xref: /linux/arch/arm/mm/init.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/ptrace.h>
14 #include <linux/swap.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/initrd.h>
20 
21 #include <asm/mach-types.h>
22 #include <asm/hardware.h>
23 #include <asm/setup.h>
24 #include <asm/tlb.h>
25 
26 #include <asm/mach/arch.h>
27 #include <asm/mach/map.h>
28 
29 #define TABLE_SIZE	(2 * PTRS_PER_PTE * sizeof(pte_t))
30 
31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
32 
33 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
35 extern unsigned long phys_initrd_start;
36 extern unsigned long phys_initrd_size;
37 
38 /*
39  * The sole use of this is to pass memory configuration
40  * data from paging_init to mem_init.
41  */
42 static struct meminfo meminfo __initdata = { 0, };
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 
50 void show_mem(void)
51 {
52 	int free = 0, total = 0, reserved = 0;
53 	int shared = 0, cached = 0, slab = 0, node;
54 
55 	printk("Mem-info:\n");
56 	show_free_areas();
57 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
58 
59 	for_each_online_node(node) {
60 		struct page *page, *end;
61 
62 		page = NODE_MEM_MAP(node);
63 		end  = page + NODE_DATA(node)->node_spanned_pages;
64 
65 		do {
66 			total++;
67 			if (PageReserved(page))
68 				reserved++;
69 			else if (PageSwapCache(page))
70 				cached++;
71 			else if (PageSlab(page))
72 				slab++;
73 			else if (!page_count(page))
74 				free++;
75 			else
76 				shared += page_count(page) - 1;
77 			page++;
78 		} while (page < end);
79 	}
80 
81 	printk("%d pages of RAM\n", total);
82 	printk("%d free pages\n", free);
83 	printk("%d reserved pages\n", reserved);
84 	printk("%d slab pages\n", slab);
85 	printk("%d pages shared\n", shared);
86 	printk("%d pages swap cached\n", cached);
87 }
88 
89 struct node_info {
90 	unsigned int start;
91 	unsigned int end;
92 	int bootmap_pages;
93 };
94 
95 #define O_PFN_DOWN(x)	((x) >> PAGE_SHIFT)
96 #define O_PFN_UP(x)	(PAGE_ALIGN(x) >> PAGE_SHIFT)
97 
98 /*
99  * FIXME: We really want to avoid allocating the bootmap bitmap
100  * over the top of the initrd.  Hopefully, this is located towards
101  * the start of a bank, so if we allocate the bootmap bitmap at
102  * the end, we won't clash.
103  */
104 static unsigned int __init
105 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
106 {
107 	unsigned int start_pfn, bank, bootmap_pfn;
108 
109 	start_pfn   = O_PFN_UP(__pa(&_end));
110 	bootmap_pfn = 0;
111 
112 	for (bank = 0; bank < mi->nr_banks; bank ++) {
113 		unsigned int start, end;
114 
115 		if (mi->bank[bank].node != node)
116 			continue;
117 
118 		start = mi->bank[bank].start >> PAGE_SHIFT;
119 		end   = (mi->bank[bank].size +
120 			 mi->bank[bank].start) >> PAGE_SHIFT;
121 
122 		if (end < start_pfn)
123 			continue;
124 
125 		if (start < start_pfn)
126 			start = start_pfn;
127 
128 		if (end <= start)
129 			continue;
130 
131 		if (end - start >= bootmap_pages) {
132 			bootmap_pfn = start;
133 			break;
134 		}
135 	}
136 
137 	if (bootmap_pfn == 0)
138 		BUG();
139 
140 	return bootmap_pfn;
141 }
142 
143 /*
144  * Scan the memory info structure and pull out:
145  *  - the end of memory
146  *  - the number of nodes
147  *  - the pfn range of each node
148  *  - the number of bootmem bitmap pages
149  */
150 static unsigned int __init
151 find_memend_and_nodes(struct meminfo *mi, struct node_info *np)
152 {
153 	unsigned int i, bootmem_pages = 0, memend_pfn = 0;
154 
155 	for (i = 0; i < MAX_NUMNODES; i++) {
156 		np[i].start = -1U;
157 		np[i].end = 0;
158 		np[i].bootmap_pages = 0;
159 	}
160 
161 	for (i = 0; i < mi->nr_banks; i++) {
162 		unsigned long start, end;
163 		int node;
164 
165 		if (mi->bank[i].size == 0) {
166 			/*
167 			 * Mark this bank with an invalid node number
168 			 */
169 			mi->bank[i].node = -1;
170 			continue;
171 		}
172 
173 		node = mi->bank[i].node;
174 
175 		/*
176 		 * Make sure we haven't exceeded the maximum number of nodes
177 		 * that we have in this configuration.  If we have, we're in
178 		 * trouble.  (maybe we ought to limit, instead of bugging?)
