1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/ioremap.c 4 * 5 * Re-map IO memory to kernel address space so that we can access it. 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 * 9 * Hacked for ARM by Phil Blundell <philb@gnu.org> 10 * Hacked to allow all architectures to build, and various cleanups 11 * by Russell King 12 * 13 * This allows a driver to remap an arbitrary region of bus memory into 14 * virtual space. One should *only* use readl, writel, memcpy_toio and 15 * so on with such remapped areas. 16 * 17 * Because the ARM only has a 32-bit address space we can't address the 18 * whole of the (physical) PCI space at once. PCI huge-mode addressing 19 * allows us to circumvent this restriction by splitting PCI space into 20 * two 2GB chunks and mapping only one at a time into processor memory. 21 * We use MMU protection domains to trap any attempt to access the bank 22 * that is not currently mapped. (This isn't fully implemented yet.) 23 */ 24 #include <linux/module.h> 25 #include <linux/errno.h> 26 #include <linux/mm.h> 27 #include <linux/vmalloc.h> 28 #include <linux/io.h> 29 #include <linux/sizes.h> 30 31 #include <asm/cp15.h> 32 #include <asm/cputype.h> 33 #include <asm/cacheflush.h> 34 #include <asm/early_ioremap.h> 35 #include <asm/mmu_context.h> 36 #include <asm/pgalloc.h> 37 #include <asm/tlbflush.h> 38 #include <asm/system_info.h> 39 40 #include <asm/mach/map.h> 41 #include <asm/mach/pci.h> 42 #include "mm.h" 43 44 45 LIST_HEAD(static_vmlist); 46 47 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr, 48 size_t size, unsigned int mtype) 49 { 50 struct static_vm *svm; 51 struct vm_struct *vm; 52 53 list_for_each_entry(svm, &static_vmlist, list) { 54 vm = &svm->vm; 55 if (!(vm->flags & VM_ARM_STATIC_MAPPING)) 56 continue; 57 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype)) 58 continue; 59 60 if (vm->phys_addr > paddr || 61 paddr + size - 1 > vm->phys_addr + vm->size - 1) 62 continue; 63 64 return svm; 65 } 66 67 return NULL; 68 } 69 70 struct static_vm *find_static_vm_vaddr(void *vaddr) 71 { 72 struct static_vm *svm; 73 struct vm_struct *vm; 74 75 list_for_each_entry(svm, &static_vmlist, list) { 76 vm = &svm->vm; 77 78 /* static_vmlist is ascending order */ 79 if (vm->addr > vaddr) 80 break; 81 82 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr) 83 return svm; 84 } 85 86 return NULL; 87 } 88 89 void __init add_static_vm_early(struct static_vm *svm) 90 { 91 struct static_vm *curr_svm; 92 struct vm_struct *vm; 93 void *vaddr; 94 95 vm = &svm->vm; 96 vm_area_add_early(vm); 97 vaddr = vm->addr; 98 99 list_for_each_entry(curr_svm, &static_vmlist, list) { 100 vm = &curr_svm->vm; 101 102 if (vm->addr > vaddr) 103 break; 104 } 105 list_add_tail(&svm->list, &curr_svm->list); 106 } 107 108 int ioremap_page(unsigned long virt, unsigned long phys, 109 const struct mem_type *mtype) 110 { 111 return ioremap_page_range(virt, virt + PAGE_SIZE, phys, 112 __pgprot(mtype->prot_pte)); 113 } 114 EXPORT_SYMBOL(ioremap_page); 115 116 void __check_vmalloc_seq(struct mm_struct *mm) 117 { 118 unsigned int seq; 119 120 do { 121 seq = init_mm.context.vmalloc_seq; 122 memcpy(pgd_offset(mm, VMALLOC_START), 123 pgd_offset_k(VMALLOC_START), 124 sizeof(pgd_t) * (pgd_index(VMALLOC_END) - 125 pgd_index(VMALLOC_START))); 126 mm->context.vmalloc_seq = seq; 127 } while (seq != init_mm.context.vmalloc_seq); 128 } 129 130 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 131 /* 132 * Section support is unsafe on SMP - If you iounmap and ioremap a region, 133 * the other CPUs will not see this change until their next context switch. 134 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs 135 * which requires the new ioremap'd region to be referenced, the CPU will 136 * reference the _old_ region. 137 * 138 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to 139 * mask the size back to 1MB aligned or we will overflow in the loop below. 140 */ 141 static void unmap_area_sections(unsigned long virt, unsigned long size) 142 { 143 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1)); 144 pgd_t *pgd; 145 pud_t *pud; 146 pmd_t *pmdp; 147 148 flush_cache_vunmap(addr, end); 149 pgd = pgd_offset_k(addr); 150 pud = pud_offset(pgd, addr); 151 pmdp = pmd_offset(pud, addr); 152 do { 153 pmd_t pmd = *pmdp; 154 155 if (!pmd_none(pmd)) { 156 /* 157 * Clear the PMD from the page table, and 158 * increment the vmalloc sequence so others 159 * notice this change. 160 * 161 * Note: this is still racy on SMP machines. 