xref: /linux/arch/arm/mm/fault.c (revision f5db8841ebe59dbdf07fda797c88ccb51e0c893d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2004 Russell King
7  */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 #include <linux/kfence.h>
21 
22 #include <asm/system_misc.h>
23 #include <asm/system_info.h>
24 #include <asm/tlbflush.h>
25 
26 #include "fault.h"
27 
28 #ifdef CONFIG_MMU
29 
30 /*
31  * This is useful to dump out the page tables associated with
32  * 'addr' in mm 'mm'.
33  */
34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
35 {
36 	pgd_t *pgd;
37 
38 	if (!mm)
39 		mm = &init_mm;
40 
41 	pgd = pgd_offset(mm, addr);
42 	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
43 
44 	do {
45 		p4d_t *p4d;
46 		pud_t *pud;
47 		pmd_t *pmd;
48 		pte_t *pte;
49 
50 		p4d = p4d_offset(pgd, addr);
51 		if (p4d_none(*p4d))
52 			break;
53 
54 		if (p4d_bad(*p4d)) {
55 			pr_cont("(bad)");
56 			break;
57 		}
58 
59 		pud = pud_offset(p4d, addr);
60 		if (PTRS_PER_PUD != 1)
61 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
62 
63 		if (pud_none(*pud))
64 			break;
65 
66 		if (pud_bad(*pud)) {
67 			pr_cont("(bad)");
68 			break;
69 		}
70 
71 		pmd = pmd_offset(pud, addr);
72 		if (PTRS_PER_PMD != 1)
73 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
74 
75 		if (pmd_none(*pmd))
76 			break;
77 
78 		if (pmd_bad(*pmd)) {
79 			pr_cont("(bad)");
80 			break;
81 		}
82 
83 		/* We must not map this if we have highmem enabled */
84 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
85 			break;
86 
87 		pte = pte_offset_map(pmd, addr);
88 		if (!pte)
89 			break;
90 
91 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
92 #ifndef CONFIG_ARM_LPAE
93 		pr_cont(", *ppte=%08llx",
94 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
95 #endif
96 		pte_unmap(pte);
97 	} while(0);
98 
99 	pr_cont("\n");
100 }
101 #else					/* CONFIG_MMU */
102 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
103 { }
104 #endif					/* CONFIG_MMU */
105 
106 static inline bool is_write_fault(unsigned int fsr)
107 {
108 	return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
109 }
110 
111 static inline bool is_translation_fault(unsigned int fsr)
112 {
113 	int fs = fsr_fs(fsr);
114 #ifdef CONFIG_ARM_LPAE
115 	if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL)
116 		return true;
117 #else
118 	if (fs == FS_L1_TRANS || fs == FS_L2_TRANS)
119 		return true;
120 #endif
121 	return false;
122 }
123 
124 static void die_kernel_fault(const char *msg, struct mm_struct *mm,
125 			     unsigned long addr, unsigned int fsr,
126 			     struct pt_regs *regs)
127 {
128 	bust_spinlocks(1);
129 	pr_alert("8<--- cut here ---\n");
130 	pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n",
131 		 msg, addr, fsr & FSR_LNX_PF ? "execute" :
132 		 fsr & FSR_WRITE ? "write" : "read");
133 
134 	show_pte(KERN_ALERT, mm, addr);
135 	die("Oops", regs, fsr);
136 	bust_spinlocks(0);
137 	make_task_dead(SIGKILL);
138 }
139 
140 /*
141  * Oops.  The kernel tried to access some page that wasn't present.
142  */
143 static void
144 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
145 		  struct pt_regs *regs)
146 {
147 	const char *msg;
148 	/*
149 	 * Are we prepared to handle this kernel fault?
150 	 */
151 	if (fixup_exception(regs))
152 		return;
153 
154 	/*
155 	 * No handler, we'll have to terminate things with extreme prejudice.
156 	 */
157 	if (addr < PAGE_SIZE) {
158 		msg = "NULL pointer dereference";
159 	} else {
160 		if (is_translation_fault(fsr) &&
161 		    kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
162 			return;
163 
164 		msg = "paging request";
165 	}
166 
167 	die_kernel_fault(msg, mm, addr, fsr, regs);
168 }
169 
170 /*
171  * Something tried to access memory that isn't in our memory map..
