xref: /linux/arch/arm/mm/flush.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  *  linux/arch/arm/mm/flush.c
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 
15 #include <asm/cacheflush.h>
16 #include <asm/cachetype.h>
17 #include <asm/highmem.h>
18 #include <asm/smp_plat.h>
19 #include <asm/tlbflush.h>
20 #include <linux/hugetlb.h>
21 
22 #include "mm.h"
23 
24 #ifdef CONFIG_CPU_CACHE_VIPT
25 
26 static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
27 {
28 	unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
29 	const int zero = 0;
30 
31 	set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
32 
33 	asm(	"mcrr	p15, 0, %1, %0, c14\n"
34 	"	mcr	p15, 0, %2, c7, c10, 4"
35 	    :
36 	    : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
37 	    : "cc");
38 }
39 
40 static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
41 {
42 	unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
43 	unsigned long offset = vaddr & (PAGE_SIZE - 1);
44 	unsigned long to;
45 
46 	set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
47 	to = va + offset;
48 	flush_icache_range(to, to + len);
49 }
50 
51 void flush_cache_mm(struct mm_struct *mm)
52 {
53 	if (cache_is_vivt()) {
54 		vivt_flush_cache_mm(mm);
55 		return;
56 	}
57 
58 	if (cache_is_vipt_aliasing()) {
59 		asm(	"mcr	p15, 0, %0, c7, c14, 0\n"
60 		"	mcr	p15, 0, %0, c7, c10, 4"
61 		    :
62 		    : "r" (0)
63 		    : "cc");
64 	}
65 }
66 
67 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
68 {
69 	if (cache_is_vivt()) {
70 		vivt_flush_cache_range(vma, start, end);
71 		return;
72 	}
73 
74 	if (cache_is_vipt_aliasing()) {
75 		asm(	"mcr	p15, 0, %0, c7, c14, 0\n"
76 		"	mcr	p15, 0, %0, c7, c10, 4"
77 		    :
78 		    : "r" (0)
79 		    : "cc");
80 	}
81 
82 	if (vma->vm_flags & VM_EXEC)
83 		__flush_icache_all();
84 }
85 
86 void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
87 {
88 	if (cache_is_vivt()) {
89 		vivt_flush_cache_page(vma, user_addr, pfn);
90 		return;
91 	}
92 
93 	if (cache_is_vipt_aliasing()) {
94 		flush_pfn_alias(pfn, user_addr);
95 		__flush_icache_all();
96 	}
97 
98 	if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
99 		__flush_icache_all();
100 }
101 
102 #else
103 #define flush_pfn_alias(pfn,vaddr)		do { } while (0)
104 #define flush_icache_alias(pfn,vaddr,len)	do { } while (0)
105 #endif
106 
107 #define FLAG_PA_IS_EXEC 1
108 #define FLAG_PA_CORE_IN_MM 2
109 
110 static void flush_ptrace_access_other(void *args)
111 {
112 	__flush_icache_all();
113 }
114 
115 static inline
116 void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr,
117 			   unsigned long len, unsigned int flags)
118 {
119 	if (cache_is_vivt()) {
120 		if (flags & FLAG_PA_CORE_IN_MM) {
121 			unsigned long addr = (unsigned long)kaddr;
122 			__cpuc_coherent_kern_range(addr, addr + len);
123 		}
124 		return;
125 	}
126 
127 	if (cache_is_vipt_aliasing()) {
128 		flush_pfn_alias(page_to_pfn(page), uaddr);
129 		__flush_icache_all();
130 		return;
131 	}
132 
133 	/* VIPT non-aliasing D-cache */
134 	if (flags & FLAG_PA_IS_EXEC) {
135 		unsigned long addr = (unsigned long)kaddr;
136 		if (icache_is_vipt_aliasing())
137 			flush_icache_alias(page_to_pfn(page), uaddr, len);
138 		else
139 			__cpuc_coherent_kern_range(addr, addr + len);
140 		if (cache_ops_need_broadcast())
141 			smp_call_function(flush_ptrace_access_other,
142 					  NULL, 1);
143 	}
144 }
145 
146 static
147 void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
148 			 unsigned long uaddr, void *kaddr, unsigned long len)
149 {
150 	unsigned int flags = 0;
151 	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
152 		flags |= FLAG_PA_CORE_IN_MM;
153 	if (vma->vm_flags & VM_EXEC)
154 		flags |= FLAG_PA_IS_EXEC;
155 	__flush_ptrace_access(page, uaddr, kaddr, len, flags);
156 }
157 
158 void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
159 			     void *kaddr, unsigned long len)
160 {
161 	unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC;
162 
163 	__flush_ptrace_access(page, uaddr, kaddr, len, flags);
164 }
165 
166 /*
167  * Copy user data from/to a page which is mapped into a different
168  * processes address space.  Really, we want to allow our "user
169  * space" model to handle this.