179 		 */
180 		if (node >= MAX_NUMNODES)
181 			BUG();
182 		node_set_online(node);
183 
184 		/*
185 		 * Get the start and end pfns for this bank
186 		 */
187 		start = mi->bank[i].start >> PAGE_SHIFT;
188 		end   = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
189 
190 		if (np[node].start > start)
191 			np[node].start = start;
192 
193 		if (np[node].end < end)
194 			np[node].end = end;
195 
196 		if (memend_pfn < end)
197 			memend_pfn = end;
198 	}
199 
200 	/*
201 	 * Calculate the number of pages we require to
202 	 * store the bootmem bitmaps.
203 	 */
204 	for_each_online_node(i) {
205 		if (np[i].end == 0)
206 			continue;
207 
208 		np[i].bootmap_pages = bootmem_bootmap_pages(np[i].end -
209 							    np[i].start);
210 		bootmem_pages += np[i].bootmap_pages;
211 	}
212 
213 	high_memory = __va(memend_pfn << PAGE_SHIFT);
214 
215 	/*
216 	 * This doesn't seem to be used by the Linux memory
217 	 * manager any more.  If we can get rid of it, we
218 	 * also get rid of some of the stuff above as well.
219 	 *
220 	 * Note: max_low_pfn and max_pfn reflect the number
221 	 * of _pages_ in the system, not the maximum PFN.
222 	 */
223 	max_low_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET);
224 	max_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET);
225 
226 	return bootmem_pages;
227 }
228 
229 static int __init check_initrd(struct meminfo *mi)
230 {
231 	int initrd_node = -2;
232 #ifdef CONFIG_BLK_DEV_INITRD
233 	unsigned long end = phys_initrd_start + phys_initrd_size;
234 
235 	/*
236 	 * Make sure that the initrd is within a valid area of
237 	 * memory.
238 	 */
239 	if (phys_initrd_size) {
240 		unsigned int i;
241 
242 		initrd_node = -1;
243 
244 		for (i = 0; i < mi->nr_banks; i++) {
245 			unsigned long bank_end;
246 
247 			bank_end = mi->bank[i].start + mi->bank[i].size;
248 
249 			if (mi->bank[i].start <= phys_initrd_start &&
250 			    end <= bank_end)
251 				initrd_node = mi->bank[i].node;
252 		}
253 	}
254 
255 	if (initrd_node == -1) {
256 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
257 		       "physical memory - disabling initrd\n",
258 		       phys_initrd_start, end);
259 		phys_initrd_start = phys_initrd_size = 0;
260 	}
261 #endif
262 
263 	return initrd_node;
264 }
265 
266 /*
267  * Reserve the various regions of node 0
268  */
269 static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages)
270 {
271 	pg_data_t *pgdat = NODE_DATA(0);
272 	unsigned long res_size = 0;
273 
274 	/*
275 	 * Register the kernel text and data with bootmem.
276 	 * Note that this can only be in node 0.
277 	 */
278 #ifdef CONFIG_XIP_KERNEL
279 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
280 #else
281 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
282 #endif
283 
284 	/*
285 	 * Reserve the page tables.  These are already in use,
286 	 * and can only be in node 0.
287 	 */
288 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
289 			     PTRS_PER_PGD * sizeof(pgd_t));
290 
291 	/*
292 	 * And don't forget to reserve the allocator bitmap,
293 	 * which will be freed later.
