1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 #include <linux/kfence.h> 21 22 #include <asm/system_misc.h> 23 #include <asm/system_info.h> 24 #include <asm/tlbflush.h> 25 26 #include "fault.h" 27 28 bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size) 29 { 30 unsigned long addr = (unsigned long)unsafe_src; 31 32 return addr >= TASK_SIZE && ULONG_MAX - addr >= size; 33 } 34 35 #ifdef CONFIG_MMU 36 37 /* 38 * This is useful to dump out the page tables associated with 39 * 'addr' in mm 'mm'. 40 */ 41 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 42 { 43 pgd_t *pgd; 44 45 if (!mm) 46 mm = &init_mm; 47 48 pgd = pgd_offset(mm, addr); 49 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 50 51 do { 52 p4d_t *p4d; 53 pud_t *pud; 54 pmd_t *pmd; 55 pte_t *pte; 56 57 p4d = p4d_offset(pgd, addr); 58 if (p4d_none(*p4d)) 59 break; 60 61 if (p4d_bad(*p4d)) { 62 pr_cont("(bad)"); 63 break; 64 } 65 66 pud = pud_offset(p4d, addr); 67 if (PTRS_PER_PUD != 1) 68 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 69 70 if (pud_none(*pud)) 71 break; 72 73 if (pud_bad(*pud)) { 74 pr_cont("(bad)"); 75 break; 76 } 77 78 pmd = pmd_offset(pud, addr); 79 if (PTRS_PER_PMD != 1) 80 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 81 82 if (pmd_none(*pmd)) 83 break; 84 85 if (pmd_bad(*pmd)) { 86 pr_cont("(bad)"); 87 break; 88 } 89 90 /* We must not map this if we have highmem enabled */ 91 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 92 break; 93 94 pte = pte_offset_map(pmd, addr); 95 if (!pte) 96 break; 97 98 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 99 #ifndef CONFIG_ARM_LPAE 100 pr_cont(", *ppte=%08llx", 101 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 102 #endif 103 pte_unmap(pte); 104 } while(0); 105 106 pr_cont("\n"); 107 } 108 #else /* CONFIG_MMU */ 109 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 110 { } 111 #endif /* CONFIG_MMU */ 112 113 static inline bool is_write_fault(unsigned int fsr) 114 { 115 return (fsr & FSR_WRITE) && !(fsr & FSR_CM); 116 } 117 118 static inline bool is_translation_fault(unsigned int fsr) 119 { 120 int fs = fsr_fs(fsr); 121 #ifdef CONFIG_ARM_LPAE 122 if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL) 123 return true; 124 #else 125 if (fs == FS_L1_TRANS || fs == FS_L2_TRANS) 126 return true; 127 #endif 128 return false; 129 } 130 131 static void die_kernel_fault(const char *msg, struct mm_struct *mm, 132 unsigned long addr, unsigned int fsr, 133 struct pt_regs *regs) 134 { 135 bust_spinlocks(1); 136 pr_alert("8<--- cut here ---\n"); 137 pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n", 138 msg, addr, fsr & FSR_LNX_PF ? "execute" : 139 fsr & FSR_WRITE ? "write" : "read"); 140 141 show_pte(KERN_ALERT, mm, addr); 142 die("Oops", regs, fsr); 143 bust_spinlocks(0); 144 make_task_dead(SIGKILL); 145 } 146 147 /* 148 * Oops. The kernel tried to access some page that wasn't present. 149 */ 150 static void 151 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 152 struct pt_regs *regs) 153 { 154 const char *msg; 155 /* 156 * Are we prepared to handle this kernel fault? 157 */ 158 if (fixup_exception(regs)) 159 return; 160 161 /* 162 * No handler, we'll have to terminate things with extreme prejudice. 163 */ 164 if (addr < PAGE_SIZE) { 165 msg = "NULL pointer dereference"; 166 } else { 167 if (is_translation_fault(fsr) && 168 kfence_handle_page_fault(addr, is_write_fault(fsr), regs)) 169 return; 170 171 msg = "paging request"; 172 } 173 174 die_kernel_fault(msg, mm, addr, fsr, regs); 175 } 176 177 /* 178 * Something tried to access memory that isn't in our memory map.. 179 * User mode accesses just cause a SIGSEGV 180 */ 181 static void 182 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 183 int code, struct pt_regs *regs) 184 { 185 struct task_struct *tsk = current; 186 187 if (addr > TASK_SIZE) 188 harden_branch_predictor(); 189 190 #ifdef CONFIG_DEBUG_USER 191 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 192 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 193 pr_err("8<--- cut here ---\n"); 194 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 195 tsk->comm, sig, addr, fsr); 196 show_pte(KERN_ERR, tsk->mm, addr); 