xref: /linux/arch/arm/mm/init.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/ptrace.h>
13 #include <linux/swap.h>
14 #include <linux/init.h>
15 #include <linux/bootmem.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/initrd.h>
19 
20 #include <asm/mach-types.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
23 #include <asm/tlb.h>
24 
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
27 
28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
29 
30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
31 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
32 extern unsigned long phys_initrd_start;
33 extern unsigned long phys_initrd_size;
34 
35 /*
36  * The sole use of this is to pass memory configuration
37  * data from paging_init to mem_init.
38  */
39 static struct meminfo meminfo __initdata = { 0, };
40 
41 /*
42  * empty_zero_page is a special page that is used for
43  * zero-initialized data and COW.
44  */
45 struct page *empty_zero_page;
46 
47 void show_mem(void)
48 {
49 	int free = 0, total = 0, reserved = 0;
50 	int shared = 0, cached = 0, slab = 0, node;
51 
52 	printk("Mem-info:\n");
53 	show_free_areas();
54 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
55 
56 	for_each_online_node(node) {
57 		struct page *page, *end;
58 
59 		page = NODE_MEM_MAP(node);
60 		end  = page + NODE_DATA(node)->node_spanned_pages;
61 
62 		do {
63 			total++;
64 			if (PageReserved(page))
65 				reserved++;
66 			else if (PageSwapCache(page))
67 				cached++;
68 			else if (PageSlab(page))
69 				slab++;
70 			else if (!page_count(page))
71 				free++;
72 			else
73 				shared += page_count(page) - 1;
74 			page++;
75 		} while (page < end);
76 	}
77 
78 	printk("%d pages of RAM\n", total);
79 	printk("%d free pages\n", free);
80 	printk("%d reserved pages\n", reserved);
81 	printk("%d slab pages\n", slab);
82 	printk("%d pages shared\n", shared);
83 	printk("%d pages swap cached\n", cached);
84 }
85 
86 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
87 {
88 	return pmd_offset(pgd, virt);
89 }
90 
91 static inline pmd_t *pmd_off_k(unsigned long virt)
92 {
93 	return pmd_off(pgd_offset_k(virt), virt);
94 }
95 
96 #define for_each_nodebank(iter,mi,no)			\
97 	for (iter = 0; iter < mi->nr_banks; iter++)	\
98 		if (mi->bank[iter].node == no)
99 
100 /*
101  * FIXME: We really want to avoid allocating the bootmap bitmap
102  * over the top of the initrd.  Hopefully, this is located towards
103  * the start of a bank, so if we allocate the bootmap bitmap at
104  * the end, we won't clash.
105  */
106 static unsigned int __init
107 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
108 {
109 	unsigned int start_pfn, bank, bootmap_pfn;
110 
111 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
112 	bootmap_pfn = 0;
113 
114 	for_each_nodebank(bank, mi, node) {
115 		unsigned int start, end;
116 
117 		start = mi->bank[bank].start >> PAGE_SHIFT;
118 		end   = (mi->bank[bank].size +
119 			 mi->bank[bank].start) >> PAGE_SHIFT;
120 
121 		if (end < start_pfn)
122 			continue;
123 
124 		if (start < start_pfn)
125 			start = start_pfn;
126 
127 		if (end <= start)
128 			continue;
129 
130 		if (end - start >= bootmap_pages) {
131 			bootmap_pfn = start;
132 			break;
133 		}
134 	}
135 
136 	if (bootmap_pfn == 0)
137 		BUG();
138 
139 	return bootmap_pfn;
140 }
141 
142 static int __init check_initrd(struct meminfo *mi)
143 {
144 	int initrd_node = -2;
145 #ifdef CONFIG_BLK_DEV_INITRD
146 	unsigned long end = phys_initrd_start + phys_initrd_size;
147 
148 	/*
149 	 * Make sure that the initrd is within a valid area of
150 	 * memory.
