1 /* 2 * linux/arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/errno.h> 12 #include <linux/ptrace.h> 13 #include <linux/swap.h> 14 #include <linux/init.h> 15 #include <linux/bootmem.h> 16 #include <linux/mman.h> 17 #include <linux/nodemask.h> 18 #include <linux/initrd.h> 19 20 #include <asm/mach-types.h> 21 #include <asm/setup.h> 22 #include <asm/sizes.h> 23 #include <asm/tlb.h> 24 25 #include <asm/mach/arch.h> 26 #include <asm/mach/map.h> 27 28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 29 30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 31 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end; 32 extern unsigned long phys_initrd_start; 33 extern unsigned long phys_initrd_size; 34 35 /* 36 * The sole use of this is to pass memory configuration 37 * data from paging_init to mem_init. 38 */ 39 static struct meminfo meminfo __initdata = { 0, }; 40 41 /* 42 * empty_zero_page is a special page that is used for 43 * zero-initialized data and COW. 44 */ 45 struct page *empty_zero_page; 46 47 void show_mem(void) 48 { 49 int free = 0, total = 0, reserved = 0; 50 int shared = 0, cached = 0, slab = 0, node; 51 52 printk("Mem-info:\n"); 53 show_free_areas(); 54 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 55 56 for_each_online_node(node) { 57 struct page *page, *end; 58 59 page = NODE_MEM_MAP(node); 60 end = page + NODE_DATA(node)->node_spanned_pages; 61 62 do { 63 total++; 64 if (PageReserved(page)) 65 reserved++; 66 else if (PageSwapCache(page)) 67 cached++; 68 else if (PageSlab(page)) 69 slab++; 70 else if (!page_count(page)) 71 free++; 72 else 73 shared += page_count(page) - 1; 74 page++; 75 } while (page < end); 76 } 77 78 printk("%d pages of RAM\n", total); 79 printk("%d free pages\n", free); 80 printk("%d reserved pages\n", reserved); 81 printk("%d slab pages\n", slab); 82 printk("%d pages shared\n", shared); 83 printk("%d pages swap cached\n", cached); 84 } 85 86 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt) 87 { 88 return pmd_offset(pgd, virt); 89 } 90 91 static inline pmd_t *pmd_off_k(unsigned long virt) 92 { 93 return pmd_off(pgd_offset_k(virt), virt); 94 } 95 96 #define for_each_nodebank(iter,mi,no) \ 97 for (iter = 0; iter < mi->nr_banks; iter++) \ 98 if (mi->bank[iter].node == no) 99 100 /* 101 * FIXME: We really want to avoid allocating the bootmap bitmap 102 * over the top of the initrd. Hopefully, this is located towards 103 * the start of a bank, so if we allocate the bootmap bitmap at 104 * the end, we won't clash. 105 */ 106 static unsigned int __init 107 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) 108 { 109 unsigned int start_pfn, bank, bootmap_pfn; 110 111 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT; 112 bootmap_pfn = 0; 113 114 for_each_nodebank(bank, mi, node) { 115 unsigned int start, end; 116 117 start = mi->bank[bank].start >> PAGE_SHIFT; 118 end = (mi->bank[bank].size + 119 mi->bank[bank].start) >> PAGE_SHIFT; 120 121 if (end < start_pfn) 122 continue; 123 124 if (start < start_pfn) 125 start = start_pfn; 126 127 if (end <= start) 128 continue; 129 130 if (end - start >= bootmap_pages) { 131 bootmap_pfn = start; 132 break; 133 } 134 } 135 136 if (bootmap_pfn == 0) 137 BUG(); 138 139 return bootmap_pfn; 140 } 141 142 static int __init check_initrd(struct meminfo *mi) 143 { 144 int initrd_node = -2; 145 #ifdef CONFIG_BLK_DEV_INITRD 146 unsigned long end = phys_initrd_start + phys_initrd_size; 147 148 /* 149 * Make sure that the initrd is within a valid area of 150 * memory. 