xref: /linux/arch/arm/mm/flush.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/flush.c
4  *
5  *  Copyright (C) 1995-2002 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 
12 #include <asm/cacheflush.h>
13 #include <asm/cachetype.h>
14 #include <asm/highmem.h>
15 #include <asm/smp_plat.h>
16 #include <asm/tlbflush.h>
17 #include <linux/hugetlb.h>
18 
19 #include "mm.h"
20 
21 #ifdef CONFIG_ARM_HEAVY_MB
22 void (*soc_mb)(void);
23 
24 void arm_heavy_mb(void)
25 {
26 #ifdef CONFIG_OUTER_CACHE_SYNC
27 	if (outer_cache.sync)
28 		outer_cache.sync();
29 #endif
30 	if (soc_mb)
31 		soc_mb();
32 }
33 EXPORT_SYMBOL(arm_heavy_mb);
34 #endif
35 
36 #ifdef CONFIG_CPU_CACHE_VIPT
37 
38 static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
39 {
40 	unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
41 	const int zero = 0;
42 
43 	set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
44 
45 	asm(	"mcrr	p15, 0, %1, %0, c14\n"
46 	"	mcr	p15, 0, %2, c7, c10, 4"
47 	    :
48 	    : "r" (to), "r" (to + PAGE_SIZE - 1), "r" (zero)
49 	    : "cc");
50 }
51 
52 static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
53 {
54 	unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
55 	unsigned long offset = vaddr & (PAGE_SIZE - 1);
56 	unsigned long to;
57 
58 	set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
59 	to = va + offset;
60 	flush_icache_range(to, to + len);
61 }
62 
63 void flush_cache_mm(struct mm_struct *mm)
64 {
65 	if (cache_is_vivt()) {
66 		vivt_flush_cache_mm(mm);
67 		return;
68 	}
69 
70 	if (cache_is_vipt_aliasing()) {
71 		asm(	"mcr	p15, 0, %0, c7, c14, 0\n"
72 		"	mcr	p15, 0, %0, c7, c10, 4"
73 		    :
74 		    : "r" (0)
75 		    : "cc");
76 	}
77 }
78 
79 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
80 {
81 	if (cache_is_vivt()) {
82 		vivt_flush_cache_range(vma, start, end);
83 		return;
84 	}
85 
86 	if (cache_is_vipt_aliasing()) {
87 		asm(	"mcr	p15, 0, %0, c7, c14, 0\n"
88 		"	mcr	p15, 0, %0, c7, c10, 4"
89 		    :
90 		    : "r" (0)
91 		    : "cc");
92 	}
93 
94 	if (vma->vm_flags & VM_EXEC)
95 		__flush_icache_all();
96 }
97 
98 void flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr)
99 {
100 	if (cache_is_vivt()) {
101 		vivt_flush_cache_pages(vma, user_addr, pfn, nr);
102 		return;
103 	}
104 
105 	if (cache_is_vipt_aliasing()) {
106 		flush_pfn_alias(pfn, user_addr);
107 		__flush_icache_all();
108 	}
109 
110 	if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
111 		__flush_icache_all();
112 }
113 
114 #else
115 #define flush_pfn_alias(pfn,vaddr)		do { } while (0)
116 #define flush_icache_alias(pfn,vaddr,len)	do { } while (0)
117 #endif
118 
119 #define FLAG_PA_IS_EXEC 1
120 #define FLAG_PA_CORE_IN_MM 2
121 
122 static void flush_ptrace_access_other(void *args)
123 {
124 	__flush_icache_all();
125 }
126 
127 static inline
128 void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr,
129 			   unsigned long len, unsigned int flags)
130 {
131 	if (cache_is_vivt()) {
132 		if (flags & FLAG_PA_CORE_IN_MM) {
133 			unsigned long addr = (unsigned long)kaddr;
134 			__cpuc_coherent_kern_range(addr, addr + len);
135 		}
136 		return;
137 	}
138 
139 	if (cache_is_vipt_aliasing()) {
140 		flush_pfn_alias(page_to_pfn(page), uaddr);
141 		__flush_icache_all();
142 		return;
143 	}
144 
145 	/* VIPT non-aliasing D-cache */
146 	if (flags & FLAG_PA_IS_EXEC) {
147 		unsigned long addr = (unsigned long)kaddr;
148 		if (icache_is_vipt_aliasing())
149 			flush_icache_alias(page_to_pfn(page), uaddr, len);
150 		else
151 			__cpuc_coherent_kern_range(addr, addr + len);
152 		if (cache_ops_need_broadcast())
153 			smp_call_function(flush_ptrace_access_other,
154 					  NULL, 1);
155 	}
156 }
157 
158 static
159 void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
160 			 unsigned long uaddr, void *kaddr, unsigned long len)
161 {
162 	unsigned int flags = 0;
163 	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
164 		flags |= FLAG_PA_CORE_IN_MM;
165 	if (vma->vm_flags & VM_EXEC)
166 		flags |= FLAG_PA_IS_EXEC;
167 	__flush_ptrace_access(page, uaddr, kaddr, len, flags);
168 }
169 
170 void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
171 			     void *kaddr, unsigned long len)
172 {
173 	unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC;
174 
175 	__flush_ptrace_access(page, uaddr, kaddr, len, flags);
176 }
177 
178 /*
179  * Copy user data from/to a page which is mapped into a different
180  * processes address space.  Really, we want to allow our "user
181  * space" model to handle this.