197 show_regs(regs); 198 } 199 #endif 200 #ifndef CONFIG_KUSER_HELPERS 201 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 202 printk_ratelimited(KERN_DEBUG 203 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 204 tsk->comm, addr); 205 #endif 206 207 tsk->thread.address = addr; 208 tsk->thread.error_code = fsr; 209 tsk->thread.trap_no = 14; 210 force_sig_fault(sig, code, (void __user *)addr); 211 } 212 213 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 214 { 215 struct task_struct *tsk = current; 216 struct mm_struct *mm = tsk->active_mm; 217 218 /* 219 * If we are in kernel mode at this point, we 220 * have no context to handle this fault with. 221 */ 222 if (user_mode(regs)) 223 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 224 else 225 __do_kernel_fault(mm, addr, fsr, regs); 226 } 227 228 #ifdef CONFIG_MMU 229 #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000) 230 #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000) 231 232 static inline bool is_permission_fault(unsigned int fsr) 233 { 234 int fs = fsr_fs(fsr); 235 #ifdef CONFIG_ARM_LPAE 236 if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL) 237 return true; 238 #else 239 if (fs == FS_L1_PERM || fs == FS_L2_PERM) 240 return true; 241 #endif 242 return false; 243 } 244 245 #ifdef CONFIG_CPU_TTBR0_PAN 246 static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs) 247 { 248 struct svc_pt_regs *svcregs; 249 250 /* If we are in user mode: permission granted */ 251 if (user_mode(regs)) 252 return true; 253 254 /* uaccess state saved above pt_regs on SVC exception entry */ 255 svcregs = to_svc_pt_regs(regs); 256 257 return !(svcregs->ttbcr & TTBCR_EPD0); 258 } 259 #else 260 static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs) 261 { 262 return true; 263 } 264 #endif 265 266 static int __kprobes 267 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 268 { 269 struct mm_struct *mm = current->mm; 270 struct vm_area_struct *vma; 271 int sig, code; 272 vm_fault_t fault; 273 unsigned int flags = FAULT_FLAG_DEFAULT; 274 unsigned long vm_flags = VM_ACCESS_FLAGS; 275 276 if (kprobe_page_fault(regs, fsr)) 277 return 0; 278 279 280 /* Enable interrupts if they were enabled in the parent context. */ 281 if (interrupts_enabled(regs)) 282 local_irq_enable(); 283 284 /* 285 * If we're in an interrupt or have no user 286 * context, we must not take the fault.. 287 */ 288 if (faulthandler_disabled() || !mm) 289 goto no_context; 290 291 if (user_mode(regs)) 292 flags |= FAULT_FLAG_USER; 293 294 if (is_write_fault(fsr)) { 295 flags |= FAULT_FLAG_WRITE; 296 vm_flags = VM_WRITE; 297 } 298 299 if (fsr & FSR_LNX_PF) { 300 vm_flags = VM_EXEC; 301 302 if (is_permission_fault(fsr) && !user_mode(regs)) 303 die_kernel_fault("execution of memory", 304 mm, addr, fsr, regs); 305 } 306 307 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 308 309 /* 310 * Privileged access aborts with CONFIG_CPU_TTBR0_PAN enabled are 311 * routed via the translation fault mechanism. Check whether uaccess 312 * is disabled while in kernel mode. 313 */ 314 if (!ttbr0_usermode_access_allowed(regs)) 315 goto no_context; 316 317 if (!(flags & FAULT_FLAG_USER)) 318 goto lock_mmap; 319 320 vma = lock_vma_under_rcu(mm, addr); 321 if (!vma) 322 goto lock_mmap; 323 324 if (!(vma->vm_flags & vm_flags)) { 325 vma_end_read(vma); 326 goto lock_mmap; 327 } 328 fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs); 329 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) 330 vma_end_read(vma); 331 332 if (!(fault & VM_FAULT_RETRY)) { 333 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 334 goto done; 335 } 336 count_vm_vma_lock_event(VMA_LOCK_RETRY); 337 if (fault & VM_FAULT_MAJOR) 338 flags |= FAULT_FLAG_TRIED; 339 340 /* Quick path to respond to signals */ 341 if (fault_signal_pending(fault, regs)) { 342 if (!user_mode(regs)) 343 goto no_context; 344 return 0; 345 } 346 lock_mmap: 347 348 retry: 349 vma = lock_mm_and_find_vma(mm, addr, regs); 350 if (unlikely(!vma)) { 351 fault = VM_FAULT_BADMAP; 352 goto bad_area; 353 } 354 355 /* 356 * ok, we have a good vm_area for this memory access, check the 357 * permissions on the VMA allow for the fault which occurred. 