172  * User mode accesses just cause a SIGSEGV
173  */
174 static void
175 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
176 		int code, struct pt_regs *regs)
177 {
178 	struct task_struct *tsk = current;
179 
180 	if (addr > TASK_SIZE)
181 		harden_branch_predictor();
182 
183 #ifdef CONFIG_DEBUG_USER
184 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
185 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
186 		pr_err("8<--- cut here ---\n");
187 		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
188 		       tsk->comm, sig, addr, fsr);
189 		show_pte(KERN_ERR, tsk->mm, addr);
190 		show_regs(regs);
191 	}
192 #endif
193 #ifndef CONFIG_KUSER_HELPERS
194 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
195 		printk_ratelimited(KERN_DEBUG
196 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
197 				   tsk->comm, addr);
198 #endif
199 
200 	tsk->thread.address = addr;
201 	tsk->thread.error_code = fsr;
202 	tsk->thread.trap_no = 14;
203 	force_sig_fault(sig, code, (void __user *)addr);
204 }
205 
206 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
207 {
208 	struct task_struct *tsk = current;
209 	struct mm_struct *mm = tsk->active_mm;
210 
211 	/*
212 	 * If we are in kernel mode at this point, we
213 	 * have no context to handle this fault with.
214 	 */
215 	if (user_mode(regs))
216 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
217 	else
218 		__do_kernel_fault(mm, addr, fsr, regs);
219 }
220 
221 #ifdef CONFIG_MMU
222 #define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
223 #define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
224 
225 static inline bool is_permission_fault(unsigned int fsr)
226 {
227 	int fs = fsr_fs(fsr);
228 #ifdef CONFIG_ARM_LPAE
229 	if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL)
230 		return true;
231 #else
232 	if (fs == FS_L1_PERM || fs == FS_L2_PERM)
233 		return true;
234 #endif
235 	return false;
236 }
237 
238 static int __kprobes
239 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
240 {
241 	struct mm_struct *mm = current->mm;
242 	struct vm_area_struct *vma;
243 	int sig, code;
244 	vm_fault_t fault;
245 	unsigned int flags = FAULT_FLAG_DEFAULT;
246 	unsigned long vm_flags = VM_ACCESS_FLAGS;
247 
248 	if (kprobe_page_fault(regs, fsr))
249 		return 0;
250 
251 
252 	/* Enable interrupts if they were enabled in the parent context. */
253 	if (interrupts_enabled(regs))
254 		local_irq_enable();
255 
256 	/*
257 	 * If we're in an interrupt or have no user
258 	 * context, we must not take the fault..
259 	 */
260 	if (faulthandler_disabled() || !mm)
261 		goto no_context;
262 
263 	if (user_mode(regs))
264 		flags |= FAULT_FLAG_USER;
265 
266 	if (is_write_fault(fsr)) {
267 		flags |= FAULT_FLAG_WRITE;
268 		vm_flags = VM_WRITE;
269 	}
270 
271 	if (fsr & FSR_LNX_PF) {
272 		vm_flags = VM_EXEC;
273 
274 		if (is_permission_fault(fsr) && !user_mode(regs))
275 			die_kernel_fault("execution of memory",
276 					 mm, addr, fsr, regs);
277 	}
278 
279 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
280 
281 	if (!(flags & FAULT_FLAG_USER))
282 		goto lock_mmap;
283 
284 	vma = lock_vma_under_rcu(mm, addr);
285 	if (!vma)
286 		goto lock_mmap;
287 
288 	if (!(vma->vm_flags & vm_flags)) {
289 		vma_end_read(vma);
290 		goto lock_mmap;
291 	}
292 	fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs);
293 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
294 		vma_end_read(vma);
295 
296 	if (!(fault & VM_FAULT_RETRY)) {
297 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
298 		goto done;
299 	}
300 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
301 
302 	/* Quick path to respond to signals */
303 	if (fault_signal_pending(fault, regs)) {
304 		if (!user_mode(regs))
305 			goto no_context;
306 		return 0;
307 	}
308 lock_mmap:
309 
310 retry:
311 	vma = lock_mm_and_find_vma(mm, addr, regs);
312 	if (unlikely(!vma)) {
313 		fault = VM_FAULT_BADMAP;
314 		goto bad_area;
315 	}
316 
317 	/*
318 	 * ok, we have a good vm_area for this memory access, check the
319 	 * permissions on the VMA allow for the fault which occurred.
