xref: /linux/arch/arm/mm/fault.c (revision d206cef03c4827984e6ac88a9472b70c41f5b28d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2004 Russell King
7  */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 #include <linux/kfence.h>
21 
22 #include <asm/system_misc.h>
23 #include <asm/system_info.h>
24 #include <asm/tlbflush.h>
25 
26 #include "fault.h"
27 
28 #ifdef CONFIG_MMU
29 
30 /*
31  * This is useful to dump out the page tables associated with
32  * 'addr' in mm 'mm'.
33  */
34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
35 {
36 	pgd_t *pgd;
37 
38 	if (!mm)
39 		mm = &init_mm;
40 
41 	pgd = pgd_offset(mm, addr);
42 	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
43 
44 	do {
45 		p4d_t *p4d;
46 		pud_t *pud;
47 		pmd_t *pmd;
48 		pte_t *pte;
49 
50 		p4d = p4d_offset(pgd, addr);
51 		if (p4d_none(*p4d))
52 			break;
53 
54 		if (p4d_bad(*p4d)) {
55 			pr_cont("(bad)");
56 			break;
57 		}
58 
59 		pud = pud_offset(p4d, addr);
60 		if (PTRS_PER_PUD != 1)
61 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
62 
63 		if (pud_none(*pud))
64 			break;
65 
66 		if (pud_bad(*pud)) {
67 			pr_cont("(bad)");
68 			break;
69 		}
70 
71 		pmd = pmd_offset(pud, addr);
72 		if (PTRS_PER_PMD != 1)
73 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
74 
75 		if (pmd_none(*pmd))
76 			break;
77 
78 		if (pmd_bad(*pmd)) {
79 			pr_cont("(bad)");
80 			break;
81 		}
82 
83 		/* We must not map this if we have highmem enabled */
84 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
85 			break;
86 
87 		pte = pte_offset_map(pmd, addr);
88 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
89 #ifndef CONFIG_ARM_LPAE
90 		pr_cont(", *ppte=%08llx",
91 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
92 #endif
93 		pte_unmap(pte);
94 	} while(0);
95 
96 	pr_cont("\n");
97 }
98 #else					/* CONFIG_MMU */
99 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
100 { }
101 #endif					/* CONFIG_MMU */
102 
103 static inline bool is_write_fault(unsigned int fsr)
104 {
105 	return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
106 }
107 
108 static void die_kernel_fault(const char *msg, struct mm_struct *mm,
109 			     unsigned long addr, unsigned int fsr,
110 			     struct pt_regs *regs)
111 {
112 	bust_spinlocks(1);
113 	pr_alert("8<--- cut here ---\n");
114 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
115 		 msg, addr);
116 
117 	show_pte(KERN_ALERT, mm, addr);
118 	die("Oops", regs, fsr);
119 	bust_spinlocks(0);
120 	make_task_dead(SIGKILL);
121 }
122 
123 /*
124  * Oops.  The kernel tried to access some page that wasn't present.
125  */
126 static void
127 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
128 		  struct pt_regs *regs)
129 {
130 	const char *msg;
131 	/*
132 	 * Are we prepared to handle this kernel fault?
133 	 */
134 	if (fixup_exception(regs))
135 		return;
136 
137 	/*
138 	 * No handler, we'll have to terminate things with extreme prejudice.
139 	 */
140 	if (addr < PAGE_SIZE) {
141 		msg = "NULL pointer dereference";
142 	} else {
143 		if (kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
144 			return;
145 
146 		msg = "paging request";
147 	}
148 
149 	die_kernel_fault(msg, mm, addr, fsr, regs);
150 }
151 
152 /*
153  * Something tried to access memory that isn't in our memory map..
154  * User mode accesses just cause a SIGSEGV
155  */
156 static void
157 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
158 		int code, struct pt_regs *regs)
159 {
160 	struct task_struct *tsk = current;
161 
162 	if (addr > TASK_SIZE)
163 		harden_branch_predictor();
164 
165 #ifdef CONFIG_DEBUG_USER
166 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
167 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
168 		pr_err("8<--- cut here ---\n");
169 		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
170 		       tsk->comm, sig, addr, fsr);
171 		show_pte(KERN_ERR, tsk->mm, addr);
172 		show_regs(regs);
173 	}
174 #endif
175 #ifndef CONFIG_KUSER_HELPERS
176 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
177 		printk_ratelimited(KERN_DEBUG
178 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
179 				   tsk->comm, addr);
180 #endif
181 
182 	tsk->thread.address = addr;
183 	tsk->thread.error_code = fsr;
184 	tsk->thread.trap_no = 14;
185 	force_sig_fault(sig, code, (void __user *)addr);
186 }
187 
188 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
189 {
190 	struct task_struct *tsk = current;
191 	struct mm_struct *mm = tsk->active_mm;
192 
193 	/*
194 	 * If we are in kernel mode at this point, we
195 	 * have no context to handle this fault with.
