1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/system_misc.h> 22 #include <asm/system_info.h> 23 #include <asm/tlbflush.h> 24 25 #include "fault.h" 26 27 #ifdef CONFIG_MMU 28 29 /* 30 * This is useful to dump out the page tables associated with 31 * 'addr' in mm 'mm'. 32 */ 33 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 34 { 35 pgd_t *pgd; 36 37 if (!mm) 38 mm = &init_mm; 39 40 printk("%spgd = %p\n", lvl, mm->pgd); 41 pgd = pgd_offset(mm, addr); 42 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 43 44 do { 45 p4d_t *p4d; 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 50 p4d = p4d_offset(pgd, addr); 51 if (p4d_none(*p4d)) 52 break; 53 54 if (p4d_bad(*p4d)) { 55 pr_cont("(bad)"); 56 break; 57 } 58 59 pud = pud_offset(p4d, addr); 60 if (PTRS_PER_PUD != 1) 61 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 62 63 if (pud_none(*pud)) 64 break; 65 66 if (pud_bad(*pud)) { 67 pr_cont("(bad)"); 68 break; 69 } 70 71 pmd = pmd_offset(pud, addr); 72 if (PTRS_PER_PMD != 1) 73 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 74 75 if (pmd_none(*pmd)) 76 break; 77 78 if (pmd_bad(*pmd)) { 79 pr_cont("(bad)"); 80 break; 81 } 82 83 /* We must not map this if we have highmem enabled */ 84 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 85 break; 86 87 pte = pte_offset_map(pmd, addr); 88 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 89 #ifndef CONFIG_ARM_LPAE 90 pr_cont(", *ppte=%08llx", 91 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 92 #endif 93 pte_unmap(pte); 94 } while(0); 95 96 pr_cont("\n"); 97 } 98 #else /* CONFIG_MMU */ 99 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 100 { } 101 #endif /* CONFIG_MMU */ 102 103 /* 104 * Oops. The kernel tried to access some page that wasn't present. 105 */ 106 static void 107 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 108 struct pt_regs *regs) 109 { 110 /* 111 * Are we prepared to handle this kernel fault? 112 */ 113 if (fixup_exception(regs)) 114 return; 115 116 /* 117 * No handler, we'll have to terminate things with extreme prejudice. 118 */ 119 bust_spinlocks(1); 120 pr_alert("8<--- cut here ---\n"); 121 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 122 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 123 "paging request", addr); 124 125 show_pte(KERN_ALERT, mm, addr); 126 die("Oops", regs, fsr); 127 bust_spinlocks(0); 128 do_exit(SIGKILL); 129 } 130 131 /* 132 * Something tried to access memory that isn't in our memory map.. 133 * User mode accesses just cause a SIGSEGV 134 */ 135 static void 136 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 137 int code, struct pt_regs *regs) 138 { 139 struct task_struct *tsk = current; 140 141 if (addr > TASK_SIZE) 142 harden_branch_predictor(); 143 144 #ifdef CONFIG_DEBUG_USER 145 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 146 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 147 pr_err("8<--- cut here ---\n"); 148 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 149 tsk->comm, sig, addr, fsr); 150 show_pte(KERN_ERR, tsk->mm, addr); 151 show_regs(regs); 152 } 153 #endif 154 #ifndef CONFIG_KUSER_HELPERS 155 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 156 printk_ratelimited(KERN_DEBUG 157 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 158 tsk->comm, addr); 159 #endif 160 161 tsk->thread.address = addr; 162 tsk->thread.error_code = fsr; 163 tsk->thread.trap_no = 14; 164 force_sig_fault(sig, code, (void __user *)addr); 165 } 166 167 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 168 { 169 struct task_struct *tsk = current; 170 struct mm_struct *mm = tsk->active_mm; 171 172 /* 173 * If we are in kernel mode at this point, we 174 * have no context to handle this fault with. 175 */ 176 if (user_mode(regs)) 177 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 178 else 179 __do_kernel_fault(mm, addr, fsr, regs); 180 } 181 182 #ifdef CONFIG_MMU 183 #define VM_FAULT_BADMAP 0x010000 184 #define VM_FAULT_BADACCESS 0x020000 185 186 /* 187 * Check that the permissions on the VMA allow for the fault which occurred. 