151 */ 152 if (phys_initrd_size) { 153 unsigned int i; 154 155 initrd_node = -1; 156 157 for (i = 0; i < mi->nr_banks; i++) { 158 unsigned long bank_end; 159 160 bank_end = mi->bank[i].start + mi->bank[i].size; 161 162 if (mi->bank[i].start <= phys_initrd_start && 163 end <= bank_end) 164 initrd_node = mi->bank[i].node; 165 } 166 } 167 168 if (initrd_node == -1) { 169 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " 170 "physical memory - disabling initrd\n", 171 phys_initrd_start, end); 172 phys_initrd_start = phys_initrd_size = 0; 173 } 174 #endif 175 176 return initrd_node; 177 } 178 179 /* 180 * Reserve the various regions of node 0 181 */ 182 static __init void reserve_node_zero(pg_data_t *pgdat) 183 { 184 unsigned long res_size = 0; 185 186 /* 187 * Register the kernel text and data with bootmem. 188 * Note that this can only be in node 0. 189 */ 190 #ifdef CONFIG_XIP_KERNEL 191 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start); 192 #else 193 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext); 194 #endif 195 196 /* 197 * Reserve the page tables. These are already in use, 198 * and can only be in node 0. 199 */ 200 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), 201 PTRS_PER_PGD * sizeof(pgd_t)); 202 203 /* 204 * Hmm... This should go elsewhere, but we really really need to 205 * stop things allocating the low memory; ideally we need a better 206 * implementation of GFP_DMA which does not assume that DMA-able 207 * memory starts at zero. 208 */ 209 if (machine_is_integrator() || machine_is_cintegrator()) 210 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 211 212 /* 213 * These should likewise go elsewhere. They pre-reserve the 214 * screen memory region at the start of main system memory. 215 */ 216 if (machine_is_edb7211()) 217 res_size = 0x00020000; 218 if (machine_is_p720t()) 219 res_size = 0x00014000; 220 221 #ifdef CONFIG_SA1111 222 /* 223 * Because of the SA1111 DMA bug, we want to preserve our 224 * precious DMA-able memory... 225 */ 226 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 227 #endif 228 if (res_size) 229 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size); 230 } 231 232 void __init build_mem_type_table(void); 233 void __init create_mapping(struct map_desc *md); 234 235 static unsigned long __init 236 bootmem_init_node(int node, int initrd_node, struct meminfo *mi) 237 { 238 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 239 unsigned long start_pfn, end_pfn, boot_pfn; 240 unsigned int boot_pages; 241 pg_data_t *pgdat; 242 int i; 243 244 start_pfn = -1UL; 245 end_pfn = 0; 246 247 /* 248 * Calculate the pfn range, and map the memory banks for this node. 249 */ 250 for_each_nodebank(i, mi, node) { 251 unsigned long start, end; 252 struct map_desc map; 253 254 start = mi->bank[i].start >> PAGE_SHIFT; 255 end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT; 256 257 if (start_pfn > start) 258 start_pfn = start; 259 if (end_pfn < end) 260 end_pfn = end; 261 262 map.pfn = __phys_to_pfn(mi->bank[i].start); 263 map.virtual = __phys_to_virt(mi->bank[i].start); 264 map.length = mi->bank[i].size; 265 map.type = MT_MEMORY; 266 267 create_mapping(&map); 268 } 269 270 /* 271 * If there is no memory in this node, ignore it. 272 */ 273 if (end_pfn == 0) 274 return end_pfn; 275 276 /* 277 * Allocate the bootmem bitmap page. 278 */ 279 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 280 boot_pfn = find_bootmap_pfn(node, mi, boot_pages); 281 282 /* 283 * Initialise the bootmem allocator for this node, handing the 284 * memory banks over to bootmem. 285 */ 286 node_set_online(node); 287 pgdat = NODE_DATA(node); 288 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn); 289 290 for_each_nodebank(i, mi, node) 291 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size); 292 293 /* 294 * Reserve the bootmem bitmap for this node. 295 */ 296 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT, 297 boot_pages << PAGE_SHIFT); 298 299 #ifdef CONFIG_BLK_DEV_INITRD 300 /* 301 * If the initrd is in this node, reserve its memory. 