xref: /linux/arch/arm/mm/fault.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  *  linux/arch/arm/mm/fault.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2004 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/extable.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
23 
24 #include <asm/exception.h>
25 #include <asm/pgtable.h>
26 #include <asm/system_misc.h>
27 #include <asm/system_info.h>
28 #include <asm/tlbflush.h>
29 
30 #include "fault.h"
31 
32 #ifdef CONFIG_MMU
33 
34 #ifdef CONFIG_KPROBES
35 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
36 {
37 	int ret = 0;
38 
39 	if (!user_mode(regs)) {
40 		/* kprobe_running() needs smp_processor_id() */
41 		preempt_disable();
42 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
43 			ret = 1;
44 		preempt_enable();
45 	}
46 
47 	return ret;
48 }
49 #else
50 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
51 {
52 	return 0;
53 }
54 #endif
55 
56 /*
57  * This is useful to dump out the page tables associated with
58  * 'addr' in mm 'mm'.
59  */
60 void show_pte(struct mm_struct *mm, unsigned long addr)
61 {
62 	pgd_t *pgd;
63 
64 	if (!mm)
65 		mm = &init_mm;
66 
67 	pr_alert("pgd = %p\n", mm->pgd);
68 	pgd = pgd_offset(mm, addr);
69 	pr_alert("[%08lx] *pgd=%08llx",
70 			addr, (long long)pgd_val(*pgd));
71 
72 	do {
73 		pud_t *pud;
74 		pmd_t *pmd;
75 		pte_t *pte;
76 
77 		if (pgd_none(*pgd))
78 			break;
79 
80 		if (pgd_bad(*pgd)) {
81 			pr_cont("(bad)");
82 			break;
83 		}
84 
85 		pud = pud_offset(pgd, addr);
86 		if (PTRS_PER_PUD != 1)
87 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
88 
89 		if (pud_none(*pud))
90 			break;
91 
92 		if (pud_bad(*pud)) {
93 			pr_cont("(bad)");
94 			break;
95 		}
96 
97 		pmd = pmd_offset(pud, addr);
98 		if (PTRS_PER_PMD != 1)
99 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
100 
101 		if (pmd_none(*pmd))
102 			break;
103 
104 		if (pmd_bad(*pmd)) {
105 			pr_cont("(bad)");
106 			break;
107 		}
108 
109 		/* We must not map this if we have highmem enabled */
110 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
111 			break;
112 
113 		pte = pte_offset_map(pmd, addr);
114 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
115 #ifndef CONFIG_ARM_LPAE
116 		pr_cont(", *ppte=%08llx",
117 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
118 #endif
119 		pte_unmap(pte);
120 	} while(0);
121 
122 	pr_cont("\n");
123 }
124 #else					/* CONFIG_MMU */
125 void show_pte(struct mm_struct *mm, unsigned long addr)
126 { }
127 #endif					/* CONFIG_MMU */
128 
129 /*
130  * Oops.  The kernel tried to access some page that wasn't present.
131  */
132 static void
133 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
134 		  struct pt_regs *regs)
135 {
136 	/*
137 	 * Are we prepared to handle this kernel fault?
138 	 */
139 	if (fixup_exception(regs))
140 		return;
141 
142 	/*
143 	 * No handler, we'll have to terminate things with extreme prejudice.
144 	 */
145 	bust_spinlocks(1);
146 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
147 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
148 		 "paging request", addr);
149 
150 	show_pte(mm, addr);
151 	die("Oops", regs, fsr);
152 	bust_spinlocks(0);
153 	do_exit(SIGKILL);
154 }
155 
156 /*
157  * Something tried to access memory that isn't in our memory map..
158  * User mode accesses just cause a SIGSEGV
159  */
160 static void
161 __do_user_fault(struct task_struct *tsk, unsigned long addr,
162 		unsigned int fsr, unsigned int sig, int code,
163 		struct pt_regs *regs)
164 {
165 	struct siginfo si;
166 
167 #ifdef CONFIG_DEBUG_USER
168 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
170 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171 		       tsk->comm, sig, addr, fsr);
172 		show_pte(tsk->mm, addr);
173 		show_regs(regs);
174 	}
175 #endif
176 
177 	tsk->thread.address = addr;
178 	tsk->thread.error_code = fsr;
179 	tsk->thread.trap_no = 14;
180 	si.si_signo = sig;
181 	si.si_errno = 0;
182 	si.si_code = code;
183 	si.si_addr = (void __user *)addr;
184 	force_sig_info(sig, &si, tsk);
185 }
186 
187 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
188 {
189 	struct task_struct *tsk = current;
190 	struct mm_struct *mm = tsk->active_mm;
191 
192 	/*
193 	 * If we are in kernel mode at this point, we
194 	 * have no context to handle this fault with.