170  *
171  * Note that this code needs to run on the current CPU.
172  */
173 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
174 		       unsigned long uaddr, void *dst, const void *src,
175 		       unsigned long len)
176 {
177 #ifdef CONFIG_SMP
178 	preempt_disable();
179 #endif
180 	memcpy(dst, src, len);
181 	flush_ptrace_access(vma, page, uaddr, dst, len);
182 #ifdef CONFIG_SMP
183 	preempt_enable();
184 #endif
185 }
186 
187 void __flush_dcache_page(struct address_space *mapping, struct page *page)
188 {
189 	/*
190 	 * Writeback any data associated with the kernel mapping of this
191 	 * page.  This ensures that data in the physical page is mutually
192 	 * coherent with the kernels mapping.
193 	 */
194 	if (!PageHighMem(page)) {
195 		size_t page_size = PAGE_SIZE << compound_order(page);
196 		__cpuc_flush_dcache_area(page_address(page), page_size);
197 	} else {
198 		unsigned long i;
199 		if (cache_is_vipt_nonaliasing()) {
200 			for (i = 0; i < (1 << compound_order(page)); i++) {
201 				void *addr = kmap_atomic(page + i);
202 				__cpuc_flush_dcache_area(addr, PAGE_SIZE);
203 				kunmap_atomic(addr);
204 			}
205 		} else {
206 			for (i = 0; i < (1 << compound_order(page)); i++) {
207 				void *addr = kmap_high_get(page + i);
208 				if (addr) {
209 					__cpuc_flush_dcache_area(addr, PAGE_SIZE);
210 					kunmap_high(page + i);
211 				}
212 			}
213 		}
214 	}
215 
216 	/*
217 	 * If this is a page cache page, and we have an aliasing VIPT cache,
218 	 * we only need to do one flush - which would be at the relevant
219 	 * userspace colour, which is congruent with page->index.
220 	 */
221 	if (mapping && cache_is_vipt_aliasing())
222 		flush_pfn_alias(page_to_pfn(page),
223 				page->index << PAGE_CACHE_SHIFT);
224 }
225 
226 static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
227 {
228 	struct mm_struct *mm = current->active_mm;
229 	struct vm_area_struct *mpnt;
230 	pgoff_t pgoff;
231 
232 	/*
233 	 * There are possible user space mappings of this page:
234 	 * - VIVT cache: we need to also write back and invalidate all user
235 	 *   data in the current VM view associated with this page.
236 	 * - aliasing VIPT: we only need to find one mapping of this page.
237 	 */
238 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
239 
240 	flush_dcache_mmap_lock(mapping);
241 	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
242 		unsigned long offset;
243 
244 		/*
245 		 * If this VMA is not in our MM, we can ignore it.
246 		 */
247 		if (mpnt->vm_mm != mm)
248 			continue;
249 		if (!(mpnt->vm_flags & VM_MAYSHARE))
250 			continue;
251 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
252 		flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
253 	}
254 	flush_dcache_mmap_unlock(mapping);
255 }
256 
257 #if __LINUX_ARM_ARCH__ >= 6
258 void __sync_icache_dcache(pte_t pteval)
259 {
260 	unsigned long pfn;
261 	struct page *page;
262 	struct address_space *mapping;
263 
264 	if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
265 		/* only flush non-aliasing VIPT caches for exec mappings */
266 		return;
267 	pfn = pte_pfn(pteval);
268 	if (!pfn_valid(pfn))
269 		return;
270 
271 	page = pfn_to_page(pfn);
272 	if (cache_is_vipt_aliasing())
273 		mapping = page_mapping(page);
274 	else
275 		mapping = NULL;
276 
277 	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
278 		__flush_dcache_page(mapping, page);
279 
280 	if (pte_exec(pteval))
281 		__flush_icache_all();
282 }
283 #endif
284 
285 /*
286  * Ensure cache coherency between kernel mapping and userspace mapping
287  * of this page.
