1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 #include <linux/kfence.h> 21 22 #include <asm/system_misc.h> 23 #include <asm/system_info.h> 24 #include <asm/tlbflush.h> 25 26 #include "fault.h" 27 28 #ifdef CONFIG_MMU 29 30 /* 31 * This is useful to dump out the page tables associated with 32 * 'addr' in mm 'mm'. 33 */ 34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 35 { 36 pgd_t *pgd; 37 38 if (!mm) 39 mm = &init_mm; 40 41 pgd = pgd_offset(mm, addr); 42 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 43 44 do { 45 p4d_t *p4d; 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 50 p4d = p4d_offset(pgd, addr); 51 if (p4d_none(*p4d)) 52 break; 53 54 if (p4d_bad(*p4d)) { 55 pr_cont("(bad)"); 56 break; 57 } 58 59 pud = pud_offset(p4d, addr); 60 if (PTRS_PER_PUD != 1) 61 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 62 63 if (pud_none(*pud)) 64 break; 65 66 if (pud_bad(*pud)) { 67 pr_cont("(bad)"); 68 break; 69 } 70 71 pmd = pmd_offset(pud, addr); 72 if (PTRS_PER_PMD != 1) 73 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 74 75 if (pmd_none(*pmd)) 76 break; 77 78 if (pmd_bad(*pmd)) { 79 pr_cont("(bad)"); 80 break; 81 } 82 83 /* We must not map this if we have highmem enabled */ 84 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 85 break; 86 87 pte = pte_offset_map(pmd, addr); 88 if (!pte) 89 break; 90 91 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 92 #ifndef CONFIG_ARM_LPAE 93 pr_cont(", *ppte=%08llx", 94 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 95 #endif 96 pte_unmap(pte); 97 } while(0); 98 99 pr_cont("\n"); 100 } 101 #else /* CONFIG_MMU */ 102 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 103 { } 104 #endif /* CONFIG_MMU */ 105 106 static inline bool is_write_fault(unsigned int fsr) 107 { 108 return (fsr & FSR_WRITE) && !(fsr & FSR_CM); 109 } 110 111 static inline bool is_translation_fault(unsigned int fsr) 112 { 113 int fs = fsr_fs(fsr); 114 #ifdef CONFIG_ARM_LPAE 115 if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL) 116 return true; 117 #else 118 if (fs == FS_L1_TRANS || fs == FS_L2_TRANS) 119 return true; 120 #endif 121 return false; 122 } 123 124 static void die_kernel_fault(const char *msg, struct mm_struct *mm, 125 unsigned long addr, unsigned int fsr, 126 struct pt_regs *regs) 127 { 128 bust_spinlocks(1); 129 pr_alert("8<--- cut here ---\n"); 130 pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n", 131 msg, addr, fsr & FSR_LNX_PF ? "execute" : 132 fsr & FSR_WRITE ? "write" : "read"); 133 134 show_pte(KERN_ALERT, mm, addr); 135 die("Oops", regs, fsr); 136 bust_spinlocks(0); 137 make_task_dead(SIGKILL); 138 } 139 140 /* 141 * Oops. The kernel tried to access some page that wasn't present. 142 */ 143 static void 144 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 145 struct pt_regs *regs) 146 { 147 const char *msg; 148 /* 149 * Are we prepared to handle this kernel fault? 150 */ 151 if (fixup_exception(regs)) 152 return; 153 154 /* 155 * No handler, we'll have to terminate things with extreme prejudice. 156 */ 157 if (addr < PAGE_SIZE) { 158 msg = "NULL pointer dereference"; 159 } else { 160 if (is_translation_fault(fsr) && 161 kfence_handle_page_fault(addr, is_write_fault(fsr), regs)) 162 return; 163 164 msg = "paging request"; 165 } 166 167 die_kernel_fault(msg, mm, addr, fsr, regs); 168 } 169 170 /* 171 * Something tried to access memory that isn't in our memory map.. 172 * User mode accesses just cause a SIGSEGV 173 */ 174 static void 175 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 176 int code, struct pt_regs *regs) 177 { 178 struct task_struct *tsk = current; 179 180 if (addr > TASK_SIZE) 181 harden_branch_predictor(); 182 183 #ifdef CONFIG_DEBUG_USER 184 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 185 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 186 pr_err("8<--- cut here ---\n"); 187 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 