPUs that observe the
155 		 * counter's new value are guaranteed to see the results of the
156 		 * memcpy as well.
157 		 */
158 		atomic_set_release(&mm->context.vmalloc_seq, seq);
159 	} while (seq != atomic_read(&init_mm.context.vmalloc_seq));
160 }
161 
162 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
163 /*
164  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
165  * the other CPUs will not see this change until their next context switch.
166  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
167  * which requires the new ioremap'd region to be referenced, the CPU will
168  * reference the _old_ region.
169  *
170  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
171  * mask the size back to 1MB aligned or we will overflow in the loop below.
172  */
173 static void unmap_area_sections(unsigned long virt, unsigned long size)
174 {
175 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
176 	pmd_t *pmdp = pmd_off_k(addr);
177 
178 	do {
179 		pmd_t pmd = *pmdp;
180 
181 		if (!pmd_none(pmd)) {
182 			/*
183 			 * Clear the PMD from the page table, and
184 			 * increment the vmalloc sequence so others
185 			 * notice this change.
186 			 *
187 			 * Note: this is still racy on SMP machines.
188 			 */
189 			pmd_clear(pmdp);
190 			atomic_inc_return_release(&init_mm.context.vmalloc_seq);
191 
192 			/*
193 			 * Free the page table, if there was one.
194 			 */
195 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
196 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
197 		}
198 
199 		addr += PMD_SIZE;
200 		pmdp += 2;
201 	} while (addr < end);
202 
203 	/*
204 	 * Ensure that the active_mm is up to date - we want to
205 	 * catch any use-after-iounmap cases.
206 	 */
207 	check_vmalloc_seq(current->active_mm);
208 
209 	flush_tlb_kernel_range(virt, end);
210 }
211 
212 static int
213 remap_area_sections(unsigned long virt, unsigned long pfn,
214 		    size_t size, const struct mem_type *type)
215 {
216 	unsigned long addr = virt, end = virt + size;
217 	pmd_t *pmd = pmd_off_k(addr);
218 
219 	/*
220 	 * Remove and free any PTE-based mapping, and
221 	 * sync the current kernel mapping.
222 	 */
223 	unmap_area_sections(virt, size);
224 
225 	do {
226 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
227 		pfn += SZ_1M >> PAGE_SHIFT;
228 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
229 		pfn += SZ_1M >> PAGE_SHIFT;
230 		flush_pmd_entry(pmd);
231 
232 		addr += PMD_SIZE;
233 		pmd += 2;
234 	} while (addr < end);
235 
236 	return 0;
237 }
238 
239 static int
240 remap_area_supersections(unsigned long virt, unsigned long pfn,
241 			 size_t size, const struct mem_type *type)
242 {
243 	unsigned long addr = virt, end = virt + size;
244 	pmd_t *pmd = pmd_off_k(addr);
245 
246 	/*
247 	 * Remove and free any PTE-based mapping, and
248 	 * sync the current kernel mapping.
249 	 */
250 	unmap_area_sections(virt, size);
251 	do {
252 		unsigned long super_pmd_val, i;
253 
254 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
255 				PMD_SECT_SUPER;
256 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
257 
258 		for (i = 0; i < 8; i++) {
259 			pmd[0] = __pmd(super_pmd_val);
260 			pmd[1] = __pmd(super_pmd_val);
261 			flush_pmd_entry(pmd);
262 
263 			addr += PMD_SIZE;
264 			pmd += 2;
265 		}
266 
267 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
268 	} while (addr < end);
269 
270 	return 0;
271 }
272 #endif
273 
274 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
275 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
276 {
277 	const struct mem_type *type;
278 	int err;
279 	unsigned long addr;
280 	struct vm_struct *area;
281 	phys_addr_t paddr = __pfn_to_phys(pfn);
282 
283 #ifndef CONFIG_ARM_LPAE
284 	/*
285 	 * High mappings must be supersection aligned
286 	 */
287 	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
288 		return NULL;
289 #endif
290 
291 	type = get_mem_type(mtype);
292 	if (!type)
293 		return NULL;
294 
295 	/*
296 	 * Page align the mapping size, taking account of any offset.
297 	 */
298 	size = PAGE_ALIGN(offset + size);
299 
300 	/*
301 	 * Try to reuse one of the static mapping whenever possible.