294 	 */
295 	reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT,
296 			     bootmap_pages << PAGE_SHIFT);
297 
298 	/*
299 	 * Hmm... This should go elsewhere, but we really really need to
300 	 * stop things allocating the low memory; ideally we need a better
301 	 * implementation of GFP_DMA which does not assume that DMA-able
302 	 * memory starts at zero.
303 	 */
304 	if (machine_is_integrator() || machine_is_cintegrator())
305 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
306 
307 	/*
308 	 * These should likewise go elsewhere.  They pre-reserve the
309 	 * screen memory region at the start of main system memory.
310 	 */
311 	if (machine_is_edb7211())
312 		res_size = 0x00020000;
313 	if (machine_is_p720t())
314 		res_size = 0x00014000;
315 
316 #ifdef CONFIG_SA1111
317 	/*
318 	 * Because of the SA1111 DMA bug, we want to preserve our
319 	 * precious DMA-able memory...
320 	 */
321 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
322 #endif
323 	if (res_size)
324 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
325 }
326 
327 /*
328  * Register all available RAM in this node with the bootmem allocator.
329  */
330 static inline void free_bootmem_node_bank(int node, struct meminfo *mi)
331 {
332 	pg_data_t *pgdat = NODE_DATA(node);
333 	int bank;
334 
335 	for (bank = 0; bank < mi->nr_banks; bank++)
336 		if (mi->bank[bank].node == node)
337 			free_bootmem_node(pgdat, mi->bank[bank].start,
338 					  mi->bank[bank].size);
339 }
340 
341 /*
342  * Initialise the bootmem allocator for all nodes.  This is called
343  * early during the architecture specific initialisation.
344  */
345 static void __init bootmem_init(struct meminfo *mi)
346 {
347 	struct node_info node_info[MAX_NUMNODES], *np = node_info;
348 	unsigned int bootmap_pages, bootmap_pfn, map_pg;
349 	int node, initrd_node;
350 
351 	bootmap_pages = find_memend_and_nodes(mi, np);
352 	bootmap_pfn   = find_bootmap_pfn(0, mi, bootmap_pages);
353 	initrd_node   = check_initrd(mi);
354 
355 	map_pg = bootmap_pfn;
356 
357 	/*
358 	 * Initialise the bootmem nodes.
359 	 *
360 	 * What we really want to do is:
361 	 *
362 	 *   unmap_all_regions_except_kernel();
363 	 *   for_each_node_in_reverse_order(node) {
364 	 *     map_node(node);
365 	 *     allocate_bootmem_map(node);
366 	 *     init_bootmem_node(node);
367 	 *     free_bootmem_node(node);
368 	 *   }
369 	 *
370 	 * but this is a 2.5-type change.  For now, we just set
371 	 * the nodes up in reverse order.
372 	 *
373 	 * (we could also do with rolling bootmem_init and paging_init
374 	 * into one generic "memory_init" type function).
375 	 */
376 	np += num_online_nodes() - 1;
377 	for (node = num_online_nodes() - 1; node >= 0; node--, np--) {
378 		/*
379 		 * If there are no pages in this node, ignore it.
380 		 * Note that node 0 must always have some pages.
381 		 */
382 		if (np->end == 0 || !node_online(node)) {
383 			if (node == 0)
384 				BUG();
385 			continue;
386 		}
387 
388 		/*
389 		 * Initialise the bootmem allocator.
390 		 */
391 		init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end);
392 		free_bootmem_node_bank(node, mi);
393 		map_pg += np->bootmap_pages;
394 
395 		/*
396 		 * If this is node 0, we need to reserve some areas ASAP -
397 		 * we may use bootmem on node 0 to setup the other nodes.
398 		 */
399 		if (node == 0)
400 			reserve_node_zero(bootmap_pfn, bootmap_pages);
401 	}
402 
403 
404 #ifdef CONFIG_BLK_DEV_INITRD
405 	if (phys_initrd_size && initrd_node >= 0) {
406 		reserve_bootmem_node(NODE_DATA(initrd_node), phys_initrd_start,
407 				     phys_initrd_size);
408 		initrd_start = __phys_to_virt(phys_initrd_start);
409 		initrd_end = initrd_start + phys_initrd_size;
410 	}
411 #endif
412 
413 	BUG_ON(map_pg != bootmap_pfn + bootmap_pages);
414 }
415 
416 /*
417  * paging_init() sets up the page tables, initialises the zone memory
418  * maps, and sets up the zero page, bad page and bad page tables.