358 */ 359 if (!(vma->vm_flags & vm_flags)) 360 fault = VM_FAULT_BADACCESS; 361 else 362 fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); 363 364 /* If we need to retry but a fatal signal is pending, handle the 365 * signal first. We do not need to release the mmap_lock because 366 * it would already be released in __lock_page_or_retry in 367 * mm/filemap.c. */ 368 if (fault_signal_pending(fault, regs)) { 369 if (!user_mode(regs)) 370 goto no_context; 371 return 0; 372 } 373 374 /* The fault is fully completed (including releasing mmap lock) */ 375 if (fault & VM_FAULT_COMPLETED) 376 return 0; 377 378 if (!(fault & VM_FAULT_ERROR)) { 379 if (fault & VM_FAULT_RETRY) { 380 flags |= FAULT_FLAG_TRIED; 381 goto retry; 382 } 383 } 384 385 mmap_read_unlock(mm); 386 done: 387 388 /* 389 * Handle the "normal" case first - VM_FAULT_MAJOR 390 */ 391 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 392 return 0; 393 394 bad_area: 395 /* 396 * If we are in kernel mode at this point, we 397 * have no context to handle this fault with. 398 */ 399 if (!user_mode(regs)) 400 goto no_context; 401 402 if (fault & VM_FAULT_OOM) { 403 /* 404 * We ran out of memory, call the OOM killer, and return to 405 * userspace (which will retry the fault, or kill us if we 406 * got oom-killed) 407 */ 408 pagefault_out_of_memory(); 409 return 0; 410 } 411 412 if (fault & VM_FAULT_SIGBUS) { 413 /* 414 * We had some memory, but were unable to 415 * successfully fix up this page fault. 416 */ 417 sig = SIGBUS; 418 code = BUS_ADRERR; 419 } else { 420 /* 421 * Something tried to access memory that 422 * isn't in our memory map.. 423 */ 424 sig = SIGSEGV; 425 code = fault == VM_FAULT_BADACCESS ? 426 SEGV_ACCERR : SEGV_MAPERR; 427 } 428 429 __do_user_fault(addr, fsr, sig, code, regs); 430 return 0; 431 432 no_context: 433 __do_kernel_fault(mm, addr, fsr, regs); 434 return 0; 435 } 436 #else /* CONFIG_MMU */ 437 static int 438 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 439 { 440 return 0; 441 } 442 #endif /* CONFIG_MMU */ 443 444 /* 445 * First Level Translation Fault Handler 446 * 447 * We enter here because the first level page table doesn't contain 448 * a valid entry for the address. 449 * 450 * If the address is in kernel space (>= TASK_SIZE), then we are 451 * probably faulting in the vmalloc() area. 452 * 453 * If the init_task's first level page tables contains the relevant 454 * entry, we copy the it to this task. If not, we send the process 455 * a signal, fixup the exception, or oops the kernel. 456 * 457 * NOTE! We MUST NOT take any locks for this case. We may be in an 458 * interrupt or a critical region, and should only copy the information 459 * from the master page table, nothing more. 460 */ 461 #ifdef CONFIG_MMU 462 static int __kprobes 463 do_translation_fault(unsigned long addr, unsigned int fsr, 464 struct pt_regs *regs) 465 { 466 unsigned int index; 467 pgd_t *pgd, *pgd_k; 468 p4d_t *p4d, *p4d_k; 469 pud_t *pud, *pud_k; 470 pmd_t *pmd, *pmd_k; 471 472 if (addr < TASK_SIZE) 473 return do_page_fault(addr, fsr, regs); 474 475 if (user_mode(regs)) 476 goto bad_area; 477 478 index = pgd_index(addr); 479 480 pgd = cpu_get_pgd() + index; 481 pgd_k = init_mm.pgd + index; 482 483 p4d = p4d_offset(pgd, addr); 484 p4d_k = p4d_offset(pgd_k, addr); 485 486 if (p4d_none(*p4d_k)) 487 goto bad_area; 488 if (!p4d_present(*p4d)) 489 set_p4d(p4d, *p4d_k); 490 491 pud = pud_offset(p4d, addr); 492 pud_k = pud_offset(p4d_k, addr); 493 494 if (pud_none(*pud_k)) 495 goto bad_area; 496 if (!pud_present(*pud)) 497 set_pud(pud, *pud_k); 498 499 pmd = pmd_offset(pud, addr); 500 pmd_k = pmd_offset(pud_k, addr); 501 502 #ifdef CONFIG_ARM_LPAE 503 /* 504 * Only one hardware entry per PMD with LPAE. 505 */ 506 index = 0; 507 #else 508 /* 509 * On ARM one Linux PGD entry contains two hardware entries (see page 510 * tables layout in pgtable.h). We normally guarantee that we always 511 * fill both L1 entries. But create_mapping() doesn't follow the rule. 512 * It can create inidividual L1 entries, so here we have to call 513 * pmd_none() check for the entry really corresponded to address, not 514 * for the first of pair. 515 */ 516 index = (addr >> SECTION_SHIFT) & 1; 517 #endif 518 if (pmd_none(pmd_k[index])) 519 goto bad_area; 520 521 copy_pmd(pmd, pmd_k); 522 return 0; 523 524 bad_area: 525 do_bad_area(addr, fsr, regs); 526 return 0; 527 } 528 #else /* CONFIG_MMU */ 529 static int 530 do_translation_fault(unsigned long addr, unsigned int fsr, 531 struct pt_regs *regs) 532 { 533 return 0; 534 } 535 #endif /* CONFIG_MMU */ 536 537 /* 538 * Some section permission faults need to be handled gracefully. 