182  *
183  * Note that this code needs to run on the current CPU.
184  */
185 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
186 		       unsigned long uaddr, void *dst, const void *src,
187 		       unsigned long len)
188 {
189 #ifdef CONFIG_SMP
190 	preempt_disable();
191 #endif
192 	memcpy(dst, src, len);
193 	flush_ptrace_access(vma, page, uaddr, dst, len);
194 #ifdef CONFIG_SMP
195 	preempt_enable();
196 #endif
197 }
198 
199 void __flush_dcache_folio(struct address_space *mapping, struct folio *folio)
200 {
201 	/*
202 	 * Writeback any data associated with the kernel mapping of this
203 	 * page.  This ensures that data in the physical page is mutually
204 	 * coherent with the kernels mapping.
205 	 */
206 	if (!folio_test_highmem(folio)) {
207 		__cpuc_flush_dcache_area(folio_address(folio),
208 					folio_size(folio));
209 	} else {
210 		unsigned long i;
211 		if (cache_is_vipt_nonaliasing()) {
212 			for (i = 0; i < folio_nr_pages(folio); i++) {
213 				void *addr = kmap_local_folio(folio,
214 								i * PAGE_SIZE);
215 				__cpuc_flush_dcache_area(addr, PAGE_SIZE);
216 				kunmap_local(addr);
217 			}
218 		} else {
219 			for (i = 0; i < folio_nr_pages(folio); i++) {
220 				void *addr = kmap_high_get(folio_page(folio, i));
221 				if (addr) {
222 					__cpuc_flush_dcache_area(addr, PAGE_SIZE);
223 					kunmap_high(folio_page(folio, i));
224 				}
225 			}
226 		}
227 	}
228 
229 	/*
230 	 * If this is a page cache page, and we have an aliasing VIPT cache,
231 	 * we only need to do one flush - which would be at the relevant
232 	 * userspace colour, which is congruent with page->index.
233 	 */
234 	if (mapping && cache_is_vipt_aliasing())
235 		flush_pfn_alias(folio_pfn(folio), folio_pos(folio));
236 }
237 
238 static void __flush_dcache_aliases(struct address_space *mapping, struct folio *folio)
239 {
240 	struct mm_struct *mm = current->active_mm;
241 	struct vm_area_struct *vma;
242 	pgoff_t pgoff, pgoff_end;
243 
244 	/*
245 	 * There are possible user space mappings of this page:
246 	 * - VIVT cache: we need to also write back and invalidate all user
247 	 *   data in the current VM view associated with this page.
248 	 * - aliasing VIPT: we only need to find one mapping of this page.
249 	 */
250 	pgoff = folio->index;
251 	pgoff_end = pgoff + folio_nr_pages(folio) - 1;
252 
253 	flush_dcache_mmap_lock(mapping);
254 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff_end) {
255 		unsigned long start, offset, pfn;
256 		unsigned int nr;
257 
258 		/*
259 		 * If this VMA is not in our MM, we can ignore it.
