xref: /linux/arch/arm/mm/ioremap.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/arch/arm/mm/ioremap.c
3  *
4  * Re-map IO memory to kernel address space so that we can access it.
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  *
8  * Hacked for ARM by Phil Blundell <philb@gnu.org>
9  * Hacked to allow all architectures to build, and various cleanups
10  * by Russell King
11  *
12  * This allows a driver to remap an arbitrary region of bus memory into
13  * virtual space.  One should *only* use readl, writel, memcpy_toio and
14  * so on with such remapped areas.
15  *
16  * Because the ARM only has a 32-bit address space we can't address the
17  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
18  * allows us to circumvent this restriction by splitting PCI space into
19  * two 2GB chunks and mapping only one at a time into processor memory.
20  * We use MMU protection domains to trap any attempt to access the bank
21  * that is not currently mapped.  (This isn't fully implemented yet.)
22  */
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 
28 #include <asm/cacheflush.h>
29 #include <asm/io.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgalloc.h>
32 #include <asm/tlbflush.h>
33 #include <asm/sizes.h>
34 
35 /*
36  * Used by ioremap() and iounmap() code to mark (super)section-mapped
37  * I/O regions in vm_struct->flags field.
38  */
39 #define VM_ARM_SECTION_MAPPING	0x80000000
40 
41 static inline void
42 remap_area_pte(pte_t * pte, unsigned long address, unsigned long size,
43 	       unsigned long phys_addr, pgprot_t pgprot)
44 {
45 	unsigned long end;
46 
47 	address &= ~PMD_MASK;
48 	end = address + size;
49 	if (end > PMD_SIZE)
50 		end = PMD_SIZE;
51 	BUG_ON(address >= end);
52 	do {
53 		if (!pte_none(*pte))
54 			goto bad;
55 
56 		set_pte(pte, pfn_pte(phys_addr >> PAGE_SHIFT, pgprot));
57 		address += PAGE_SIZE;
58 		phys_addr += PAGE_SIZE;
59 		pte++;
60 	} while (address && (address < end));
61 	return;
62 
63  bad:
64 	printk("remap_area_pte: page already exists\n");
65 	BUG();
66 }
67 
68 static inline int
69 remap_area_pmd(pmd_t * pmd, unsigned long address, unsigned long size,
70 	       unsigned long phys_addr, unsigned long flags)
71 {
72 	unsigned long end;
73 	pgprot_t pgprot;
74 
75 	address &= ~PGDIR_MASK;
76 	end = address + size;
77 
78 	if (end > PGDIR_SIZE)
79 		end = PGDIR_SIZE;
80 
81 	phys_addr -= address;
82 	BUG_ON(address >= end);
83 
84 	pgprot = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_WRITE | flags);
85 	do {
86 		pte_t * pte = pte_alloc_kernel(pmd, address);
87 		if (!pte)
88 			return -ENOMEM;
89 		remap_area_pte(pte, address, end - address, address + phys_addr, pgprot);
90 		address = (address + PMD_SIZE) & PMD_MASK;
91 		pmd++;
92 	} while (address && (address < end));
93 	return 0;
94 }
95 
96 static int
97 remap_area_pages(unsigned long start, unsigned long pfn,
98 		 unsigned long size, unsigned long flags)
99 {
100 	unsigned long address = start;
101 	unsigned long end = start + size;
102 	unsigned long phys_addr = __pfn_to_phys(pfn);
103 	int err = 0;
104 	pgd_t * dir;
105 
106 	phys_addr -= address;
107 	dir = pgd_offset(&init_mm, address);
108 	BUG_ON(address >= end);
109 	do {
110 		pmd_t *pmd = pmd_alloc(&init_mm, dir, address);
111 		if (!pmd) {
112 			err = -ENOMEM;
113 			break;
114 		}
115 		if (remap_area_pmd(pmd, address, end - address,
116 					 phys_addr + address, flags)) {
117 			err = -ENOMEM;
118 			break;
119 		}
120 
121 		address = (address + PGDIR_SIZE) & PGDIR_MASK;
122 		dir++;
123 	} while (address && (address < end));
124 
125 	return err;
126 }
127 
128 
129 void __check_kvm_seq(struct mm_struct *mm)
130 {
131 	unsigned int seq;
132 
133 	do {
134 		seq = init_mm.context.kvm_seq;
135 		memcpy(pgd_offset(mm, VMALLOC_START),
136 		       pgd_offset_k(VMALLOC_START),
137 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
138 					pgd_index(VMALLOC_START)));
139 		mm->context.kvm_seq = seq;
140 	} while (seq != init_mm.context.kvm_seq);
141 }
142 
143 #ifndef CONFIG_SMP
144 /*
145  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
146  * the other CPUs will not see this change until their next context switch.