188 tsk->comm, sig, addr, fsr); 189 show_pte(KERN_ERR, tsk->mm, addr); 190 show_regs(regs); 191 } 192 #endif 193 #ifndef CONFIG_KUSER_HELPERS 194 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 195 printk_ratelimited(KERN_DEBUG 196 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 197 tsk->comm, addr); 198 #endif 199 200 tsk->thread.address = addr; 201 tsk->thread.error_code = fsr; 202 tsk->thread.trap_no = 14; 203 force_sig_fault(sig, code, (void __user *)addr); 204 } 205 206 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 207 { 208 struct task_struct *tsk = current; 209 struct mm_struct *mm = tsk->active_mm; 210 211 /* 212 * If we are in kernel mode at this point, we 213 * have no context to handle this fault with. 214 */ 215 if (user_mode(regs)) 216 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 217 else 218 __do_kernel_fault(mm, addr, fsr, regs); 219 } 220 221 #ifdef CONFIG_MMU 222 #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000) 223 #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000) 224 225 static inline bool is_permission_fault(unsigned int fsr) 226 { 227 int fs = fsr_fs(fsr); 228 #ifdef CONFIG_ARM_LPAE 229 if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL) 230 return true; 231 #else 232 if (fs == FS_L1_PERM || fs == FS_L2_PERM) 233 return true; 234 #endif 235 return false; 236 } 237 238 static int __kprobes 239 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 240 { 241 struct mm_struct *mm = current->mm; 242 struct vm_area_struct *vma; 243 int sig, code; 244 vm_fault_t fault; 245 unsigned int flags = FAULT_FLAG_DEFAULT; 246 unsigned long vm_flags = VM_ACCESS_FLAGS; 247 248 if (kprobe_page_fault(regs, fsr)) 249 return 0; 250 251 252 /* Enable interrupts if they were enabled in the parent context. */ 253 if (interrupts_enabled(regs)) 254 local_irq_enable(); 255 256 /* 257 * If we're in an interrupt or have no user 258 * context, we must not take the fault.. 259 */ 260 if (faulthandler_disabled() || !mm) 261 goto no_context; 262 263 if (user_mode(regs)) 264 flags |= FAULT_FLAG_USER; 265 266 if (is_write_fault(fsr)) { 267 flags |= FAULT_FLAG_WRITE; 268 vm_flags = VM_WRITE; 269 } 270 271 if (fsr & FSR_LNX_PF) { 272 vm_flags = VM_EXEC; 273 274 if (is_permission_fault(fsr) && !user_mode(regs)) 275 die_kernel_fault("execution of memory", 276 mm, addr, fsr, regs); 277 } 278 279 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 280 281 if (!(flags & FAULT_FLAG_USER)) 282 goto lock_mmap; 283 284 vma = lock_vma_under_rcu(mm, addr); 285 if (!vma) 286 goto lock_mmap; 287 288 if (!(vma->vm_flags & vm_flags)) { 289 vma_end_read(vma); 290 goto lock_mmap; 291 } 292 fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs); 293 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) 294 vma_end_read(vma); 295 296 if (!(fault & VM_FAULT_RETRY)) { 297 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 298 goto done; 299 } 300 count_vm_vma_lock_event(VMA_LOCK_RETRY); 301 302 /* Quick path to respond to signals */ 303 if (fault_signal_pending(fault, regs)) { 304 if (!user_mode(regs)) 305 goto no_context; 306 return 0; 307 } 308 lock_mmap: 309 310 retry: 311 vma = lock_mm_and_find_vma(mm, addr, regs); 312 if (unlikely(!vma)) { 313 fault = VM_FAULT_BADMAP; 314 goto bad_area; 315 } 316 317 /* 318 * ok, we have a good vm_area for this memory access, check the 319 * permissions on the VMA allow for the fault which occurred. 320 */ 321 if (!(vma->vm_flags & vm_flags)) 322 fault = VM_FAULT_BADACCESS; 323 else 324 fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); 325 326 /* If we need to retry but a fatal signal is pending, handle the 327 * signal first. We do not need to release the mmap_lock because 328 * it would already be released in __lock_page_or_retry in 329 * mm/filemap.c. */ 330 if (fault_signal_pending(fault, regs)) { 331 if (!user_mode(regs)) 332 goto no_context; 333 return 0; 334 } 335 336 /* The fault is fully completed (including releasing mmap lock) */ 337 if (fault & VM_FAULT_COMPLETED) 338 return 0; 339 340 if (!