151 	 */
152 	if (phys_initrd_size) {
153 		unsigned int i;
154 
155 		initrd_node = -1;
156 
157 		for (i = 0; i < mi->nr_banks; i++) {
158 			unsigned long bank_end;
159 
160 			bank_end = mi->bank[i].start + mi->bank[i].size;
161 
162 			if (mi->bank[i].start <= phys_initrd_start &&
163 			    end <= bank_end)
164 				initrd_node = mi->bank[i].node;
165 		}
166 	}
167 
168 	if (initrd_node == -1) {
169 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
170 		       "physical memory - disabling initrd\n",
171 		       phys_initrd_start, end);
172 		phys_initrd_start = phys_initrd_size = 0;
173 	}
174 #endif
175 
176 	return initrd_node;
177 }
178 
179 /*
180  * Reserve the various regions of node 0
181  */
182 static __init void reserve_node_zero(pg_data_t *pgdat)
183 {
184 	unsigned long res_size = 0;
185 
186 	/*
187 	 * Register the kernel text and data with bootmem.
188 	 * Note that this can only be in node 0.
189 	 */
190 #ifdef CONFIG_XIP_KERNEL
191 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
192 #else
193 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
194 #endif
195 
196 	/*
197 	 * Reserve the page tables.  These are already in use,
198 	 * and can only be in node 0.
199 	 */
200 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
201 			     PTRS_PER_PGD * sizeof(pgd_t));
202 
203 	/*
204 	 * Hmm... This should go elsewhere, but we really really need to
205 	 * stop things allocating the low memory; ideally we need a better
206 	 * implementation of GFP_DMA which does not assume that DMA-able
207 	 * memory starts at zero.
208 	 */
209 	if (machine_is_integrator() || machine_is_cintegrator())
210 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
211 
212 	/*
213 	 * These should likewise go elsewhere.  They pre-reserve the
214 	 * screen memory region at the start of main system memory.
215 	 */
216 	if (machine_is_edb7211())
217 		res_size = 0x00020000;
218 	if (machine_is_p720t())
219 		res_size = 0x00014000;
220 
221 #ifdef CONFIG_SA1111
222 	/*
223 	 * Because of the SA1111 DMA bug, we want to preserve our
224 	 * precious DMA-able memory...
225 	 */
226 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
227 #endif
228 	if (res_size)
229 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
230 }
231 
232 void __init build_mem_type_table(void);
233 void __init create_mapping(struct map_desc *md);
234 
235 static unsigned long __init
236 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
237 {
238 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
239 	unsigned long start_pfn, end_pfn, boot_pfn;
240 	unsigned int boot_pages;
241 	pg_data_t *pgdat;
242 	int i;
243 
244 	start_pfn = -1UL;
245 	end_pfn = 0;
246 
247 	/*
248 	 * Calculate the pfn range, and map the memory banks for this node.
249 	 */
250 	for_each_nodebank(i, mi, node) {
251 		unsigned long start, end;
252 		struct map_desc map;
253 
254 		start = mi->bank[i].start >> PAGE_SHIFT;
255 		end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
256 
257 		if (start_pfn > start)
258 			start_pfn = start;
259 		if (end_pfn < end)
260 			end_pfn = end;
261 
262 		map.pfn = __phys_to_pfn(mi->bank[i].start);
263 		map.virtual = __phys_to_virt(mi->bank[i].start);
264 		map.length = mi->bank[i].size;
265 		map.type = MT_MEMORY;
266 
267 		create_mapping(&map);
268 	}
269 
270 	/*
271 	 * If there is no memory in this node, ignore it.
272 	 */
273 	if (end_pfn == 0)
274 		return end_pfn;
275 
276 	/*
277 	 * Allocate the bootmem bitmap page.
278 	 */
279 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
280 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
281 
282 	/*
283 	 * Initialise the bootmem allocator for this node, handing the
284 	 * memory banks over to bootmem.
285 	 */
286 	node_set_online(node);
287 	pgdat = NODE_DATA(node);
288 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
289 
290 	for_each_nodebank(i, mi, node)
291 		free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
292 
293 	/*
294 	 * Reserve the bootmem bitmap for this node.