147  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
148  * which requires the new ioremap'd region to be referenced, the CPU will
149  * reference the _old_ region.
150  *
151  * Note that get_vm_area() allocates a guard 4K page, so we need to mask
152  * the size back to 1MB aligned or we will overflow in the loop below.
153  */
154 static void unmap_area_sections(unsigned long virt, unsigned long size)
155 {
156 	unsigned long addr = virt, end = virt + (size & ~SZ_1M);
157 	pgd_t *pgd;
158 
159 	flush_cache_vunmap(addr, end);
160 	pgd = pgd_offset_k(addr);
161 	do {
162 		pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
163 
164 		pmd = *pmdp;
165 		if (!pmd_none(pmd)) {
166 			/*
167 			 * Clear the PMD from the page table, and
168 			 * increment the kvm sequence so others
169 			 * notice this change.
170 			 *
171 			 * Note: this is still racy on SMP machines.
172 			 */
173 			pmd_clear(pmdp);
174 			init_mm.context.kvm_seq++;
175 
176 			/*
177 			 * Free the page table, if there was one.
178 			 */
179 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
180 				pte_free_kernel(pmd_page_kernel(pmd));
181 		}
182 
183 		addr += PGDIR_SIZE;
184 		pgd++;
185 	} while (addr < end);
186 
187 	/*
188 	 * Ensure that the active_mm is up to date - we want to
189 	 * catch any use-after-iounmap cases.
190 	 */
191 	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
192 		__check_kvm_seq(current->active_mm);
193 
194 	flush_tlb_kernel_range(virt, end);
195 }
196 
197 static int
198 remap_area_sections(unsigned long virt, unsigned long pfn,
199 		    unsigned long size, unsigned long flags)
200 {
201 	unsigned long prot, addr = virt, end = virt + size;
202 	pgd_t *pgd;
203 
204 	/*
205 	 * Remove and free any PTE-based mapping, and
206 	 * sync the current kernel mapping.
207 	 */
208 	unmap_area_sections(virt, size);
209 
210 	prot = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_DOMAIN(DOMAIN_IO) |
211 	       (flags & (L_PTE_CACHEABLE | L_PTE_BUFFERABLE));
212 
213 	/*
214 	 * ARMv6 and above need XN set to prevent speculative prefetches
215 	 * hitting IO.
216 	 */
217 	if (cpu_architecture() >= CPU_ARCH_ARMv6)
218 		prot |= PMD_SECT_XN;
219 
220 	pgd = pgd_offset_k(addr);
221 	do {
222 		pmd_t *pmd = pmd_offset(pgd, addr);
223 
224 		pmd[0] = __pmd(__pfn_to_phys(pfn) | prot);
225 		pfn += SZ_1M >> PAGE_SHIFT;
226 		pmd[1] = __pmd(__pfn_to_phys(pfn) | prot);
227 		pfn += SZ_1M >> PAGE_SHIFT;
228 		flush_pmd_entry(pmd);
229 
230 		addr += PGDIR_SIZE;
231 		pgd++;
232 	} while (addr < end);
233 
234 	return 0;
235 }
236 
237 static int
238 remap_area_supersections(unsigned long virt, unsigned long pfn,
239 			 unsigned long size, unsigned long flags)
240 {
241 	unsigned long prot, addr = virt, end = virt + size;
242 	pgd_t *pgd;
243 
244 	/*
245 	 * Remove and free any PTE-based mapping, and
246 	 * sync the current kernel mapping.
247 	 */
248 	unmap_area_sections(virt, size);
249 
250 	prot = PMD_TYPE_SECT | PMD_SECT_SUPER | PMD_SECT_AP_WRITE |
251 			PMD_DOMAIN(DOMAIN_IO) |
252 			(flags & (L_PTE_CACHEABLE | L_PTE_BUFFERABLE));
253 
254 	/*
255 	 * ARMv6 and above need XN set to prevent speculative prefetches
256 	 * hitting IO.