196 	 */
197 	if (user_mode(regs))
198 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
199 	else
200 		__do_kernel_fault(mm, addr, fsr, regs);
201 }
202 
203 #ifdef CONFIG_MMU
204 #define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
205 #define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
206 
207 static inline bool is_permission_fault(unsigned int fsr)
208 {
209 	int fs = fsr_fs(fsr);
210 #ifdef CONFIG_ARM_LPAE
211 	if ((fs & FS_PERM_NOLL_MASK) == FS_PERM_NOLL)
212 		return true;
213 #else
214 	if (fs == FS_L1_PERM || fs == FS_L2_PERM)
215 		return true;
216 #endif
217 	return false;
218 }
219 
220 static vm_fault_t __kprobes
221 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags,
222 		unsigned long vma_flags, struct pt_regs *regs)
223 {
224 	struct vm_area_struct *vma = find_vma(mm, addr);
225 	if (unlikely(!vma))
226 		return VM_FAULT_BADMAP;
227 
228 	if (unlikely(vma->vm_start > addr)) {
229 		if (!(vma->vm_flags & VM_GROWSDOWN))
230 			return VM_FAULT_BADMAP;
231 		if (addr < FIRST_USER_ADDRESS)
232 			return VM_FAULT_BADMAP;
233 		if (expand_stack(vma, addr))
234 			return VM_FAULT_BADMAP;
235 	}
236 
237 	/*
238 	 * ok, we have a good vm_area for this memory access, check the
239 	 * permissions on the VMA allow for the fault which occurred.
240 	 */
241 	if (!(vma->vm_flags & vma_flags))
242 		return VM_FAULT_BADACCESS;
243 
244 	return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
245 }
246 
247 static int __kprobes
248 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
249 {
250 	struct mm_struct *mm = current->mm;
251 	int sig, code;
252 	vm_fault_t fault;
253 	unsigned int flags = FAULT_FLAG_DEFAULT;
254 	unsigned long vm_flags = VM_ACCESS_FLAGS;
255 
256 	if (kprobe_page_fault(regs, fsr))
257 		return 0;
258 
259 
260 	/* Enable interrupts if they were enabled in the parent context. */
261 	if (interrupts_enabled(regs))
262 		local_irq_enable();
263 
264 	/*
265 	 * If we're in an interrupt or have no user
266 	 * context, we must not take the fault..
267 	 */
268 	if (faulthandler_disabled() || !mm)
269 		goto no_context;
270 
271 	if (user_mode(regs))
272 		flags |= FAULT_FLAG_USER;
273 
274 	if (is_write_fault(fsr)) {
275 		flags |= FAULT_FLAG_WRITE;
276 		vm_flags = VM_WRITE;
277 	}
278 
279 	if (fsr & FSR_LNX_PF) {
280 		vm_flags = VM_EXEC;
281 
282 		if (is_permission_fault(fsr) && !user_mode(regs))
283 			die_kernel_fault("execution of memory",
284 					 mm, addr, fsr, regs);
285 	}
286 
287 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
288 
289 	/*
290 	 * As per x86, we may deadlock here.  However, since the kernel only
291 	 * validly references user space from well defined areas of the code,
292 	 * we can bug out early if this is from code which shouldn't.