302 */ 303 if (node == initrd_node) { 304 reserve_bootmem_node(pgdat, phys_initrd_start, 305 phys_initrd_size); 306 initrd_start = __phys_to_virt(phys_initrd_start); 307 initrd_end = initrd_start + phys_initrd_size; 308 } 309 #endif 310 311 /* 312 * Finally, reserve any node zero regions. 313 */ 314 if (node == 0) 315 reserve_node_zero(pgdat); 316 317 /* 318 * initialise the zones within this node. 319 */ 320 memset(zone_size, 0, sizeof(zone_size)); 321 memset(zhole_size, 0, sizeof(zhole_size)); 322 323 /* 324 * The size of this node has already been determined. If we need 325 * to do anything fancy with the allocation of this memory to the 326 * zones, now is the time to do it. 327 */ 328 zone_size[0] = end_pfn - start_pfn; 329 330 /* 331 * For each bank in this node, calculate the size of the holes. 332 * holes = node_size - sum(bank_sizes_in_node) 333 */ 334 zhole_size[0] = zone_size[0]; 335 for_each_nodebank(i, mi, node) 336 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT; 337 338 /* 339 * Adjust the sizes according to any special requirements for 340 * this machine type. 341 */ 342 arch_adjust_zones(node, zone_size, zhole_size); 343 344 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size); 345 346 return end_pfn; 347 } 348 349 static void __init bootmem_init(struct meminfo *mi) 350 { 351 unsigned long addr, memend_pfn = 0; 352 int node, initrd_node, i; 353 354 /* 355 * Invalidate the node number for empty or invalid memory banks 356 */ 357 for (i = 0; i < mi->nr_banks; i++) 358 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES) 359 mi->bank[i].node = -1; 360 361 memcpy(&meminfo, mi, sizeof(meminfo)); 362 363 /* 364 * Clear out all the mappings below the kernel image. 365 */ 366 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE) 367 pmd_clear(pmd_off_k(addr)); 368 #ifdef CONFIG_XIP_KERNEL 369 /* The XIP kernel is mapped in the module area -- skip over it */ 370 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK; 371 #endif 372 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) 373 pmd_clear(pmd_off_k(addr)); 374 375 /* 376 * Clear out all the kernel space mappings, except for the first 377 * memory bank, up to the end of the vmalloc region. 378 */ 379 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size); 380 addr < VMALLOC_END; addr += PGDIR_SIZE) 381 pmd_clear(pmd_off_k(addr)); 382 383 /* 384 * Locate which node contains the ramdisk image, if any. 385 */ 386 initrd_node = check_initrd(mi); 387 388 /* 389 * Run through each node initialising the bootmem allocator. 390 */ 391 for_each_node(node) { 392 unsigned long end_pfn; 393 394 end_pfn = bootmem_init_node(node, initrd_node, mi); 395 396 /* 397 * Remember the highest memory PFN. 398 */ 399 if (end_pfn > memend_pfn) 400 memend_pfn = end_pfn; 401 } 402 403 high_memory = __va(memend_pfn << PAGE_SHIFT); 404 405 /* 406 * This doesn't seem to be used by the Linux memory manager any 407 * more, but is used by ll_rw_block. If we can get rid of it, we 408 * also get rid of some of the stuff above as well. 409 * 410 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in 411 * the system, not the maximum PFN. 412 */ 413 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET; 414 } 415 416 /* 417 * Set up device the mappings. Since we clear out the page tables for all 418 * mappings above VMALLOC_END, we will remove any debug device mappings. 419 * This means you have to be careful how you debug this function, or any 420 * called function. This means you can't use any function or debugging 421 * method which may touch any device, otherwise the kernel _will_ crash. 