260 		 */
261 		if (vma->vm_mm != mm)
262 			continue;
263 		if (!(vma->vm_flags & VM_MAYSHARE))
264 			continue;
265 
266 		start = vma->vm_start;
267 		pfn = folio_pfn(folio);
268 		nr = folio_nr_pages(folio);
269 		offset = pgoff - vma->vm_pgoff;
270 		if (offset > -nr) {
271 			pfn -= offset;
272 			nr += offset;
273 		} else {
274 			start += offset * PAGE_SIZE;
275 		}
276 		if (start + nr * PAGE_SIZE > vma->vm_end)
277 			nr = (vma->vm_end - start) / PAGE_SIZE;
278 
279 		flush_cache_pages(vma, start, pfn, nr);
280 	}
281 	flush_dcache_mmap_unlock(mapping);
282 }
283 
284 #if __LINUX_ARM_ARCH__ >= 6
285 void __sync_icache_dcache(pte_t pteval)
286 {
287 	unsigned long pfn;
288 	struct folio *folio;
289 	struct address_space *mapping;
290 
291 	if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
292 		/* only flush non-aliasing VIPT caches for exec mappings */
293 		return;
294 	pfn = pte_pfn(pteval);
295 	if (!pfn_valid(pfn))
296 		return;
297 
298 	folio = page_folio(pfn_to_page(pfn));
299 	if (cache_is_vipt_aliasing())
300 		mapping = folio_flush_mapping(folio);
301 	else
302 		mapping = NULL;
303 
304 	if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
305 		__flush_dcache_folio(mapping, folio);
306 
307 	if (pte_exec(pteval))
308 		__flush_icache_all();
309 }
310 #endif
311 
312 /*
313  * Ensure cache coherency between kernel mapping and userspace mapping
314  * of this page.
315  *
316  * We have three cases to consider:
317  *  - VIPT non-aliasing cache: fully coherent so nothing required.
318  *  - VIVT: fully aliasing, so we need to handle every alias in our
319  *          current VM view.
320  *  - VIPT aliasing: need to handle one alias in our current VM view.
321  *
322  * If we need to handle aliasing:
323  *  If the page only exists in the page cache and there are no user
324  *  space mappings, we can be lazy and remember that we may have dirty
325  *  kernel cache lines for later.  Otherwise, we assume we have
326  *  aliasing mappings.
327  *
328  * Note that we disable the lazy flush for SMP configurations where
329  * the cache maintenance operations are not automatically broadcasted.
330  */
331 void flush_dcache_folio(struct folio *folio)
332 {
333 	struct address_space *mapping;
334 
335 	/*
336 	 * The zero page is never written to, so never has any dirty
337 	 * cache lines, and therefore never needs to be flushed.
338 	 */
339 	if (is_zero_pfn(folio_pfn(folio)))
340 		return;
341 
342 	if (!cache_ops_need_broadcast() && cache_is_vipt_nonaliasing()) {
343 		if (test_bit(PG_dcache_clean, &folio->flags))
344 			clear_bit(PG_dcache_clean, &folio->flags);
345 		return;
346 	}
347 
348 	mapping = folio_flush_mapping(folio);
349 
350 	if (!cache_ops_need_broadcast() &&
351 	    mapping && !folio_mapped(folio))
352 		clear_bit(PG_dcache_clean, &folio->flags);
353 	else {
354 		__flush_dcache_folio(mapping, folio);
355 		if (mapping && cache_is_vivt())
356 			__flush_dcache_aliases(mapping, folio);
357 		else if (mapping)
358 			__flush_icache_all();
359 		set_bit(PG_dcache_clean, &folio->flags);
360 	}
361 }
362 EXPORT_SYMBOL(flush_dcache_folio);
363 
364 void flush_dcache_page(struct page *page)
365 {
366 	flush_dcache_folio(page_folio(page));
367 }
368 EXPORT_SYMBOL(flush_dcache_page);
369 /*
370  * Flush an anonymous page so that users of get_user_pages()
371  * can safely access the data.  The expected sequence is:
372  *
373  *  get_user_pages()
374  *    -> flush_anon_page
375  *  memcpy() to/from page
376  *  if written to page, flush_dcache_page()
377  */
378 void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr);
379 void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
380 {
381 	unsigned long pfn;
382 
383 	/* VIPT non-aliasing caches need do nothing */
384 	if (cache_is_vipt_nonaliasing())
385 		return;
386 
387 	/*
388 	 * Write back and invalidate userspace mapping.
389 	 */
390 	pfn = page_to_pfn(page);
391 	if (cache_is_vivt()) {
392 		flush_cache_page(vma, vmaddr, pfn);
393 	} else {
394 		/*
395 		 * For aliasing VIPT, we can flush an alias of the
396 		 * userspace address only.
397 		 */
398 		flush_pfn_alias(pfn, vmaddr);
399 		__flush_icache_all();
400 	}
401 
402 	/*
403 	 * Invalidate kernel mapping.  No data should be contained
404 	 * in this mapping of the page.  FIXME: this is overkill
405 	 * since we actually ask for a write-back and invalidate.
406 	 */
407 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
408 }
409