293 	 */
294 	if (!mmap_read_trylock(mm)) {
295 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
296 			goto no_context;
297 retry:
298 		mmap_read_lock(mm);
299 	} else {
300 		/*
301 		 * The above down_read_trylock() might have succeeded in
302 		 * which case, we'll have missed the might_sleep() from
303 		 * down_read()
304 		 */
305 		might_sleep();
306 #ifdef CONFIG_DEBUG_VM
307 		if (!user_mode(regs) &&
308 		    !search_exception_tables(regs->ARM_pc))
309 			goto no_context;
310 #endif
311 	}
312 
313 	fault = __do_page_fault(mm, addr, flags, vm_flags, regs);
314 
315 	/* If we need to retry but a fatal signal is pending, handle the
316 	 * signal first. We do not need to release the mmap_lock because
317 	 * it would already be released in __lock_page_or_retry in
318 	 * mm/filemap.c. */
319 	if (fault_signal_pending(fault, regs)) {
320 		if (!user_mode(regs))
321 			goto no_context;
322 		return 0;
323 	}
324 
325 	/* The fault is fully completed (including releasing mmap lock) */
326 	if (fault & VM_FAULT_COMPLETED)
327 		return 0;
328 
329 	if (!(fault & VM_FAULT_ERROR)) {
330 		if (fault & VM_FAULT_RETRY) {
331 			flags |= FAULT_FLAG_TRIED;
332 			goto retry;
333 		}
334 	}
335 
336 	mmap_read_unlock(mm);
337 
338 	/*
339 	 * Handle the "normal" case first - VM_FAULT_MAJOR
340 	 */
341 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
342 		return 0;
343 
344 	/*
345 	 * If we are in kernel mode at this point, we
346 	 * have no context to handle this fault with.
347 	 */
348 	if (!user_mode(regs))
349 		goto no_context;
350 
351 	if (fault & VM_FAULT_OOM) {
352 		/*
353 		 * We ran out of memory, call the OOM killer, and return to
354 		 * userspace (which will retry the fault, or kill us if we
355 		 * got oom-killed)
356 		 */
357 		pagefault_out_of_memory();
358 		return 0;
359 	}
360 
361 	if (fault & VM_FAULT_SIGBUS) {
362 		/*
363 		 * We had some memory, but were unable to
364 		 * successfully fix up this page fault.
365 		 */
366 		sig = SIGBUS;
367 		code = BUS_ADRERR;
368 	} else {
369 		/*
370 		 * Something tried to access memory that
371 		 * isn't in our memory map..
372 		 */
373 		sig = SIGSEGV;
374 		code = fault == VM_FAULT_BADACCESS ?
375 			SEGV_ACCERR : SEGV_MAPERR;
376 	}
377 
378 	__do_user_fault(addr, fsr, sig, code, regs);
379 	return 0;
380 
381 no_context:
382 	__do_kernel_fault(mm, addr, fsr, regs);
383 	return 0;
384 }
385 #else					/* CONFIG_MMU */
386 static int
387 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
388 {
389 	return 0;
390 }
391 #endif					/* CONFIG_MMU */
392 
393 /*
394  * First Level Translation Fault Handler
395  *
396  * We enter here because the first level page table doesn't contain
397  * a valid entry for the address.
398  *
399  * If the address is in kernel space (>= TASK_SIZE), then we are
400  * probably faulting in the vmalloc() area.
401  *
402  * If the init_task's first level page tables contains the relevant
403  * entry, we copy the it to this task.  If not, we send the process
404  * a signal, fixup the exception, or oops the kernel.
405  *
406  * NOTE! We MUST NOT take any locks for this case. We may be in an
407  * interrupt or a critical region, and should only copy the information
408  * from the master page table, nothing more.
409  */
410 #ifdef CONFIG_MMU
411 static int __kprobes
412 do_translation_fault(unsigned long addr, unsigned int fsr,
413 		     struct pt_regs *regs)
414 {
415 	unsigned int index;
416 	pgd_t *pgd, *pgd_k;
417 	p4d_t *p4d, *p4d_k;
418 	pud_t *pud, *pud_k;
419 	pmd_t *pmd, *pmd_k;
420 
421 	if (addr < TASK_SIZE)
422 		return do_page_fault(addr, fsr, regs);
423 
424 	if (user_mode(regs))
425 		goto bad_area;
426 
427 	index = pgd_index(addr);
428 
429 	pgd = cpu_get_pgd() + index;
430 	pgd_k = init_mm.pgd + index;
431 
432 	p4d = p4d_offset(pgd, addr);
433 	p4d_k = p4d_offset(pgd_k, addr);
434 
435 	if (p4d_none(*p4d_k))
436 		goto bad_area;
437 	if (!p4d_present(*p4d))
438 		set_p4d(p4d, *p4d_k);
439 
440 	pud = pud_offset(p4d, addr);
441 	pud_k = pud_offset(p4d_k, addr);
442 
443 	if (pud_none(*pud_k))
444 		goto bad_area;
445 	if (!pud_present(*pud))
446 		set_pud(pud, *pud_k);
447 
448 	pmd = pmd_offset(pud, addr);
449 	pmd_k = pmd_offset(pud_k, addr);
450 
451 #ifdef CONFIG_ARM_LPAE
452 	/*
453 	 * Only one hardware entry per PMD with LPAE.