188 * If we encountered a write fault, we must have write permission, otherwise 189 * we allow any permission. 190 */ 191 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 192 { 193 unsigned int mask = VM_ACCESS_FLAGS; 194 195 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) 196 mask = VM_WRITE; 197 if (fsr & FSR_LNX_PF) 198 mask = VM_EXEC; 199 200 return vma->vm_flags & mask ? false : true; 201 } 202 203 static vm_fault_t __kprobes 204 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 205 unsigned int flags, struct task_struct *tsk, 206 struct pt_regs *regs) 207 { 208 struct vm_area_struct *vma; 209 vm_fault_t fault; 210 211 vma = find_vma(mm, addr); 212 fault = VM_FAULT_BADMAP; 213 if (unlikely(!vma)) 214 goto out; 215 if (unlikely(vma->vm_start > addr)) 216 goto check_stack; 217 218 /* 219 * Ok, we have a good vm_area for this 220 * memory access, so we can handle it. 221 */ 222 good_area: 223 if (access_error(fsr, vma)) { 224 fault = VM_FAULT_BADACCESS; 225 goto out; 226 } 227 228 return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); 229 230 check_stack: 231 /* Don't allow expansion below FIRST_USER_ADDRESS */ 232 if (vma->vm_flags & VM_GROWSDOWN && 233 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 234 goto good_area; 235 out: 236 return fault; 237 } 238 239 static int __kprobes 240 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 241 { 242 struct task_struct *tsk; 243 struct mm_struct *mm; 244 int sig, code; 245 vm_fault_t fault; 246 unsigned int flags = FAULT_FLAG_DEFAULT; 247 248 if (kprobe_page_fault(regs, fsr)) 249 return 0; 250 251 tsk = current; 252 mm = tsk->mm; 253 254 /* Enable interrupts if they were enabled in the parent context. */ 255 if (interrupts_enabled(regs)) 256 local_irq_enable(); 257 258 /* 259 * If we're in an interrupt or have no user 260 * context, we must not take the fault.. 261 */ 262 if (faulthandler_disabled() || !mm) 263 goto no_context; 264 265 if (user_mode(regs)) 266 flags |= FAULT_FLAG_USER; 267 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) 268 flags |= FAULT_FLAG_WRITE; 269 270 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 271 272 /* 273 * As per x86, we may deadlock here. However, since the kernel only 274 * validly references user space from well defined areas of the code, 275 * we can bug out early if this is from code which shouldn't. 276 */ 277 if (!mmap_read_trylock(mm)) { 278 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 279 goto no_context; 280 retry: 281 mmap_read_lock(mm); 282 } else { 283 /* 284 * The above down_read_trylock() might have succeeded in 285 * which case, we'll have missed the might_sleep() from 286 * down_read() 287 */ 288 might_sleep(); 289 #ifdef CONFIG_DEBUG_VM 290 if (!user_mode(regs) && 291 !search_exception_tables(regs->ARM_pc)) 292 goto no_context; 293 #endif 294 } 295 296 fault = __do_page_fault(mm, addr, fsr, flags, tsk, regs); 297 298 /* If we need to retry but a fatal signal is pending, handle the 299 * signal first. We do not need to release the mmap_lock because 300 * it would already be released in __lock_page_or_retry in 301 * mm/filemap.c. */ 302 if (fault_signal_pending(fault, regs)) { 303 if (!user_mode(regs)) 304 goto no_context; 305 return 0; 306 } 307 308 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 309 if (fault & VM_FAULT_RETRY) { 310 flags |= FAULT_FLAG_TRIED; 311 goto retry; 312 } 313 } 314 315 mmap_read_unlock(mm); 