320 	 */
321 	if (!(vma->vm_flags & vm_flags))
322 		fault = VM_FAULT_BADACCESS;
323 	else
324 		fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
325 
326 	/* If we need to retry but a fatal signal is pending, handle the
327 	 * signal first. We do not need to release the mmap_lock because
328 	 * it would already be released in __lock_page_or_retry in
329 	 * mm/filemap.c. */
330 	if (fault_signal_pending(fault, regs)) {
331 		if (!user_mode(regs))
332 			goto no_context;
333 		return 0;
334 	}
335 
336 	/* The fault is fully completed (including releasing mmap lock) */
337 	if (fault & VM_FAULT_COMPLETED)
338 		return 0;
339 
340 	if (!(fault & VM_FAULT_ERROR)) {
341 		if (fault & VM_FAULT_RETRY) {
342 			flags |= FAULT_FLAG_TRIED;
343 			goto retry;
344 		}
345 	}
346 
347 	mmap_read_unlock(mm);
348 done:
349 
350 	/*
351 	 * Handle the "normal" case first - VM_FAULT_MAJOR
352 	 */
353 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
354 		return 0;
355 
356 bad_area:
357 	/*
358 	 * If we are in kernel mode at this point, we
359 	 * have no context to handle this fault with.
360 	 */
361 	if (!user_mode(regs))
362 		goto no_context;
363 
364 	if (fault & VM_FAULT_OOM) {
365 		/*
366 		 * We ran out of memory, call the OOM killer, and return to
367 		 * userspace (which will retry the fault, or kill us if we
368 		 * got oom-killed)
369 		 */
370 		pagefault_out_of_memory();
371 		return 0;
372 	}
373 
374 	if (fault & VM_FAULT_SIGBUS) {
375 		/*
376 		 * We had some memory, but were unable to
377 		 * successfully fix up this page fault.
378 		 */
379 		sig = SIGBUS;
380 		code = BUS_ADRERR;
381 	} else {
382 		/*
383 		 * Something tried to access memory that
384 		 * isn't in our memory map..
385 		 */
386 		sig = SIGSEGV;
387 		code = fault == VM_FAULT_BADACCESS ?
388 			SEGV_ACCERR : SEGV_MAPERR;
389 	}
390 
391 	__do_user_fault(addr, fsr, sig, code, regs);
392 	return 0;
393 
394 no_context:
395 	__do_kernel_fault(mm, addr, fsr, regs);
396 	return 0;
397 }
398 #else					/* CONFIG_MMU */
399 static int
400 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
401 {
402 	return 0;
403 }
404 #endif					/* CONFIG_MMU */
405 
406 /*
407  * First Level Translation Fault Handler
408  *
409  * We enter here because the first level page table doesn't contain
410  * a valid entry for the address.
411  *
412  * If the address is in kernel space (>= TASK_SIZE), then we are
413  * probably faulting in the vmalloc() area.
414  *
415  * If the init_task's first level page tables contains the relevant
416  * entry, we copy the it to this task.  If not, we send the process
417  * a signal, fixup the exception, or oops the kernel.
418  *
419  * NOTE! We MUST NOT take any locks for this case. We may be in an
420  * interrupt or a critical region, and should only copy the information
421  * from the master page table, nothing more.
422  */
423 #ifdef CONFIG_MMU
424 static int __kprobes
425 do_translation_fault(unsigned long addr, unsigned int fsr,
426 		     struct pt_regs *regs)
427 {
428 	unsigned int index;
429 	pgd_t *pgd, *pgd_k;
430 	p4d_t *p4d, *p4d_k;
431 	pud_t *pud, *pud_k;
432 	pmd_t *pmd, *pmd_k;
433 
434 	if (addr < TASK_SIZE)
435 		return do_page_fault(addr, fsr, regs);
436 
437 	if (user_mode(regs))
438 		goto bad_area;
439 
440 	index = pgd_index(addr);
441 
442 	pgd = cpu_get_pgd() + index;
443 	pgd_k = init_mm.pgd + index;
444 
445 	p4d = p4d_offset(pgd, addr);
446 	p4d_k = p4d_offset(pgd_k, addr);
447 
448 	if (p4d_none(*p4d_k))
449 		goto bad_area;
450 	if (!p4d_present(*p4d))
451 		set_p4d(p4d, *p4d_k);
452 
453 	pud = pud_offset(p4d, addr);
454 	pud_k = pud_offset(p4d_k, addr);
455 
456 	if (pud_none(*pud_k))
457 		goto bad_area;
458 	if (!pud_present(*pud))
459 		set_pud(pud, *pud_k);
460 
461 	pmd = pmd_offset(pud, addr);
462 	pmd_k = pmd_offset(pud_k, addr);
463 
464 #ifdef CONFIG_ARM_LPAE
465 	/*
466 	 * Only one hardware entry per PMD with LPAE.