(fault & VM_FAULT_ERROR)) { 341 if (fault & VM_FAULT_RETRY) { 342 flags |= FAULT_FLAG_TRIED; 343 goto retry; 344 } 345 } 346 347 mmap_read_unlock(mm); 348 done: 349 350 /* 351 * Handle the "normal" case first - VM_FAULT_MAJOR 352 */ 353 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 354 return 0; 355 356 bad_area: 357 /* 358 * If we are in kernel mode at this point, we 359 * have no context to handle this fault with. 360 */ 361 if (!user_mode(regs)) 362 goto no_context; 363 364 if (fault & VM_FAULT_OOM) { 365 /* 366 * We ran out of memory, call the OOM killer, and return to 367 * userspace (which will retry the fault, or kill us if we 368 * got oom-killed) 369 */ 370 pagefault_out_of_memory(); 371 return 0; 372 } 373 374 if (fault & VM_FAULT_SIGBUS) { 375 /* 376 * We had some memory, but were unable to 377 * successfully fix up this page fault. 378 */ 379 sig = SIGBUS; 380 code = BUS_ADRERR; 381 } else { 382 /* 383 * Something tried to access memory that 384 * isn't in our memory map.. 385 */ 386 sig = SIGSEGV; 387 code = fault == VM_FAULT_BADACCESS ? 388 SEGV_ACCERR : SEGV_MAPERR; 389 } 390 391 __do_user_fault(addr, fsr, sig, code, regs); 392 return 0; 393 394 no_context: 395 __do_kernel_fault(mm, addr, fsr, regs); 396 return 0; 397 } 398 #else /* CONFIG_MMU */ 399 static int 400 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 401 { 402 return 0; 403 } 404 #endif /* CONFIG_MMU */ 405 406 /* 407 * First Level Translation Fault Handler 408 * 409 * We enter here because the first level page table doesn't contain 410 * a valid entry for the address. 411 * 412 * If the address is in kernel space (>= TASK_SIZE), then we are 413 * probably faulting in the vmalloc() area. 414 * 415 * If the init_task's first level page tables contains the relevant 416 * entry, we copy the it to this task. If not, we send the process 417 * a signal, fixup the exception, or oops the kernel. 418 * 419 * NOTE! We MUST NOT take any locks for this case. We may be in an 420 * interrupt or a critical region, and should only copy the information 421 * from the master page table, nothing more. 422 */ 423 #ifdef CONFIG_MMU 424 static int __kprobes 425 do_translation_fault(unsigned long addr, unsigned int fsr, 426 struct pt_regs *regs) 427 { 428 unsigned int index; 429 pgd_t *pgd, *pgd_k; 430 p4d_t *p4d, *p4d_k; 431 pud_t *pud, *pud_k; 432 pmd_t *pmd, *pmd_k; 433 434 if (addr < TASK_SIZE) 435 return do_page_fault(addr, fsr, regs); 436 437 if (user_mode(regs)) 438 goto bad_area; 439 440 index = pgd_index(addr); 441 442 pgd = cpu_get_pgd() + index; 443 pgd_k = init_mm.pgd + index; 444 445 p4d = p4d_offset(pgd, addr); 446 p4d_k = p4d_offset(pgd_k, addr); 447 448 if (p4d_none(*p4d_k)) 449 goto bad_area; 450 if (!p4d_present(*p4d)) 451 set_p4d(p4d, *p4d_k); 452 453 pud = pud_offset(p4d, addr); 454 pud_k = pud_offset(p4d_k, addr); 455 456 if (pud_none(*pud_k)) 457 goto bad_area; 458 if (!pud_present(*pud)) 459 set_pud(pud, *pud_k); 460 461 pmd = pmd_offset(pud, addr); 462 pmd_k = pmd_offset(pud_k, addr); 463 464 #ifdef CONFIG_ARM_LPAE 465 /* 466 * Only one hardware entry per PMD with LPAE. 467 */ 468 index = 0; 469 #else 470 /* 471 * On ARM one Linux PGD entry contains two hardware entries (see page 472 * tables layout in pgtable.h). We normally guarantee that we always 473 * fill both L1 entries. But create_mapping() doesn't follow the rule. 474 * It can create inidividual L1 entries, so here we have to call 475 * pmd_none() check for the entry really corresponded to address, not 476 * for the first of pair. 477 */ 478 index = (addr >> SECTION_SHIFT) & 1; 479 #endif 480 if (pmd_none(pmd_k[index])) 481 goto bad_area; 482 483 copy_pmd(pmd, pmd_k); 484 return 0; 485 486 bad_area: 487 do_bad_area(addr, fsr, regs); 488 return 0; 489 } 490 #else /* CONFIG_MMU */ 491 static int 492 do_translation_fault(unsigned long addr, unsigned int fsr, 493 struct pt_regs *regs) 494 { 495 return 0; 496 } 497 #endif /* CONFIG_MMU */ 498 499 /* 500 * Some section permission faults need to be handled gracefully. 