295 	 */
296 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
297 			     boot_pages << PAGE_SHIFT);
298 
299 #ifdef CONFIG_BLK_DEV_INITRD
300 	/*
301 	 * If the initrd is in this node, reserve its memory.
302 	 */
303 	if (node == initrd_node) {
304 		reserve_bootmem_node(pgdat, phys_initrd_start,
305 				     phys_initrd_size);
306 		initrd_start = __phys_to_virt(phys_initrd_start);
307 		initrd_end = initrd_start + phys_initrd_size;
308 	}
309 #endif
310 
311 	/*
312 	 * Finally, reserve any node zero regions.
313 	 */
314 	if (node == 0)
315 		reserve_node_zero(pgdat);
316 
317 	/*
318 	 * initialise the zones within this node.
319 	 */
320 	memset(zone_size, 0, sizeof(zone_size));
321 	memset(zhole_size, 0, sizeof(zhole_size));
322 
323 	/*
324 	 * The size of this node has already been determined.  If we need
325 	 * to do anything fancy with the allocation of this memory to the
326 	 * zones, now is the time to do it.
327 	 */
328 	zone_size[0] = end_pfn - start_pfn;
329 
330 	/*
331 	 * For each bank in this node, calculate the size of the holes.
332 	 *  holes = node_size - sum(bank_sizes_in_node)
333 	 */
334 	zhole_size[0] = zone_size[0];
335 	for_each_nodebank(i, mi, node)
336 		zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
337 
338 	/*
339 	 * Adjust the sizes according to any special requirements for
340 	 * this machine type.
341 	 */
342 	arch_adjust_zones(node, zone_size, zhole_size);
343 
344 	free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
345 
346 	return end_pfn;
347 }
348 
349 static void __init bootmem_init(struct meminfo *mi)
350 {
351 	unsigned long addr, memend_pfn = 0;
352 	int node, initrd_node, i;
353 
354 	/*
355 	 * Invalidate the node number for empty or invalid memory banks
356 	 */
357 	for (i = 0; i < mi->nr_banks; i++)
358 		if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
359 			mi->bank[i].node = -1;
360 
361 	memcpy(&meminfo, mi, sizeof(meminfo));
362 
363 	/*
364 	 * Clear out all the mappings below the kernel image.
365 	 */
366 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
367 		pmd_clear(pmd_off_k(addr));
368 #ifdef CONFIG_XIP_KERNEL
369 	/* The XIP kernel is mapped in the module area -- skip over it */
370 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
371 #endif
372 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
373 		pmd_clear(pmd_off_k(addr));
374 
375 	/*
376 	 * Clear out all the kernel space mappings, except for the first
377 	 * memory bank, up to the end of the vmalloc region.
378 	 */
379 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
380 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
381 		pmd_clear(pmd_off_k(addr));
382 
383 	/*
384 	 * Locate which node contains the ramdisk image, if any.
385 	 */
386 	initrd_node = check_initrd(mi);
387 
388 	/*
389 	 * Run through each node initialising the bootmem allocator.
390 	 */
391 	for_each_node(node) {
392 		unsigned long end_pfn;
393 
394 		end_pfn = bootmem_init_node(node, initrd_node, mi);
395 
396 		/*
397 		 * Remember the highest memory PFN.
398 		 */
399 		if (end_pfn > memend_pfn)
400 			memend_pfn = end_pfn;
401 	}
402 
403 	high_memory = __va(memend_pfn << PAGE_SHIFT);
404 
405 	/*
406 	 * This doesn't seem to be used by the Linux memory manager any
407 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
408 	 * also get rid of some of the stuff above as well.
409 	 *
410 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
411 	 * the system, not the maximum PFN.
412 	 */
413 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
414 }
415 
416 /*
417  * Set up device the mappings.  Since we clear out the page tables for all
418  * mappings above VMALLOC_END, we will remove any debug device mappings.
419  * This means you have to be careful how you debug this function, or any
420  * called function.  This means you can't use any function or debugging
421  * method which may touch any device, otherwise the kernel _will_ crash.