467 	 */
468 	index = 0;
469 #else
470 	/*
471 	 * On ARM one Linux PGD entry contains two hardware entries (see page
472 	 * tables layout in pgtable.h). We normally guarantee that we always
473 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
474 	 * It can create inidividual L1 entries, so here we have to call
475 	 * pmd_none() check for the entry really corresponded to address, not
476 	 * for the first of pair.
477 	 */
478 	index = (addr >> SECTION_SHIFT) & 1;
479 #endif
480 	if (pmd_none(pmd_k[index]))
481 		goto bad_area;
482 
483 	copy_pmd(pmd, pmd_k);
484 	return 0;
485 
486 bad_area:
487 	do_bad_area(addr, fsr, regs);
488 	return 0;
489 }
490 #else					/* CONFIG_MMU */
491 static int
492 do_translation_fault(unsigned long addr, unsigned int fsr,
493 		     struct pt_regs *regs)
494 {
495 	return 0;
496 }
497 #endif					/* CONFIG_MMU */
498 
499 /*
500  * Some section permission faults need to be handled gracefully.
501  * They can happen due to a __{get,put}_user during an oops.
502  */
503 #ifndef CONFIG_ARM_LPAE
504 static int
505 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
506 {
507 	do_bad_area(addr, fsr, regs);
508 	return 0;
509 }
510 #endif /* CONFIG_ARM_LPAE */
511 
512 /*
513  * This abort handler always returns "fault".
514  */
515 static int
516 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
517 {
518 	return 1;
519 }
520 
521 struct fsr_info {
522 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
523 	int	sig;
524 	int	code;
525 	const char *name;
526 };
527 
528 /* FSR definition */
529 #ifdef CONFIG_ARM_LPAE
530 #include "fsr-3level.c"
531 #else
532 #include "fsr-2level.c"
533 #endif
534 
535 void __init
536 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
537 		int sig, int code, const char *name)
538 {
539 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
540 		BUG();
541 
542 	fsr_info[nr].fn   = fn;
543 	fsr_info[nr].sig  = sig;
544 	fsr_info[nr].code = code;
545 	fsr_info[nr].name = name;
546 }
547 
548 /*
549  * Dispatch a data abort to the relevant handler.
550  */
551 asmlinkage void
552 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
553 {
554 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
555 
556 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
557 		return;
558 
559 	pr_alert("8<--- cut here ---\n");
560 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
561 		inf->name, fsr, addr);
562 	show_pte(KERN_ALERT, current->mm, addr);
563 
564 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
565 		       fsr, 0);
566 }
567 
568 void __init
569 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
570 		 int sig, int code, const char *name)
571 {
572 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
573 		BUG();
574 
575 	ifsr_info[nr].fn   = fn;
576 	ifsr_info[nr].sig  = sig;
577 	ifsr_info[nr].code = code;
578 	ifsr_info[nr].name = name;
579 }
580 
581 asmlinkage void
582 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
583 {
584 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
585 
586 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
587 		return;
588 
589 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
590 		inf->name, ifsr, addr);
591 
592 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
593 		       ifsr, 0);
594 }
595 
596 /*
597  * Abort handler to be used only during first unmasking of asynchronous aborts
598  * on the boot CPU. This makes sure that the machine will not die if the
599  * firmware/bootloader left an imprecise abort pending for us to trip over.
600  */
601 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
602 				      struct pt_regs *regs)
603 {
604 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
605 		"first unmask, this is most likely caused by a "
606 		"firmware/bootloader bug.\n", fsr);
607 
608 	return 0;
609 }
610 
611 void __init early_abt_enable(void)
612 {
613 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
614 	local_abt_enable();
615 	fsr_info[FSR_FS_AEA].fn = do_bad;
616 }
617 
618 #ifndef CONFIG_ARM_LPAE
619 static int __init exceptions_init(void)
620 {
621 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
622 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
623 				"I-cache maintenance fault");
624 	}
625 
626 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
627 		/*
628 		 * TODO: Access flag faults introduced in ARMv6K.
629 		 * Runtime check for 'K' extension is needed
630 		 */
631 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
632 				"section access flag fault");
633 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
634 				"section access flag fault");
635 	}
636 
637 	return 0;
638 }
639 
640 arch_initcall(exceptions_init);
641 #endif
642