195 	 */
196 	if (user_mode(regs))
197 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
198 	else
199 		__do_kernel_fault(mm, addr, fsr, regs);
200 }
201 
202 #ifdef CONFIG_MMU
203 #define VM_FAULT_BADMAP		0x010000
204 #define VM_FAULT_BADACCESS	0x020000
205 
206 /*
207  * Check that the permissions on the VMA allow for the fault which occurred.
208  * If we encountered a write fault, we must have write permission, otherwise
209  * we allow any permission.
210  */
211 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
212 {
213 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
214 
215 	if (fsr & FSR_WRITE)
216 		mask = VM_WRITE;
217 	if (fsr & FSR_LNX_PF)
218 		mask = VM_EXEC;
219 
220 	return vma->vm_flags & mask ? false : true;
221 }
222 
223 static int __kprobes
224 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
225 		unsigned int flags, struct task_struct *tsk)
226 {
227 	struct vm_area_struct *vma;
228 	int fault;
229 
230 	vma = find_vma(mm, addr);
231 	fault = VM_FAULT_BADMAP;
232 	if (unlikely(!vma))
233 		goto out;
234 	if (unlikely(vma->vm_start > addr))
235 		goto check_stack;
236 
237 	/*
238 	 * Ok, we have a good vm_area for this
239 	 * memory access, so we can handle it.
240 	 */
241 good_area:
242 	if (access_error(fsr, vma)) {
243 		fault = VM_FAULT_BADACCESS;
244 		goto out;
245 	}
246 
247 	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
248 
249 check_stack:
250 	/* Don't allow expansion below FIRST_USER_ADDRESS */
251 	if (vma->vm_flags & VM_GROWSDOWN &&
252 	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
253 		goto good_area;
254 out:
255 	return fault;
256 }
257 
258 static int __kprobes
259 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
260 {
261 	struct task_struct *tsk;
262 	struct mm_struct *mm;
263 	int fault, sig, code;
264 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
265 
266 	if (notify_page_fault(regs, fsr))
267 		return 0;
268 
269 	tsk = current;
270 	mm  = tsk->mm;
271 
272 	/* Enable interrupts if they were enabled in the parent context. */
273 	if (interrupts_enabled(regs))
274 		local_irq_enable();
275 
276 	/*
277 	 * If we're in an interrupt or have no user
278 	 * context, we must not take the fault..
279 	 */
280 	if (faulthandler_disabled() || !mm)
281 		goto no_context;
282 
283 	if (user_mode(regs))
284 		flags |= FAULT_FLAG_USER;
285 	if (fsr & FSR_WRITE)
286 		flags |= FAULT_FLAG_WRITE;
287 
288 	/*
289 	 * As per x86, we may deadlock here.  However, since the kernel only
290 	 * validly references user space from well defined areas of the code,
291 	 * we can bug out early if this is from code which shouldn't.
292 	 */
293 	if (!down_read_trylock(&mm->mmap_sem)) {
294 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
295 			goto no_context;
296 retry:
297 		down_read(&mm->mmap_sem);
298 	} else {
299 		/*
300 		 * The above down_read_trylock() might have succeeded in
301 		 * which case, we'll have missed the might_sleep() from
302 		 * down_read()
303 		 */
304 		might_sleep();
305 #ifdef CONFIG_DEBUG_VM
306 		if (!user_mode(regs) &&
307 		    !search_exception_tables(regs->ARM_pc))
308 			goto no_context;
309 #endif
310 	}
311 
312 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
313 
314 	/* If we need to retry but a fatal signal is pending, handle the
315 	 * signal first. We do not need to release the mmap_sem because
316 	 * it would already be released in __lock_page_or_retry in
317 	 * mm/filemap.c. */
318 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
319 		if (!user_mode(regs))
320 			goto no_context;
321 		return 0;
322 	}
323 
324 	/*
325 	 * Major/minor page fault accounting is only done on the
326 	 * initial attempt. If we go through a retry, it is extremely
327 	 * likely that the page will be found in page cache at that point.