422  */
423 static void __init devicemaps_init(struct machine_desc *mdesc)
424 {
425 	struct map_desc map;
426 	unsigned long addr;
427 	void *vectors;
428 
429 	/*
430 	 * Allocate the vector page early.
431 	 */
432 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
433 	BUG_ON(!vectors);
434 
435 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
436 		pmd_clear(pmd_off_k(addr));
437 
438 	/*
439 	 * Map the kernel if it is XIP.
440 	 * It is always first in the modulearea.
441 	 */
442 #ifdef CONFIG_XIP_KERNEL
443 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & PGDIR_MASK);
444 	map.virtual = MODULE_START;
445 	map.length = ((unsigned long)&_etext - map.virtual + ~PGDIR_MASK) & PGDIR_MASK;
446 	map.type = MT_ROM;
447 	create_mapping(&map);
448 #endif
449 
450 	/*
451 	 * Map the cache flushing regions.
452 	 */
453 #ifdef FLUSH_BASE
454 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
455 	map.virtual = FLUSH_BASE;
456 	map.length = SZ_1M;
457 	map.type = MT_CACHECLEAN;
458 	create_mapping(&map);
459 #endif
460 #ifdef FLUSH_BASE_MINICACHE
461 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
462 	map.virtual = FLUSH_BASE_MINICACHE;
463 	map.length = SZ_1M;
464 	map.type = MT_MINICLEAN;
465 	create_mapping(&map);
466 #endif
467 
468 	/*
469 	 * Create a mapping for the machine vectors at the high-vectors
470 	 * location (0xffff0000).  If we aren't using high-vectors, also
471 	 * create a mapping at the low-vectors virtual address.
472 	 */
473 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
474 	map.virtual = 0xffff0000;
475 	map.length = PAGE_SIZE;
476 	map.type = MT_HIGH_VECTORS;
477 	create_mapping(&map);
478 
479 	if (!vectors_high()) {
480 		map.virtual = 0;
481 		map.type = MT_LOW_VECTORS;
482 		create_mapping(&map);
483 	}
484 
485 	/*
486 	 * Ask the machine support to map in the statically mapped devices.
487 	 */
488 	if (mdesc->map_io)
489 		mdesc->map_io();
490 
491 	/*
492 	 * Finally flush the caches and tlb to ensure that we're in a
493 	 * consistent state wrt the writebuffer.  This also ensures that
494 	 * any write-allocated cache lines in the vector page are written
495 	 * back.  After this point, we can start to touch devices again.
496 	 */
497 	local_flush_tlb_all();
498 	flush_cache_all();
499 }
500 
501 /*
502  * paging_init() sets up the page tables, initialises the zone memory
503  * maps, and sets up the zero page, bad page and bad page tables.
504  */
505 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
506 {
507 	void *zero_page;
508 
509 	build_mem_type_table();
510 	bootmem_init(mi);
511 	devicemaps_init(mdesc);
512 
513 	top_pmd = pmd_off_k(0xffff0000);
514 
515 	/*
516 	 * allocate the zero page.  Note that we count on this going ok.
517 	 */
518 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
519 	memzero(zero_page, PAGE_SIZE);
520 	empty_zero_page = virt_to_page(zero_page);
521 	flush_dcache_page(empty_zero_page);
522 }
523 
524 static inline void free_area(unsigned long addr, unsigned long end, char *s)
525 {
526 	unsigned int size = (end - addr) >> 10;
527 
528 	for (; addr < end; addr += PAGE_SIZE) {
529 		struct page *page = virt_to_page(addr);
530 		ClearPageReserved(page);
531 		init_page_count(page);
532 		free_page(addr);
533 		totalram_pages++;
534 	}
535 
536 	if (size && s)
537 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
538 }
539 
540 static inline void
541 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
542 {
543 	struct page *start_pg, *end_pg;
544 	unsigned long pg, pgend;
545 
546 	/*
547 	 * Convert start_pfn/end_pfn to a struct page pointer.
548 	 */
549 	start_pg = pfn_to_page(start_pfn);
550 	end_pg = pfn_to_page(end_pfn);
551 
552 	/*
553 	 * Convert to physical addresses, and
554 	 * round start upwards and end downwards.