501 * They can happen due to a __{get,put}_user during an oops. 502 */ 503 #ifndef CONFIG_ARM_LPAE 504 static int 505 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 506 { 507 do_bad_area(addr, fsr, regs); 508 return 0; 509 } 510 #endif /* CONFIG_ARM_LPAE */ 511 512 /* 513 * This abort handler always returns "fault". 514 */ 515 static int 516 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 517 { 518 return 1; 519 } 520 521 struct fsr_info { 522 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 523 int sig; 524 int code; 525 const char *name; 526 }; 527 528 /* FSR definition */ 529 #ifdef CONFIG_ARM_LPAE 530 #include "fsr-3level.c" 531 #else 532 #include "fsr-2level.c" 533 #endif 534 535 void __init 536 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 537 int sig, int code, const char *name) 538 { 539 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 540 BUG(); 541 542 fsr_info[nr].fn = fn; 543 fsr_info[nr].sig = sig; 544 fsr_info[nr].code = code; 545 fsr_info[nr].name = name; 546 } 547 548 /* 549 * Dispatch a data abort to the relevant handler. 550 */ 551 asmlinkage void 552 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 553 { 554 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 555 556 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 557 return; 558 559 pr_alert("8<--- cut here ---\n"); 560 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 561 inf->name, fsr, addr); 562 show_pte(KERN_ALERT, current->mm, addr); 563 564 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 565 fsr, 0); 566 } 567 568 void __init 569 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 570 int sig, int code, const char *name) 571 { 572 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 573 BUG(); 574 575 ifsr_info[nr].fn = fn; 576 ifsr_info[nr].sig = sig; 577 ifsr_info[nr].code = code; 578 ifsr_info[nr].name = name; 579 } 580 581 asmlinkage void 582 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 583 { 584 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 585 586 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 587 return; 588 589 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 590 inf->name, ifsr, addr); 591 592 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 593 ifsr, 0); 594 } 595 596 /* 597 * Abort handler to be used only during first unmasking of asynchronous aborts 598 * on the boot CPU. This makes sure that the machine will not die if the 599 * firmware/bootloader left an imprecise abort pending for us to trip over. 600 */ 601 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 602 struct pt_regs *regs) 603 { 604 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 605 "first unmask, this is most likely caused by a " 606 "firmware/bootloader bug.\n", fsr); 607 608 return 0; 609 } 610 611 void __init early_abt_enable(void) 612 { 613 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 614 local_abt_enable(); 615 fsr_info[FSR_FS_AEA].fn = do_bad; 616 } 617 618 #ifndef CONFIG_ARM_LPAE 619 static int __init exceptions_init(void) 620 { 621 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 622 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 623 "I-cache maintenance fault"); 624 } 625 626 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 627 /* 628 * TODO: Access flag faults introduced in ARMv6K. 629 * Runtime check for 'K' extension is needed 630 */ 631 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 632 "section access flag fault"); 633 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 634 "section access flag fault"); 635 } 636 637 return 0; 638 } 639 640 arch_initcall(exceptions_init); 641 #endif 642