419  */
420 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
421 {
422 	void *zero_page;
423 	int node;
424 
425 	bootmem_init(mi);
426 
427 	memcpy(&meminfo, mi, sizeof(meminfo));
428 
429 	/*
430 	 * allocate the zero page.  Note that we count on this going ok.
431 	 */
432 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
433 
434 	/*
435 	 * initialise the page tables.
436 	 */
437 	memtable_init(mi);
438 	if (mdesc->map_io)
439 		mdesc->map_io();
440 	local_flush_tlb_all();
441 
442 	/*
443 	 * initialise the zones within each node
444 	 */
445 	for_each_online_node(node) {
446 		unsigned long zone_size[MAX_NR_ZONES];
447 		unsigned long zhole_size[MAX_NR_ZONES];
448 		struct bootmem_data *bdata;
449 		pg_data_t *pgdat;
450 		int i;
451 
452 		/*
453 		 * Initialise the zone size information.
454 		 */
455 		for (i = 0; i < MAX_NR_ZONES; i++) {
456 			zone_size[i]  = 0;
457 			zhole_size[i] = 0;
458 		}
459 
460 		pgdat = NODE_DATA(node);
461 		bdata = pgdat->bdata;
462 
463 		/*
464 		 * The size of this node has already been determined.
465 		 * If we need to do anything fancy with the allocation
466 		 * of this memory to the zones, now is the time to do
467 		 * it.
468 		 */
469 		zone_size[0] = bdata->node_low_pfn -
470 				(bdata->node_boot_start >> PAGE_SHIFT);
471 
472 		/*
473 		 * If this zone has zero size, skip it.
474 		 */
475 		if (!zone_size[0])
476 			continue;
477 
478 		/*
479 		 * For each bank in this node, calculate the size of the
480 		 * holes.  holes = node_size - sum(bank_sizes_in_node)
481 		 */
482 		zhole_size[0] = zone_size[0];
483 		for (i = 0; i < mi->nr_banks; i++) {
484 			if (mi->bank[i].node != node)
485 				continue;
486 
487 			zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
488 		}
489 
490 		/*
491 		 * Adjust the sizes according to any special
492 		 * requirements for this machine type.
493 		 */
494 		arch_adjust_zones(node, zone_size, zhole_size);
495 
496 		free_area_init_node(node, pgdat, zone_size,
497 				bdata->node_boot_start >> PAGE_SHIFT, zhole_size);
498 	}
499 
500 	/*
501 	 * finish off the bad pages once
502 	 * the mem_map is initialised
503 	 */
504 	memzero(zero_page, PAGE_SIZE);
505 	empty_zero_page = virt_to_page(zero_page);
506 	flush_dcache_page(empty_zero_page);
507 }
508 
509 static inline void free_area(unsigned long addr, unsigned long end, char *s)
510 {
511 	unsigned int size = (end - addr) >> 10;
512 
513 	for (; addr < end; addr += PAGE_SIZE) {
514 		struct page *page = virt_to_page(addr);
515 		ClearPageReserved(page);
516 		set_page_count(page, 1);
517 		free_page(addr);
518 		totalram_pages++;
519 	}
520 
521 	if (size && s)
522 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
523 }
524 
525 static inline void
526 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
527 {
528 	struct page *start_pg, *end_pg;
529 	unsigned long pg, pgend;
530 
531 	/*
532 	 * Convert start_pfn/end_pfn to a struct page pointer.
533 	 */
534 	start_pg = pfn_to_page(start_pfn);
535 	end_pg = pfn_to_page(end_pfn);
536 
537 	/*
538 	 * Convert to physical addresses, and
539 	 * round start upwards and end downwards.