162 */ 163 pmd_clear(pmdp); 164 init_mm.context.vmalloc_seq++; 165 166 /* 167 * Free the page table, if there was one. 168 */ 169 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE) 170 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd)); 171 } 172 173 addr += PMD_SIZE; 174 pmdp += 2; 175 } while (addr < end); 176 177 /* 178 * Ensure that the active_mm is up to date - we want to 179 * catch any use-after-iounmap cases. 180 */ 181 if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq) 182 __check_vmalloc_seq(current->active_mm); 183 184 flush_tlb_kernel_range(virt, end); 185 } 186 187 static int 188 remap_area_sections(unsigned long virt, unsigned long pfn, 189 size_t size, const struct mem_type *type) 190 { 191 unsigned long addr = virt, end = virt + size; 192 pgd_t *pgd; 193 pud_t *pud; 194 pmd_t *pmd; 195 196 /* 197 * Remove and free any PTE-based mapping, and 198 * sync the current kernel mapping. 199 */ 200 unmap_area_sections(virt, size); 201 202 pgd = pgd_offset_k(addr); 203 pud = pud_offset(pgd, addr); 204 pmd = pmd_offset(pud, addr); 205 do { 206 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); 207 pfn += SZ_1M >> PAGE_SHIFT; 208 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); 209 pfn += SZ_1M >> PAGE_SHIFT; 210 flush_pmd_entry(pmd); 211 212 addr += PMD_SIZE; 213 pmd += 2; 214 } while (addr < end); 215 216 return 0; 217 } 218 219 static int 220 remap_area_supersections(unsigned long virt, unsigned long pfn, 221 size_t size, const struct mem_type *type) 222 { 223 unsigned long addr = virt, end = virt + size; 224 pgd_t *pgd; 225 pud_t *pud; 226 pmd_t *pmd; 227 228 /* 229 * Remove and free any PTE-based mapping, and 230 * sync the current kernel mapping. 231 */ 232 unmap_area_sections(virt, size); 233 234 pgd = pgd_offset_k(virt); 235 pud = pud_offset(pgd, addr); 236 pmd = pmd_offset(pud, addr); 237 do { 238 unsigned long super_pmd_val, i; 239 240 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect | 241 PMD_SECT_SUPER; 242 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20; 243 244 for (i = 0; i < 8; i++) { 245 pmd[0] = __pmd(super_pmd_val); 246 pmd[1] = __pmd(super_pmd_val); 247 flush_pmd_entry(pmd); 248 249 addr += PMD_SIZE; 250 pmd += 2; 251 } 252 253 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT; 254 } while (addr < end); 255 256 return 0; 257 } 258 #endif 259 260 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn, 261 unsigned long offset, size_t size, unsigned int mtype, void *caller) 262 { 263 const struct mem_type *type; 264 int err; 265 unsigned long addr; 266 struct vm_struct *area; 267 phys_addr_t paddr = __pfn_to_phys(pfn); 268 269 #ifndef CONFIG_ARM_LPAE 270 /* 271 * High mappings must be supersection aligned 272 */ 273 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK)) 274 return NULL; 275 #endif 276 277 type = get_mem_type(mtype); 278 if (!type) 279 return NULL; 280 281 /* 282 * Page align the mapping size, taking account of any offset. 283 */ 284 size = PAGE_ALIGN(offset + size); 285 286 /* 287 * Try to reuse one of the static mapping whenever possible. 288 */ 289 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) { 290 struct static_vm *svm; 291 292 svm = find_static_vm_paddr(paddr, size, mtype); 293 if (svm) { 294 addr = (unsigned long)svm->vm.addr; 295 addr += paddr - svm->vm.phys_addr; 296 return (void __iomem *) (offset + addr); 297 } 298 } 299 300 /* 301 * Don't allow RAM to be mapped with mismatched attributes - this 302 * causes problems with ARMv6+ 303 */ 304 if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW)) 305 return NULL; 306 307 area = get_vm_area_caller(size, VM_IOREMAP, caller); 308 if (!area) 309 return NULL; 310 addr = (unsigned long)area->addr; 311 area->phys_addr = paddr; 312 313 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 314 if (DOMAIN_IO == 0 && 315 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) || 316 cpu_is_xsc3()) && pfn >= 0x100000 && 317 !((paddr | size | addr) & ~SUPERSECTION_MASK)) { 318 area->flags |= VM_ARM_SECTION_MAPPING; 319 err = remap_area_supersections(addr, pfn, size, type); 320 } else if (!