316 317 /* 318 * Handle the "normal" case first - VM_FAULT_MAJOR 319 */ 320 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 321 return 0; 322 323 /* 324 * If we are in kernel mode at this point, we 325 * have no context to handle this fault with. 326 */ 327 if (!user_mode(regs)) 328 goto no_context; 329 330 if (fault & VM_FAULT_OOM) { 331 /* 332 * We ran out of memory, call the OOM killer, and return to 333 * userspace (which will retry the fault, or kill us if we 334 * got oom-killed) 335 */ 336 pagefault_out_of_memory(); 337 return 0; 338 } 339 340 if (fault & VM_FAULT_SIGBUS) { 341 /* 342 * We had some memory, but were unable to 343 * successfully fix up this page fault. 344 */ 345 sig = SIGBUS; 346 code = BUS_ADRERR; 347 } else { 348 /* 349 * Something tried to access memory that 350 * isn't in our memory map.. 351 */ 352 sig = SIGSEGV; 353 code = fault == VM_FAULT_BADACCESS ? 354 SEGV_ACCERR : SEGV_MAPERR; 355 } 356 357 __do_user_fault(addr, fsr, sig, code, regs); 358 return 0; 359 360 no_context: 361 __do_kernel_fault(mm, addr, fsr, regs); 362 return 0; 363 } 364 #else /* CONFIG_MMU */ 365 static int 366 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 367 { 368 return 0; 369 } 370 #endif /* CONFIG_MMU */ 371 372 /* 373 * First Level Translation Fault Handler 374 * 375 * We enter here because the first level page table doesn't contain 376 * a valid entry for the address. 377 * 378 * If the address is in kernel space (>= TASK_SIZE), then we are 379 * probably faulting in the vmalloc() area. 380 * 381 * If the init_task's first level page tables contains the relevant 382 * entry, we copy the it to this task. If not, we send the process 383 * a signal, fixup the exception, or oops the kernel. 384 * 385 * NOTE! We MUST NOT take any locks for this case. We may be in an 386 * interrupt or a critical region, and should only copy the information 387 * from the master page table, nothing more. 388 */ 389 #ifdef CONFIG_MMU 390 static int __kprobes 391 do_translation_fault(unsigned long addr, unsigned int fsr, 392 struct pt_regs *regs) 393 { 394 unsigned int index; 395 pgd_t *pgd, *pgd_k; 396 p4d_t *p4d, *p4d_k; 397 pud_t *pud, *pud_k; 398 pmd_t *pmd, *pmd_k; 399 400 if (addr < TASK_SIZE) 401 return do_page_fault(addr, fsr, regs); 402 403 if (user_mode(regs)) 404 goto bad_area; 405 406 index = pgd_index(addr); 407 408 pgd = cpu_get_pgd() + index; 409 pgd_k = init_mm.pgd + index; 410 411 p4d = p4d_offset(pgd, addr); 412 p4d_k = p4d_offset(pgd_k, addr); 413 414 if (p4d_none(*p4d_k)) 415 goto bad_area; 416 if (!p4d_present(*p4d)) 417 set_p4d(p4d, *p4d_k); 418 419 pud = pud_offset(p4d, addr); 420 pud_k = pud_offset(p4d_k, addr); 421 422 if (pud_none(*pud_k)) 423 goto bad_area; 424 if (!pud_present(*pud)) 425 set_pud(pud, *pud_k); 426 427 pmd = pmd_offset(pud, addr); 428 pmd_k = pmd_offset(pud_k, addr); 429 430 #ifdef CONFIG_ARM_LPAE 431 /* 432 * Only one hardware entry per PMD with LPAE. 433 */ 434 index = 0; 435 #else 436 /* 437 * On ARM one Linux PGD entry contains two hardware entries (see page 438 * tables layout in pgtable.h). We normally guarantee that we always 439 * fill both L1 entries. But create_mapping() doesn't follow the rule. 440 * It can create inidividual L1 entries, so here we have to call 441 * pmd_none() check for the entry really corresponded to address, not 442 * for the first of pair. 443 */ 444 index = (addr >> SECTION_SHIFT) & 1; 445 #endif 446 if (pmd_none(pmd_k[index])) 447 goto bad_area; 448 449 copy_pmd(pmd, pmd_k); 450 return 0; 451 452 bad_area: 453 do_bad_area(addr, fsr, regs); 454 return 0; 455 } 456 #else /* CONFIG_MMU */ 457 static int 458 do_translation_fault(unsigned long addr, unsigned int fsr, 459 struct pt_regs *regs) 460 { 461 return 0; 462 } 463 #endif /* CONFIG_MMU */ 464 465 /* 466 * Some section permission faults need to be handled gracefully. 