555 	 */
556 	pg = PAGE_ALIGN(__pa(start_pg));
557 	pgend = __pa(end_pg) & PAGE_MASK;
558 
559 	/*
560 	 * If there are free pages between these,
561 	 * free the section of the memmap array.
562 	 */
563 	if (pg < pgend)
564 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
565 }
566 
567 /*
568  * The mem_map array can get very big.  Free the unused area of the memory map.
569  */
570 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
571 {
572 	unsigned long bank_start, prev_bank_end = 0;
573 	unsigned int i;
574 
575 	/*
576 	 * [FIXME] This relies on each bank being in address order.  This
577 	 * may not be the case, especially if the user has provided the
578 	 * information on the command line.
579 	 */
580 	for_each_nodebank(i, mi, node) {
581 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
582 		if (bank_start < prev_bank_end) {
583 			printk(KERN_ERR "MEM: unordered memory banks.  "
584 				"Not freeing memmap.\n");
585 			break;
586 		}
587 
588 		/*
589 		 * If we had a previous bank, and there is a space
590 		 * between the current bank and the previous, free it.
591 		 */
592 		if (prev_bank_end && prev_bank_end != bank_start)
593 			free_memmap(node, prev_bank_end, bank_start);
594 
595 		prev_bank_end = (mi->bank[i].start +
596 				 mi->bank[i].size) >> PAGE_SHIFT;
597 	}
598 }
599 
600 /*
601  * mem_init() marks the free areas in the mem_map and tells us how much
602  * memory is free.  This is done after various parts of the system have
603  * claimed their memory after the kernel image.
604  */
605 void __init mem_init(void)
606 {
607 	unsigned int codepages, datapages, initpages;
608 	int i, node;
609 
610 	codepages = &_etext - &_text;
611 	datapages = &_end - &__data_start;
612 	initpages = &__init_end - &__init_begin;
613 
614 #ifndef CONFIG_DISCONTIGMEM
615 	max_mapnr   = virt_to_page(high_memory) - mem_map;
616 #endif
617 
618 	/* this will put all unused low memory onto the freelists */
619 	for_each_online_node(node) {
620 		pg_data_t *pgdat = NODE_DATA(node);
621 
622 		free_unused_memmap_node(node, &meminfo);
623 
624 		if (pgdat->node_spanned_pages != 0)
625 			totalram_pages += free_all_bootmem_node(pgdat);
626 	}
627 
628 #ifdef CONFIG_SA1111
629 	/* now that our DMA memory is actually so designated, we can free it */
630 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
631 #endif
632 
633 	/*
634 	 * Since our memory may not be contiguous, calculate the
635 	 * real number of pages we have in this system
636 	 */
637 	printk(KERN_INFO "Memory:");
638 
639 	num_physpages = 0;
640 	for (i = 0; i < meminfo.nr_banks; i++) {
641 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
642 		printk(" %ldMB", meminfo.bank[i].size >> 20);
643 	}
644 
645 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
646 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
647 		"%dK data, %dK init)\n",
648 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
649 		codepages >> 10, datapages >> 10, initpages >> 10);
650 
651 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
652 		extern int sysctl_overcommit_memory;
653 		/*
654 		 * On a machine this small we won't get
655 		 * anywhere without overcommit, so turn
656 		 * it on by default.
657 		 */
658 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
659 	}
660 }
661 
662 void free_initmem(void)
663 {
664 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
665 		free_area((unsigned long)(&__init_begin),
666 			  (unsigned long)(&__init_end),
667 			  "init");
668 	}
669 }
670 
671 #ifdef CONFIG_BLK_DEV_INITRD
672 
673 static int keep_initrd;
674 
675 void free_initrd_mem(unsigned long start, unsigned long end)
676 {
677 	if (!keep_initrd)
678 		free_area(start, end, "initrd");
679 }
680 
681 static int __init keepinitrd_setup(char *__unused)
682 {
683 	keep_initrd = 1;
684 	return 1;
685 }
686 
687 __setup("keepinitrd", keepinitrd_setup);
688 #endif
689