((paddr | size | addr) & ~PMD_MASK)) { 321 area->flags |= VM_ARM_SECTION_MAPPING; 322 err = remap_area_sections(addr, pfn, size, type); 323 } else 324 #endif 325 err = ioremap_page_range(addr, addr + size, paddr, 326 __pgprot(type->prot_pte)); 327 328 if (err) { 329 vunmap((void *)addr); 330 return NULL; 331 } 332 333 flush_cache_vmap(addr, addr + size); 334 return (void __iomem *) (offset + addr); 335 } 336 337 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, 338 unsigned int mtype, void *caller) 339 { 340 phys_addr_t last_addr; 341 unsigned long offset = phys_addr & ~PAGE_MASK; 342 unsigned long pfn = __phys_to_pfn(phys_addr); 343 344 /* 345 * Don't allow wraparound or zero size 346 */ 347 last_addr = phys_addr + size - 1; 348 if (!size || last_addr < phys_addr) 349 return NULL; 350 351 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype, 352 caller); 353 } 354 355 /* 356 * Remap an arbitrary physical address space into the kernel virtual 357 * address space. Needed when the kernel wants to access high addresses 358 * directly. 359 * 360 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 361 * have to convert them into an offset in a page-aligned mapping, but the 362 * caller shouldn't need to know that small detail. 363 */ 364 void __iomem * 365 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size, 366 unsigned int mtype) 367 { 368 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype, 369 __builtin_return_address(0)); 370 } 371 EXPORT_SYMBOL(__arm_ioremap_pfn); 372 373 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, 374 unsigned int, void *) = 375 __arm_ioremap_caller; 376 377 void __iomem *ioremap(resource_size_t res_cookie, size_t size) 378 { 379 return arch_ioremap_caller(res_cookie, size, MT_DEVICE, 380 __builtin_return_address(0)); 381 } 382 EXPORT_SYMBOL(ioremap); 383 384 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size) 385 __alias(ioremap_cached); 386 387 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size) 388 { 389 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED, 390 __builtin_return_address(0)); 391 } 392 EXPORT_SYMBOL(ioremap_cache); 393 EXPORT_SYMBOL(ioremap_cached); 394 395 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size) 396 { 397 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC, 398 __builtin_return_address(0)); 399 } 400 EXPORT_SYMBOL(ioremap_wc); 401 402 /* 403 * Remap an arbitrary physical address space into the kernel virtual 404 * address space as memory. Needed when the kernel wants to execute 405 * code in external memory. This is needed for reprogramming source 406 * clocks that would affect normal memory for example. Please see 407 * CONFIG_GENERIC_ALLOCATOR for allocating external memory. 408 */ 409 void __iomem * 410 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached) 411 { 412 unsigned int mtype; 413 414 if (cached) 415 mtype = MT_MEMORY_RWX; 416 else 417 mtype = MT_MEMORY_RWX_NONCACHED; 418 419 return __arm_ioremap_caller(phys_addr, size, mtype, 420 __builtin_return_address(0)); 421 } 422 423 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size) 424 { 425 return (__force void *)arch_ioremap_caller(phys_addr, size, 426 MT_MEMORY_RW, 427 __builtin_return_address(0)); 428 } 429 430 void __iounmap(volatile void __iomem *io_addr) 431 { 432 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr); 433 struct static_vm *svm; 434 435 /* If this is a static mapping, we must leave it alone */ 436 svm = find_static_vm_vaddr(addr); 437 if (svm) 438 return; 439 440 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 441 { 442 struct vm_struct *vm; 443 444 vm = find_vm_area(addr); 445 446 /* 447 * If this is a section based mapping we need to handle it 448 * specially as the VM subsystem does not know how to handle 449 * such a beast. 450 */ 451 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING)) 452 unmap_area_sections((unsigned long)vm->addr, vm->size); 453 } 454 #endif 455 456 vunmap(addr); 457 } 458 459 void (*arch_iounmap)(volatile void __iomem *) = __iounmap; 460 461 void iounmap(volatile void __iomem *cookie) 462 { 463 arch_iounmap(cookie); 464 } 465 EXPORT_SYMBOL(iounmap); 466 467 #ifdef CONFIG_PCI 468 static int pci_ioremap_mem_type = MT_DEVICE; 469 470 void pci_ioremap_set_mem_type(int mem_type) 471 { 472 pci_ioremap_mem_type = mem_type; 473 } 474 475 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr) 476 { 477 BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT); 478 479 return ioremap_page_range(PCI_IO_VIRT_BASE + offset, 480 PCI_IO_VIRT_BASE + offset + SZ_64K, 481 phys_addr, 482 __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte)); 483 } 484 EXPORT_SYMBOL_GPL(pci_ioremap_io); 485 486 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size) 487 { 488 return arch_ioremap_caller(res_cookie, size, MT_UNCACHED, 489 __builtin_return_address(0)); 490 } 491 EXPORT_SYMBOL_GPL(pci_remap_cfgspace); 492 #endif 493 494 /* 495 * Must be called after early_fixmap_init 496 */ 497 void __init early_ioremap_init(void) 498 { 499 early_ioremap_setup(); 500 } 501