328 	 */
329 
330 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
331 	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
332 		if (fault & VM_FAULT_MAJOR) {
333 			tsk->maj_flt++;
334 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
335 					regs, addr);
336 		} else {
337 			tsk->min_flt++;
338 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
339 					regs, addr);
340 		}
341 		if (fault & VM_FAULT_RETRY) {
342 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
343 			* of starvation. */
344 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
345 			flags |= FAULT_FLAG_TRIED;
346 			goto retry;
347 		}
348 	}
349 
350 	up_read(&mm->mmap_sem);
351 
352 	/*
353 	 * Handle the "normal" case first - VM_FAULT_MAJOR
354 	 */
355 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
356 		return 0;
357 
358 	/*
359 	 * If we are in kernel mode at this point, we
360 	 * have no context to handle this fault with.
361 	 */
362 	if (!user_mode(regs))
363 		goto no_context;
364 
365 	if (fault & VM_FAULT_OOM) {
366 		/*
367 		 * We ran out of memory, call the OOM killer, and return to
368 		 * userspace (which will retry the fault, or kill us if we
369 		 * got oom-killed)
370 		 */
371 		pagefault_out_of_memory();
372 		return 0;
373 	}
374 
375 	if (fault & VM_FAULT_SIGBUS) {
376 		/*
377 		 * We had some memory, but were unable to
378 		 * successfully fix up this page fault.
379 		 */
380 		sig = SIGBUS;
381 		code = BUS_ADRERR;
382 	} else {
383 		/*
384 		 * Something tried to access memory that
385 		 * isn't in our memory map..
386 		 */
387 		sig = SIGSEGV;
388 		code = fault == VM_FAULT_BADACCESS ?
389 			SEGV_ACCERR : SEGV_MAPERR;
390 	}
391 
392 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
393 	return 0;
394 
395 no_context:
396 	__do_kernel_fault(mm, addr, fsr, regs);
397 	return 0;
398 }
399 #else					/* CONFIG_MMU */
400 static int
401 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
402 {
403 	return 0;
404 }
405 #endif					/* CONFIG_MMU */
406 
407 /*
408  * First Level Translation Fault Handler
409  *
410  * We enter here because the first level page table doesn't contain
411  * a valid entry for the address.
412  *
413  * If the address is in kernel space (>= TASK_SIZE), then we are
414  * probably faulting in the vmalloc() area.
415  *
416  * If the init_task's first level page tables contains the relevant
417  * entry, we copy the it to this task.  If not, we send the process
418  * a signal, fixup the exception, or oops the kernel.
419  *
420  * NOTE! We MUST NOT take any locks for this case. We may be in an
421  * interrupt or a critical region, and should only copy the information
422  * from the master page table, nothing more.
423  */
424 #ifdef CONFIG_MMU
425 static int __kprobes
426 do_translation_fault(unsigned long addr, unsigned int fsr,
427 		     struct pt_regs *regs)
428 {
429 	unsigned int index;
430 	pgd_t *pgd, *pgd_k;
431 	pud_t *pud, *pud_k;
432 	pmd_t *pmd, *pmd_k;
433 
434 	if (addr < TASK_SIZE)
435 		return do_page_fault(addr, fsr, regs);
436 
437 	if (user_mode(regs))
438 		goto bad_area;
439 
440 	index = pgd_index(addr);
441 
442 	pgd = cpu_get_pgd() + index;
443 	pgd_k = init_mm.pgd + index;
444 
445 	if (pgd_none(*pgd_k))
446 		goto bad_area;
447 	if (!pgd_present(*pgd))
448 		set_pgd(pgd, *pgd_k);
449 
450 	pud = pud_offset(pgd, addr);
451 	pud_k = pud_offset(pgd_k, addr);
452 
453 	if (pud_none(*pud_k))
454 		goto bad_area;
455 	if (!pud_present(*pud))
456 		set_pud(pud, *pud_k);
457 
458 	pmd = pmd_offset(pud, addr);
459 	pmd_k = pmd_offset(pud_k, addr);
460 
461 #ifdef CONFIG_ARM_LPAE
462 	/*
463 	 * Only one hardware entry per PMD with LPAE.
464 	 */
465 	index = 0;
466 #else
467 	/*
468 	 * On ARM one Linux PGD entry contains two hardware entries (see page
469 	 * tables layout in pgtable.h). We normally guarantee that we always
470 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
471 	 * It can create inidividual L1 entries, so here we have to call
472 	 * pmd_none() check for the entry really corresponded to address, not
473 	 * for the first of pair.