422 */ 423 static void __init devicemaps_init(struct machine_desc *mdesc) 424 { 425 struct map_desc map; 426 unsigned long addr; 427 void *vectors; 428 429 /* 430 * Allocate the vector page early. 431 */ 432 vectors = alloc_bootmem_low_pages(PAGE_SIZE); 433 BUG_ON(!vectors); 434 435 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) 436 pmd_clear(pmd_off_k(addr)); 437 438 /* 439 * Map the kernel if it is XIP. 440 * It is always first in the modulearea. 441 */ 442 #ifdef CONFIG_XIP_KERNEL 443 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & PGDIR_MASK); 444 map.virtual = MODULE_START; 445 map.length = ((unsigned long)&_etext - map.virtual + ~PGDIR_MASK) & PGDIR_MASK; 446 map.type = MT_ROM; 447 create_mapping(&map); 448 #endif 449 450 /* 451 * Map the cache flushing regions. 452 */ 453 #ifdef FLUSH_BASE 454 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 455 map.virtual = FLUSH_BASE; 456 map.length = SZ_1M; 457 map.type = MT_CACHECLEAN; 458 create_mapping(&map); 459 #endif 460 #ifdef FLUSH_BASE_MINICACHE 461 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 462 map.virtual = FLUSH_BASE_MINICACHE; 463 map.length = SZ_1M; 464 map.type = MT_MINICLEAN; 465 create_mapping(&map); 466 #endif 467 468 /* 469 * Create a mapping for the machine vectors at the high-vectors 470 * location (0xffff0000). If we aren't using high-vectors, also 471 * create a mapping at the low-vectors virtual address. 472 */ 473 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 474 map.virtual = 0xffff0000; 475 map.length = PAGE_SIZE; 476 map.type = MT_HIGH_VECTORS; 477 create_mapping(&map); 478 479 if (!vectors_high()) { 480 map.virtual = 0; 481 map.type = MT_LOW_VECTORS; 482 create_mapping(&map); 483 } 484 485 /* 486 * Ask the machine support to map in the statically mapped devices. 487 */ 488 if (mdesc->map_io) 489 mdesc->map_io(); 490 491 /* 492 * Finally flush the caches and tlb to ensure that we're in a 493 * consistent state wrt the writebuffer. This also ensures that 494 * any write-allocated cache lines in the vector page are written 495 * back. After this point, we can start to touch devices again. 496 */ 497 local_flush_tlb_all(); 498 flush_cache_all(); 499 } 500 501 /* 502 * paging_init() sets up the page tables, initialises the zone memory 503 * maps, and sets up the zero page, bad page and bad page tables. 504 */ 505 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc) 506 { 507 void *zero_page; 508 509 build_mem_type_table(); 510 bootmem_init(mi); 511 devicemaps_init(mdesc); 512 513 top_pmd = pmd_off_k(0xffff0000); 514 515 /* 516 * allocate the zero page. Note that we count on this going ok. 517 */ 518 zero_page = alloc_bootmem_low_pages(PAGE_SIZE); 519 memzero(zero_page, PAGE_SIZE); 520 empty_zero_page = virt_to_page(zero_page); 521 flush_dcache_page(empty_zero_page); 522 } 523 524 static inline void free_area(unsigned long addr, unsigned long end, char *s) 525 { 526 unsigned int size = (end - addr) >> 10; 527 528 for (; addr < end; addr += PAGE_SIZE) { 529 struct page *page = virt_to_page(addr); 530 ClearPageReserved(page); 531 init_page_count(page); 532 free_page(addr); 533 totalram_pages++; 534 } 535 536 if (size && s) 537 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); 538 } 539 540 static inline void 541 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) 542 { 543 struct page *start_pg, *end_pg; 544 unsigned long pg, pgend; 545 546 /* 547 * Convert start_pfn/end_pfn to a struct page pointer. 548 */ 549 start_pg = pfn_to_page(start_pfn); 550 end_pg = pfn_to_page(end_pfn); 551 552 /* 553 * Convert to physical addresses, and 554 * round start upwards and end downwards. 