454 	 */
455 	index = 0;
456 #else
457 	/*
458 	 * On ARM one Linux PGD entry contains two hardware entries (see page
459 	 * tables layout in pgtable.h). We normally guarantee that we always
460 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
461 	 * It can create inidividual L1 entries, so here we have to call
462 	 * pmd_none() check for the entry really corresponded to address, not
463 	 * for the first of pair.
464 	 */
465 	index = (addr >> SECTION_SHIFT) & 1;
466 #endif
467 	if (pmd_none(pmd_k[index]))
468 		goto bad_area;
469 
470 	copy_pmd(pmd, pmd_k);
471 	return 0;
472 
473 bad_area:
474 	do_bad_area(addr, fsr, regs);
475 	return 0;
476 }
477 #else					/* CONFIG_MMU */
478 static int
479 do_translation_fault(unsigned long addr, unsigned int fsr,
480 		     struct pt_regs *regs)
481 {
482 	return 0;
483 }
484 #endif					/* CONFIG_MMU */
485 
486 /*
487  * Some section permission faults need to be handled gracefully.
488  * They can happen due to a __{get,put}_user during an oops.
489  */
490 #ifndef CONFIG_ARM_LPAE
491 static int
492 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
493 {
494 	do_bad_area(addr, fsr, regs);
495 	return 0;
496 }
497 #endif /* CONFIG_ARM_LPAE */
498 
499 /*
500  * This abort handler always returns "fault".
501  */
502 static int
503 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
504 {
505 	return 1;
506 }
507 
508 struct fsr_info {
509 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
510 	int	sig;
511 	int	code;
512 	const char *name;
513 };
514 
515 /* FSR definition */
516 #ifdef CONFIG_ARM_LPAE
517 #include "fsr-3level.c"
518 #else
519 #include "fsr-2level.c"
520 #endif
521 
522 void __init
523 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
524 		int sig, int code, const char *name)
525 {
526 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
527 		BUG();
528 
529 	fsr_info[nr].fn   = fn;
530 	fsr_info[nr].sig  = sig;
531 	fsr_info[nr].code = code;
532 	fsr_info[nr].name = name;
533 }
534 
535 /*
536  * Dispatch a data abort to the relevant handler.
537  */
538 asmlinkage void
539 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
540 {
541 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
542 
543 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
544 		return;
545 
546 	pr_alert("8<--- cut here ---\n");
547 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
548 		inf->name, fsr, addr);
549 	show_pte(KERN_ALERT, current->mm, addr);
550 
551 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
552 		       fsr, 0);
553 }
554 
555 void __init
556 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
557 		 int sig, int code, const char *name)
558 {
559 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
560 		BUG();
561 
562 	ifsr_info[nr].fn   = fn;
563 	ifsr_info[nr].sig  = sig;
564 	ifsr_info[nr].code = code;
565 	ifsr_info[nr].name = name;
566 }
567 
568 asmlinkage void
569 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
570 {
571 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
572 
573 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
574 		return;
575 
576 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
577 		inf->name, ifsr, addr);
578 
579 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
580 		       ifsr, 0);
581 }
582 
583 /*
584  * Abort handler to be used only during first unmasking of asynchronous aborts
585  * on the boot CPU. This makes sure that the machine will not die if the
586  * firmware/bootloader left an imprecise abort pending for us to trip over.
587  */
588 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
589 				      struct pt_regs *regs)
590 {
591 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
592 		"first unmask, this is most likely caused by a "
593 		"firmware/bootloader bug.\n", fsr);
594 
595 	return 0;
596 }
597 
598 void __init early_abt_enable(void)
599 {
600 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
601 	local_abt_enable();
602 	fsr_info[FSR_FS_AEA].fn = do_bad;
603 }
604 
605 #ifndef CONFIG_ARM_LPAE
606 static int __init exceptions_init(void)
607 {
608 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
609 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
610 				"I-cache maintenance fault");
611 	}
612 
613 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
614 		/*
615 		 * TODO: Access flag faults introduced in ARMv6K.
616 		 * Runtime check for 'K' extension is needed
617 		 */
618 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
619 				"section access flag fault");
620 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
621 				"section access flag fault");
622 	}
623 
624 	return 0;
625 }
626 
627 arch_initcall(exceptions_init);
628 #endif
629