257 	 */
258 	if (cpu_architecture() >= CPU_ARCH_ARMv6)
259 		prot |= PMD_SECT_XN;
260 
261 	pgd = pgd_offset_k(virt);
262 	do {
263 		unsigned long super_pmd_val, i;
264 
265 		super_pmd_val = __pfn_to_phys(pfn) | prot;
266 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
267 
268 		for (i = 0; i < 8; i++) {
269 			pmd_t *pmd = pmd_offset(pgd, addr);
270 
271 			pmd[0] = __pmd(super_pmd_val);
272 			pmd[1] = __pmd(super_pmd_val);
273 			flush_pmd_entry(pmd);
274 
275 			addr += PGDIR_SIZE;
276 			pgd++;
277 		}
278 
279 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
280 	} while (addr < end);
281 
282 	return 0;
283 }
284 #endif
285 
286 
287 /*
288  * Remap an arbitrary physical address space into the kernel virtual
289  * address space. Needed when the kernel wants to access high addresses
290  * directly.
291  *
292  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
293  * have to convert them into an offset in a page-aligned mapping, but the
294  * caller shouldn't need to know that small detail.
295  *
296  * 'flags' are the extra L_PTE_ flags that you want to specify for this
297  * mapping.  See include/asm-arm/proc-armv/pgtable.h for more information.
298  */
299 void __iomem *
300 __ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
301 	      unsigned long flags)
302 {
303 	int err;
304 	unsigned long addr;
305  	struct vm_struct * area;
306 
307 	/*
308 	 * High mappings must be supersection aligned
309 	 */
310 	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
311 		return NULL;
312 
313  	area = get_vm_area(size, VM_IOREMAP);
314  	if (!area)
315  		return NULL;
316  	addr = (unsigned long)area->addr;
317 
318 #ifndef CONFIG_SMP
319 	if ((((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
320 	       cpu_is_xsc3()) &&
321 	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
322 		area->flags |= VM_ARM_SECTION_MAPPING;
323 		err = remap_area_supersections(addr, pfn, size, flags);
324 	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
325 		area->flags |= VM_ARM_SECTION_MAPPING;
326 		err = remap_area_sections(addr, pfn, size, flags);
327 	} else
328 #endif
329 		err = remap_area_pages(addr, pfn, size, flags);
330 
331 	if (err) {
332  		vunmap((void *)addr);
333  		return NULL;
334  	}
335 
336 	flush_cache_vmap(addr, addr + size);
337 	return (void __iomem *) (offset + addr);
338 }
339 EXPORT_SYMBOL(__ioremap_pfn);
340 
341 void __iomem *
342 __ioremap(unsigned long phys_addr, size_t size, unsigned long flags)
343 {
344 	unsigned long last_addr;
345  	unsigned long offset = phys_addr & ~PAGE_MASK;
346  	unsigned long pfn = __phys_to_pfn(phys_addr);
347 
348  	/*
349  	 * Don't allow wraparound or zero size
350 	 */
351 	last_addr = phys_addr + size - 1;
352 	if (!size || last_addr < phys_addr)
353 		return NULL;
354 
355 	/*
356  	 * Page align the mapping size
357 	 */
358 	size = PAGE_ALIGN(last_addr + 1) - phys_addr;
359 
360  	return __ioremap_pfn(pfn, offset, size, flags);
361 }
362 EXPORT_SYMBOL(__ioremap);
363 
364 void __iounmap(void __iomem *addr)
365 {
366 	struct vm_struct **p, *tmp;
367 	unsigned int section_mapping = 0;
368 
369 	addr = (void __iomem *)(PAGE_MASK & (unsigned long)addr);
370 
371 #ifndef CONFIG_SMP
372 	/*
373 	 * If this is a section based mapping we need to handle it
374 	 * specially as the VM subysystem does not know how to handle
375 	 * such a beast. We need the lock here b/c we need to clear
376 	 * all the mappings before the area can be reclaimed
377 	 * by someone else.
378 	 */
379 	write_lock(&vmlist_lock);
380 	for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
381 		if((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
382 			if (tmp->flags & VM_ARM_SECTION_MAPPING) {
383 				*p = tmp->next;
384 				unmap_area_sections((unsigned long)tmp->addr,
385 						    tmp->size);
386 				kfree(tmp);
387 				section_mapping = 1;
388 			}
389 			break;
390 		}
391 	}
392 	write_unlock(&vmlist_lock);
393 #endif
394 
395 	if (!section_mapping)
396 		vunmap(addr);
397 }
398 EXPORT_SYMBOL(__iounmap);
399