555 */ 556 pg = PAGE_ALIGN(__pa(start_pg)); 557 pgend = __pa(end_pg) & PAGE_MASK; 558 559 /* 560 * If there are free pages between these, 561 * free the section of the memmap array. 562 */ 563 if (pg < pgend) 564 free_bootmem_node(NODE_DATA(node), pg, pgend - pg); 565 } 566 567 /* 568 * The mem_map array can get very big. Free the unused area of the memory map. 569 */ 570 static void __init free_unused_memmap_node(int node, struct meminfo *mi) 571 { 572 unsigned long bank_start, prev_bank_end = 0; 573 unsigned int i; 574 575 /* 576 * [FIXME] This relies on each bank being in address order. This 577 * may not be the case, especially if the user has provided the 578 * information on the command line. 579 */ 580 for_each_nodebank(i, mi, node) { 581 bank_start = mi->bank[i].start >> PAGE_SHIFT; 582 if (bank_start < prev_bank_end) { 583 printk(KERN_ERR "MEM: unordered memory banks. " 584 "Not freeing memmap.\n"); 585 break; 586 } 587 588 /* 589 * If we had a previous bank, and there is a space 590 * between the current bank and the previous, free it. 591 */ 592 if (prev_bank_end && prev_bank_end != bank_start) 593 free_memmap(node, prev_bank_end, bank_start); 594 595 prev_bank_end = (mi->bank[i].start + 596 mi->bank[i].size) >> PAGE_SHIFT; 597 } 598 } 599 600 /* 601 * mem_init() marks the free areas in the mem_map and tells us how much 602 * memory is free. This is done after various parts of the system have 603 * claimed their memory after the kernel image. 604 */ 605 void __init mem_init(void) 606 { 607 unsigned int codepages, datapages, initpages; 608 int i, node; 609 610 codepages = &_etext - &_text; 611 datapages = &_end - &__data_start; 612 initpages = &__init_end - &__init_begin; 613 614 #ifndef CONFIG_DISCONTIGMEM 615 max_mapnr = virt_to_page(high_memory) - mem_map; 616 #endif 617 618 /* this will put all unused low memory onto the freelists */ 619 for_each_online_node(node) { 620 pg_data_t *pgdat = NODE_DATA(node); 621 622 free_unused_memmap_node(node, &meminfo); 623 624 if (pgdat->node_spanned_pages != 0) 625 totalram_pages += free_all_bootmem_node(pgdat); 626 } 627 628 #ifdef CONFIG_SA1111 629 /* now that our DMA memory is actually so designated, we can free it */ 630 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL); 631 #endif 632 633 /* 634 * Since our memory may not be contiguous, calculate the 635 * real number of pages we have in this system 636 */ 637 printk(KERN_INFO "Memory:"); 638 639 num_physpages = 0; 640 for (i = 0; i < meminfo.nr_banks; i++) { 641 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT; 642 printk(" %ldMB", meminfo.bank[i].size >> 20); 643 } 644 645 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); 646 printk(KERN_NOTICE "Memory: %luKB available (%dK code, " 647 "%dK data, %dK init)\n", 648 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), 649 codepages >> 10, datapages >> 10, initpages >> 10); 650 651 if (PAGE_SIZE >= 16384 && num_physpages <= 128) { 652 extern int sysctl_overcommit_memory; 653 /* 654 * On a machine this small we won't get 655 * anywhere without overcommit, so turn 656 * it on by default. 657 */ 658 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 659 } 660 } 661 662 void free_initmem(void) 663 { 664 if (!machine_is_integrator() && !machine_is_cintegrator()) { 665 free_area((unsigned long)(&__init_begin), 666 (unsigned long)(&__init_end), 667 "init"); 668 } 669 } 670 671 #ifdef CONFIG_BLK_DEV_INITRD 672 673 static int keep_initrd; 674 675 void free_initrd_mem(unsigned long start, unsigned long end) 676 { 677 if (!keep_initrd) 678 free_area(start, end, "initrd"); 679 } 680 681 static int __init keepinitrd_setup(char *__unused) 682 { 683 keep_initrd = 1; 684 return 1; 685 } 686 687 __setup("keepinitrd", keepinitrd_setup); 688 #endif 689