539 * They can happen due to a __{get,put}_user during an oops. 540 */ 541 #ifndef CONFIG_ARM_LPAE 542 static int 543 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 544 { 545 do_bad_area(addr, fsr, regs); 546 return 0; 547 } 548 #endif /* CONFIG_ARM_LPAE */ 549 550 /* 551 * This abort handler always returns "fault". 552 */ 553 static int 554 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 555 { 556 return 1; 557 } 558 559 struct fsr_info { 560 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 561 int sig; 562 int code; 563 const char *name; 564 }; 565 566 /* FSR definition */ 567 #ifdef CONFIG_ARM_LPAE 568 #include "fsr-3level.c" 569 #else 570 #include "fsr-2level.c" 571 #endif 572 573 void __init 574 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 575 int sig, int code, const char *name) 576 { 577 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 578 BUG(); 579 580 fsr_info[nr].fn = fn; 581 fsr_info[nr].sig = sig; 582 fsr_info[nr].code = code; 583 fsr_info[nr].name = name; 584 } 585 586 /* 587 * Dispatch a data abort to the relevant handler. 588 */ 589 asmlinkage void 590 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 591 { 592 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 593 594 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 595 return; 596 597 pr_alert("8<--- cut here ---\n"); 598 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 599 inf->name, fsr, addr); 600 show_pte(KERN_ALERT, current->mm, addr); 601 602 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 603 fsr, 0); 604 } 605 606 void __init 607 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 608 int sig, int code, const char *name) 609 { 610 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 611 BUG(); 612 613 ifsr_info[nr].fn = fn; 614 ifsr_info[nr].sig = sig; 615 ifsr_info[nr].code = code; 616 ifsr_info[nr].name = name; 617 } 618 619 asmlinkage void 620 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 621 { 622 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 623 624 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 625 return; 626 627 pr_alert("8<--- cut here ---\n"); 628 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 629 inf->name, ifsr, addr); 630 631 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 632 ifsr, 0); 633 } 634 635 /* 636 * Abort handler to be used only during first unmasking of asynchronous aborts 637 * on the boot CPU. This makes sure that the machine will not die if the 638 * firmware/bootloader left an imprecise abort pending for us to trip over. 639 */ 640 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 641 struct pt_regs *regs) 642 { 643 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 644 "first unmask, this is most likely caused by a " 645 "firmware/bootloader bug.\n", fsr); 646 647 return 0; 648 } 649 650 void __init early_abt_enable(void) 651 { 652 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 653 local_abt_enable(); 654 fsr_info[FSR_FS_AEA].fn = do_bad; 655 } 656 657 #ifndef CONFIG_ARM_LPAE 658 static int __init exceptions_init(void) 659 { 660 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 661 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 662 "I-cache maintenance fault"); 663 } 664 665 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 666 /* 667 * TODO: Access flag faults introduced in ARMv6K. 668 * Runtime check for 'K' extension is needed 669 */ 670 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 671 "section access flag fault"); 672 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 673 "section access flag fault"); 674 } 675 676 return 0; 677 } 678 679 arch_initcall(exceptions_init); 680 #endif 681