288  *
289  * We have three cases to consider:
290  *  - VIPT non-aliasing cache: fully coherent so nothing required.
291  *  - VIVT: fully aliasing, so we need to handle every alias in our
292  *          current VM view.
293  *  - VIPT aliasing: need to handle one alias in our current VM view.
294  *
295  * If we need to handle aliasing:
296  *  If the page only exists in the page cache and there are no user
297  *  space mappings, we can be lazy and remember that we may have dirty
298  *  kernel cache lines for later.  Otherwise, we assume we have
299  *  aliasing mappings.
300  *
301  * Note that we disable the lazy flush for SMP configurations where
302  * the cache maintenance operations are not automatically broadcasted.
303  */
304 void flush_dcache_page(struct page *page)
305 {
306 	struct address_space *mapping;
307 
308 	/*
309 	 * The zero page is never written to, so never has any dirty
310 	 * cache lines, and therefore never needs to be flushed.
311 	 */
312 	if (page == ZERO_PAGE(0))
313 		return;
314 
315 	mapping = page_mapping(page);
316 
317 	if (!cache_ops_need_broadcast() &&
318 	    mapping && !page_mapped(page))
319 		clear_bit(PG_dcache_clean, &page->flags);
320 	else {
321 		__flush_dcache_page(mapping, page);
322 		if (mapping && cache_is_vivt())
323 			__flush_dcache_aliases(mapping, page);
324 		else if (mapping)
325 			__flush_icache_all();
326 		set_bit(PG_dcache_clean, &page->flags);
327 	}
328 }
329 EXPORT_SYMBOL(flush_dcache_page);
330 
331 /*
332  * Ensure cache coherency for the kernel mapping of this page. We can
333  * assume that the page is pinned via kmap.
334  *
335  * If the page only exists in the page cache and there are no user
336  * space mappings, this is a no-op since the page was already marked
337  * dirty at creation.  Otherwise, we need to flush the dirty kernel
338  * cache lines directly.
339  */
340 void flush_kernel_dcache_page(struct page *page)
341 {
342 	if (cache_is_vivt() || cache_is_vipt_aliasing()) {
343 		struct address_space *mapping;
344 
345 		mapping = page_mapping(page);
346 
347 		if (!mapping || mapping_mapped(mapping)) {
348 			void *addr;
349 
350 			addr = page_address(page);
351 			/*
352 			 * kmap_atomic() doesn't set the page virtual
353 			 * address for highmem pages, and
354 			 * kunmap_atomic() takes care of cache
355 			 * flushing already.
356 			 */
357 			if (!IS_ENABLED(CONFIG_HIGHMEM) || addr)
358 				__cpuc_flush_dcache_area(addr, PAGE_SIZE);
359 		}
360 	}
361 }
362 EXPORT_SYMBOL(flush_kernel_dcache_page);
363 
364 /*
365  * Flush an anonymous page so that users of get_user_pages()
366  * can safely access the data.  The expected sequence is:
367  *
368  *  get_user_pages()
369  *    -> flush_anon_page
370  *  memcpy() to/from page
371  *  if written to page, flush_dcache_page()
372  */
373 void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
374 {
375 	unsigned long pfn;
376 
377 	/* VIPT non-aliasing caches need do nothing */
378 	if (cache_is_vipt_nonaliasing())
379 		return;
380 
381 	/*
382 	 * Write back and invalidate userspace mapping.
383 	 */
384 	pfn = page_to_pfn(page);
385 	if (cache_is_vivt()) {
386 		flush_cache_page(vma, vmaddr, pfn);
387 	} else {
388 		/*
389 		 * For aliasing VIPT, we can flush an alias of the
390 		 * userspace address only.
391 		 */
392 		flush_pfn_alias(pfn, vmaddr);
393 		__flush_icache_all();
394 	}
395 
396 	/*
397 	 * Invalidate kernel mapping.  No data should be contained
398 	 * in this mapping of the page.  FIXME: this is overkill
399 	 * since we actually ask for a write-back and invalidate.
400 	 */
401 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
402 }
403