474 	 */
475 	index = (addr >> SECTION_SHIFT) & 1;
476 #endif
477 	if (pmd_none(pmd_k[index]))
478 		goto bad_area;
479 
480 	copy_pmd(pmd, pmd_k);
481 	return 0;
482 
483 bad_area:
484 	do_bad_area(addr, fsr, regs);
485 	return 0;
486 }
487 #else					/* CONFIG_MMU */
488 static int
489 do_translation_fault(unsigned long addr, unsigned int fsr,
490 		     struct pt_regs *regs)
491 {
492 	return 0;
493 }
494 #endif					/* CONFIG_MMU */
495 
496 /*
497  * Some section permission faults need to be handled gracefully.
498  * They can happen due to a __{get,put}_user during an oops.
499  */
500 #ifndef CONFIG_ARM_LPAE
501 static int
502 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
503 {
504 	do_bad_area(addr, fsr, regs);
505 	return 0;
506 }
507 #endif /* CONFIG_ARM_LPAE */
508 
509 /*
510  * This abort handler always returns "fault".
511  */
512 static int
513 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
514 {
515 	return 1;
516 }
517 
518 struct fsr_info {
519 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
520 	int	sig;
521 	int	code;
522 	const char *name;
523 };
524 
525 /* FSR definition */
526 #ifdef CONFIG_ARM_LPAE
527 #include "fsr-3level.c"
528 #else
529 #include "fsr-2level.c"
530 #endif
531 
532 void __init
533 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
534 		int sig, int code, const char *name)
535 {
536 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
537 		BUG();
538 
539 	fsr_info[nr].fn   = fn;
540 	fsr_info[nr].sig  = sig;
541 	fsr_info[nr].code = code;
542 	fsr_info[nr].name = name;
543 }
544 
545 /*
546  * Dispatch a data abort to the relevant handler.
547  */
548 asmlinkage void __exception
549 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
550 {
551 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
552 	struct siginfo info;
553 
554 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
555 		return;
556 
557 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
558 		inf->name, fsr, addr);
559 	show_pte(current->mm, addr);
560 
561 	info.si_signo = inf->sig;
562 	info.si_errno = 0;
563 	info.si_code  = inf->code;
564 	info.si_addr  = (void __user *)addr;
565 	arm_notify_die("", regs, &info, fsr, 0);
566 }
567 
568 void __init
569 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
570 		 int sig, int code, const char *name)
571 {
572 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
573 		BUG();
574 
575 	ifsr_info[nr].fn   = fn;
576 	ifsr_info[nr].sig  = sig;
577 	ifsr_info[nr].code = code;
578 	ifsr_info[nr].name = name;
579 }
580 
581 asmlinkage void __exception
582 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
583 {
584 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
585 	struct siginfo info;
586 
587 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
588 		return;
589 
590 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
591 		inf->name, ifsr, addr);
592 
593 	info.si_signo = inf->sig;
594 	info.si_errno = 0;
595 	info.si_code  = inf->code;
596 	info.si_addr  = (void __user *)addr;
597 	arm_notify_die("", regs, &info, ifsr, 0);
598 }
599 
600 /*
601  * Abort handler to be used only during first unmasking of asynchronous aborts
602  * on the boot CPU. This makes sure that the machine will not die if the
603  * firmware/bootloader left an imprecise abort pending for us to trip over.
604  */
605 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
606 				      struct pt_regs *regs)
607 {
608 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
609 		"first unmask, this is most likely caused by a "
610 		"firmware/bootloader bug.\n", fsr);
611 
612 	return 0;
613 }
614 
615 void __init early_abt_enable(void)
616 {
617 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
618 	local_abt_enable();
619 	fsr_info[FSR_FS_AEA].fn = do_bad;
620 }
621 
622 #ifndef CONFIG_ARM_LPAE
623 static int __init exceptions_init(void)
624 {
625 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
626 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
627 				"I-cache maintenance fault");
628 	}
629 
630 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
631 		/*
632 		 * TODO: Access flag faults introduced in ARMv6K.
633 		 * Runtime check for 'K' extension is needed
634 		 */
635 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
636 				"section access flag fault");
637 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
638 				"section access flag fault");
639 	}
640 
641 	return 0;
642 }
643 
644 arch_initcall(exceptions_init);
645 #endif
646