540 	 */
541 	pg = PAGE_ALIGN(__pa(start_pg));
542 	pgend = __pa(end_pg) & PAGE_MASK;
543 
544 	/*
545 	 * If there are free pages between these,
546 	 * free the section of the memmap array.
547 	 */
548 	if (pg < pgend)
549 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
550 }
551 
552 /*
553  * The mem_map array can get very big.  Free the unused area of the memory map.
554  */
555 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
556 {
557 	unsigned long bank_start, prev_bank_end = 0;
558 	unsigned int i;
559 
560 	/*
561 	 * [FIXME] This relies on each bank being in address order.  This
562 	 * may not be the case, especially if the user has provided the
563 	 * information on the command line.
564 	 */
565 	for (i = 0; i < mi->nr_banks; i++) {
566 		if (mi->bank[i].size == 0 || mi->bank[i].node != node)
567 			continue;
568 
569 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
570 		if (bank_start < prev_bank_end) {
571 			printk(KERN_ERR "MEM: unordered memory banks.  "
572 				"Not freeing memmap.\n");
573 			break;
574 		}
575 
576 		/*
577 		 * If we had a previous bank, and there is a space
578 		 * between the current bank and the previous, free it.
579 		 */
580 		if (prev_bank_end && prev_bank_end != bank_start)
581 			free_memmap(node, prev_bank_end, bank_start);
582 
583 		prev_bank_end = (mi->bank[i].start +
584 				 mi->bank[i].size) >> PAGE_SHIFT;
585 	}
586 }
587 
588 /*
589  * mem_init() marks the free areas in the mem_map and tells us how much
590  * memory is free.  This is done after various parts of the system have
591  * claimed their memory after the kernel image.
592  */
593 void __init mem_init(void)
594 {
595 	unsigned int codepages, datapages, initpages;
596 	int i, node;
597 
598 	codepages = &_etext - &_text;
599 	datapages = &_end - &__data_start;
600 	initpages = &__init_end - &__init_begin;
601 
602 #ifndef CONFIG_DISCONTIGMEM
603 	max_mapnr   = virt_to_page(high_memory) - mem_map;
604 #endif
605 
606 	/* this will put all unused low memory onto the freelists */
607 	for_each_online_node(node) {
608 		pg_data_t *pgdat = NODE_DATA(node);
609 
610 		free_unused_memmap_node(node, &meminfo);
611 
612 		if (pgdat->node_spanned_pages != 0)
613 			totalram_pages += free_all_bootmem_node(pgdat);
614 	}
615 
616 #ifdef CONFIG_SA1111
617 	/* now that our DMA memory is actually so designated, we can free it */
618 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
619 #endif
620 
621 	/*
622 	 * Since our memory may not be contiguous, calculate the
623 	 * real number of pages we have in this system
624 	 */
625 	printk(KERN_INFO "Memory:");
626 
627 	num_physpages = 0;
628 	for (i = 0; i < meminfo.nr_banks; i++) {
629 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
630 		printk(" %ldMB", meminfo.bank[i].size >> 20);
631 	}
632 
633 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
634 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
635 		"%dK data, %dK init)\n",
636 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
637 		codepages >> 10, datapages >> 10, initpages >> 10);
638 
639 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
640 		extern int sysctl_overcommit_memory;
641 		/*
642 		 * On a machine this small we won't get
643 		 * anywhere without overcommit, so turn
644 		 * it on by default.
645 		 */
646 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
647 	}
648 }
649 
650 void free_initmem(void)
651 {
652 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
653 		free_area((unsigned long)(&__init_begin),
654 			  (unsigned long)(&__init_end),
655 			  "init");
656 	}
657 }
658 
659 #ifdef CONFIG_BLK_DEV_INITRD
660 
661 static int keep_initrd;
662 
663 void free_initrd_mem(unsigned long start, unsigned long end)
664 {
665 	if (!keep_initrd)
666 		free_area(start, end, "initrd");
667 }
668 
669 static int __init keepinitrd_setup(char *__unused)
670 {
671 	keep_initrd = 1;
672 	return 1;
673 }
674 
675 __setup("keepinitrd", keepinitrd_setup);
676 #endif
677