302 	 */
303 	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
304 		struct static_vm *svm;
305 
306 		svm = find_static_vm_paddr(paddr, size, mtype);
307 		if (svm) {
308 			addr = (unsigned long)svm->vm.addr;
309 			addr += paddr - svm->vm.phys_addr;
310 			return (void __iomem *) (offset + addr);
311 		}
312 	}
313 
314 	/*
315 	 * Don't allow RAM to be mapped with mismatched attributes - this
316 	 * causes problems with ARMv6+
317 	 */
318 	if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
319 		    mtype != MT_MEMORY_RW))
320 		return NULL;
321 
322 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
323  	if (!area)
324  		return NULL;
325  	addr = (unsigned long)area->addr;
326 	area->phys_addr = paddr;
327 
328 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
329 	if (DOMAIN_IO == 0 &&
330 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
331 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
332 	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
333 		area->flags |= VM_ARM_SECTION_MAPPING;
334 		err = remap_area_supersections(addr, pfn, size, type);
335 	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
336 		area->flags |= VM_ARM_SECTION_MAPPING;
337 		err = remap_area_sections(addr, pfn, size, type);
338 	} else
339 #endif
340 		err = ioremap_page_range(addr, addr + size, paddr,
341 					 __pgprot(type->prot_pte));
342 
343 	if (err) {
344  		vunmap((void *)addr);
345  		return NULL;
346  	}
347 
348 	flush_cache_vmap(addr, addr + size);
349 	return (void __iomem *) (offset + addr);
350 }
351 
352 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
353 	unsigned int mtype, void *caller)
354 {
355 	phys_addr_t last_addr;
356  	unsigned long offset = phys_addr & ~PAGE_MASK;
357  	unsigned long pfn = __phys_to_pfn(phys_addr);
358 
359  	/*
360  	 * Don't allow wraparound or zero size
361 	 */
362 	last_addr = phys_addr + size - 1;
363 	if (!size || last_addr < phys_addr)
364 		return NULL;
365 
366 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
367 			caller);
368 }
369 
370 /*
371  * Remap an arbitrary physical address space into the kernel virtual
372  * address space. Needed when the kernel wants to access high addresses
373  * directly.
374  *
375  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
376  * have to convert them into an offset in a page-aligned mapping, but the
377  * caller shouldn't need to know that small detail.
378  */
379 void __iomem *
380 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
381 		  unsigned int mtype)
382 {
383 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
384 					__builtin_return_address(0));
385 }
386 EXPORT_SYMBOL(__arm_ioremap_pfn);
387 
388 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
389 				      unsigned int, void *) =
390 	__arm_ioremap_caller;
391 
392 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
393 {
394 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
395 				   __builtin_return_address(0));
396 }
397 EXPORT_SYMBOL(ioremap);
398 
399 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
400 {
401 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
402 				   __builtin_return_address(0));
403 }
404 EXPORT_SYMBOL(ioremap_cache);
405 
406 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
407 {
408 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
409 				   __builtin_return_address(0));
410 }
411 EXPORT_SYMBOL(ioremap_wc);
412 
413 /*
414  * Remap an arbitrary physical address space into the kernel virtual
415  * address space as memory. Needed when the kernel wants to execute
416  * code in external memory. This is needed for reprogramming source
417  * clocks that would affect normal memory for example. Please see
418  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
419  */
420 void __iomem *
421 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
422 {
423 	unsigned int mtype;
424 
425 	if (cached)
426 		mtype = MT_MEMORY_RWX;
427 	else
428 		mtype = MT_MEMORY_RWX_NONCACHED;
429 
430 	return __arm_ioremap_caller(phys_addr, size, mtype,
431 			__builtin_return_address(0));
432 }
433 
434 void __arm_iomem_set_ro(void __iomem *ptr, size_t size)
435 {
436 	set_memory_ro((unsigned long)ptr, PAGE_ALIGN(size) / PAGE_SIZE);
437 }
438 
439 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
440 {
441 	return (__force void *)arch_ioremap_caller(phys_addr, size,
442 						   MT_MEMORY_RW,
443 						   __builtin_return_address(0));
444 }
445 
446 void iounmap(volatile void __iomem *io_addr)
447 {
448 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
449 	struct static_vm *svm;
450 
451 	/* If this is a static mapping, we must leave it alone */
452 	svm = find_static_vm_vaddr(addr);
453 	if (svm)
454 		return;
455 
456 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
457 	{
458 		struct vm_struct *vm;
459 
460 		vm = find_vm_area(addr);
461 
462 		/*
463 		 * If this is a section based mapping we need to handle it
464 		 * specially as the VM subsystem does not know how to handle
465 		 * such a beast.
466 		 */
467 		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
468 			unmap_area_sections((unsigned long)vm->addr, vm->size);
469 	}
470 #endif
471 
472 	vunmap(addr);
473 }
474 EXPORT_SYMBOL(iounmap);
475 
476 #if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA)
477 static int pci_ioremap_mem_type = MT_DEVICE;
478 
479 void pci_ioremap_set_mem_type(int mem_type)
480 {
481 	pci_ioremap_mem_type = mem_type;
482 }
483 
484 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
485 {
486 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
487 
488 	if (!(res->flags & IORESOURCE_IO))
489 		return -EINVAL;
490 
491 	if (res->end > IO_SPACE_LIMIT)
492 		return -EINVAL;
493 
494 	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
495 			       __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
496 }
497 EXPORT_SYMBOL(pci_remap_iospace);
498 
499 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
500 {
501 	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
502 				   __builtin_return_address(0));
503 }
504 EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
505 #endif
506 
507 /*
508  * Must be called after early_fixmap_init
509  */
510 void __init early_ioremap_init(void)
511 {
512 	early_ioremap_setup();
513 }
514 
515 bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
516 				 unsigned long flags)
517 {
518 	unsigned long pfn = PHYS_PFN(offset);
519 
520 	return memblock_is_map_memory(pfn);
521 }
522