467 * They can happen due to a __{get,put}_user during an oops. 468 */ 469 #ifndef CONFIG_ARM_LPAE 470 static int 471 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 472 { 473 do_bad_area(addr, fsr, regs); 474 return 0; 475 } 476 #endif /* CONFIG_ARM_LPAE */ 477 478 /* 479 * This abort handler always returns "fault". 480 */ 481 static int 482 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 483 { 484 return 1; 485 } 486 487 struct fsr_info { 488 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 489 int sig; 490 int code; 491 const char *name; 492 }; 493 494 /* FSR definition */ 495 #ifdef CONFIG_ARM_LPAE 496 #include "fsr-3level.c" 497 #else 498 #include "fsr-2level.c" 499 #endif 500 501 void __init 502 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 503 int sig, int code, const char *name) 504 { 505 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 506 BUG(); 507 508 fsr_info[nr].fn = fn; 509 fsr_info[nr].sig = sig; 510 fsr_info[nr].code = code; 511 fsr_info[nr].name = name; 512 } 513 514 /* 515 * Dispatch a data abort to the relevant handler. 516 */ 517 asmlinkage void 518 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 519 { 520 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 521 522 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 523 return; 524 525 pr_alert("8<--- cut here ---\n"); 526 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 527 inf->name, fsr, addr); 528 show_pte(KERN_ALERT, current->mm, addr); 529 530 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 531 fsr, 0); 532 } 533 534 void __init 535 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 536 int sig, int code, const char *name) 537 { 538 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 539 BUG(); 540 541 ifsr_info[nr].fn = fn; 542 ifsr_info[nr].sig = sig; 543 ifsr_info[nr].code = code; 544 ifsr_info[nr].name = name; 545 } 546 547 asmlinkage void 548 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 549 { 550 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 551 552 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 553 return; 554 555 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 556 inf->name, ifsr, addr); 557 558 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 559 ifsr, 0); 560 } 561 562 /* 563 * Abort handler to be used only during first unmasking of asynchronous aborts 564 * on the boot CPU. This makes sure that the machine will not die if the 565 * firmware/bootloader left an imprecise abort pending for us to trip over. 566 */ 567 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 568 struct pt_regs *regs) 569 { 570 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 571 "first unmask, this is most likely caused by a " 572 "firmware/bootloader bug.\n", fsr); 573 574 return 0; 575 } 576 577 void __init early_abt_enable(void) 578 { 579 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 580 local_abt_enable(); 581 fsr_info[FSR_FS_AEA].fn = do_bad; 582 } 583 584 #ifndef CONFIG_ARM_LPAE 585 static int __init exceptions_init(void) 586 { 587 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 588 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 589 "I-cache maintenance fault"); 590 } 591 592 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 593 /* 594 * TODO: Access flag faults introduced in ARMv6K. 595 * Runtime check for 'K' extension is needed 596 */ 597 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 598 "section access flag fault"); 599 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 600 "section access flag fault"); 601 } 602 603 return 0; 604 } 605 606 arch_initcall(exceptions_init); 607 #endif 608