1 /* 2 * linux/arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Modifications for ARM processor (c) 1995-2004 Russell King 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/extable.h> 12 #include <linux/signal.h> 13 #include <linux/mm.h> 14 #include <linux/hardirq.h> 15 #include <linux/init.h> 16 #include <linux/kprobes.h> 17 #include <linux/uaccess.h> 18 #include <linux/page-flags.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/highmem.h> 22 #include <linux/perf_event.h> 23 24 #include <asm/pgtable.h> 25 #include <asm/system_misc.h> 26 #include <asm/system_info.h> 27 #include <asm/tlbflush.h> 28 29 #include "fault.h" 30 31 #ifdef CONFIG_MMU 32 33 #ifdef CONFIG_KPROBES 34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 35 { 36 int ret = 0; 37 38 if (!user_mode(regs)) { 39 /* kprobe_running() needs smp_processor_id() */ 40 preempt_disable(); 41 if (kprobe_running() && kprobe_fault_handler(regs, fsr)) 42 ret = 1; 43 preempt_enable(); 44 } 45 46 return ret; 47 } 48 #else 49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 50 { 51 return 0; 52 } 53 #endif 54 55 /* 56 * This is useful to dump out the page tables associated with 57 * 'addr' in mm 'mm'. 58 */ 59 void show_pte(struct mm_struct *mm, unsigned long addr) 60 { 61 pgd_t *pgd; 62 63 if (!mm) 64 mm = &init_mm; 65 66 pr_alert("pgd = %p\n", mm->pgd); 67 pgd = pgd_offset(mm, addr); 68 pr_alert("[%08lx] *pgd=%08llx", 69 addr, (long long)pgd_val(*pgd)); 70 71 do { 72 pud_t *pud; 73 pmd_t *pmd; 74 pte_t *pte; 75 76 if (pgd_none(*pgd)) 77 break; 78 79 if (pgd_bad(*pgd)) { 80 pr_cont("(bad)"); 81 break; 82 } 83 84 pud = pud_offset(pgd, addr); 85 if (PTRS_PER_PUD != 1) 86 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 87 88 if (pud_none(*pud)) 89 break; 90 91 if (pud_bad(*pud)) { 92 pr_cont("(bad)"); 93 break; 94 } 95 96 pmd = pmd_offset(pud, addr); 97 if (PTRS_PER_PMD != 1) 98 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 99 100 if (pmd_none(*pmd)) 101 break; 102 103 if (pmd_bad(*pmd)) { 104 pr_cont("(bad)"); 105 break; 106 } 107 108 /* We must not map this if we have highmem enabled */ 109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 110 break; 111 112 pte = pte_offset_map(pmd, addr); 113 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 114 #ifndef CONFIG_ARM_LPAE 115 pr_cont(", *ppte=%08llx", 116 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 117 #endif 118 pte_unmap(pte); 119 } while(0); 120 121 pr_cont("\n"); 122 } 123 #else /* CONFIG_MMU */ 124 void show_pte(struct mm_struct *mm, unsigned long addr) 125 { } 126 #endif /* CONFIG_MMU */ 127 128 /* 129 * Oops. The kernel tried to access some page that wasn't present. 130 */ 131 static void 132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 133 struct pt_regs *regs) 134 { 135 /* 136 * Are we prepared to handle this kernel fault? 137 */ 138 if (fixup_exception(regs)) 139 return; 140 141 /* 142 * No handler, we'll have to terminate things with extreme prejudice. 143 */ 144 bust_spinlocks(1); 145 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 146 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 147 "paging request", addr); 148 149 show_pte(mm, addr); 150 die("Oops", regs, fsr); 151 bust_spinlocks(0); 152 do_exit(SIGKILL); 153 } 154 155 /* 156 * Something tried to access memory that isn't in our memory map.. 157 * User mode accesses just cause a SIGSEGV 158 */ 159 static void 160 __do_user_fault(struct task_struct *tsk, unsigned long addr, 161 unsigned int fsr, unsigned int sig, int code, 162 struct pt_regs *regs) 163 { 164 struct siginfo si; 165 166 if (addr > TASK_SIZE) 167 harden_branch_predictor(); 168 169 clear_siginfo(&si); 170 171 #ifdef CONFIG_DEBUG_USER 172 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 173 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 174 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 175 tsk->comm, sig, addr, fsr); 176 show_pte(tsk->mm, addr); 177 show_regs(regs); 178 } 179 #endif 180 181 tsk->thread.address = addr; 182 tsk->thread.error_code = fsr; 183 tsk->thread.trap_no = 14; 184 si.si_signo = sig; 185 si.si_errno = 0; 186 si.si_code = code; 187 si.si_addr = (void __user *)addr; 188 force_sig_info(sig, &si, tsk); 189 } 190 191 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 192 { 193 struct task_struct *tsk = current; 194 struct mm_struct *mm = tsk->active_mm; 195 196 /* 197 * If we are in kernel mode at this point, we 198 * have no context to handle this fault with. 199 */ 200 if (user_mode(regs)) 201 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 202 else 203 __do_kernel_fault(mm, addr, fsr, regs); 204 } 205 206 #ifdef CONFIG_MMU 207 #define VM_FAULT_BADMAP 0x010000 208 #define VM_FAULT_BADACCESS 0x020000 209 210 /* 211 * Check that the permissions on the VMA allow for the fault which occurred. 212 * If we encountered a write fault, we must have write permission, otherwise 213 * we allow any permission. 214 */ 215 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 216 { 217 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; 218 219 if (fsr & FSR_WRITE) 220 mask = VM_WRITE; 221 if (fsr & FSR_LNX_PF) 222 mask = VM_EXEC; 223 224 return vma->vm_flags & mask ? false : true; 225 } 226 227 static int __kprobes 228 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 229 unsigned int flags, struct task_struct *tsk) 230 { 231 struct vm_area_struct *vma; 232 int fault; 233 234 vma = find_vma(mm, addr); 235 fault = VM_FAULT_BADMAP; 236 if (unlikely(!vma)) 237 goto out; 238 if (unlikely(vma->vm_start > addr)) 239 goto check_stack; 240 241 /* 242 * Ok, we have a good vm_area for this 243 * memory access, so we can handle it. 244 */ 245 good_area: 246 if (access_error(fsr, vma)) { 247 fault = VM_FAULT_BADACCESS; 248 goto out; 249 } 250 251 return handle_mm_fault(vma, addr & PAGE_MASK, flags); 252 253 check_stack: 254 /* Don't allow expansion below FIRST_USER_ADDRESS */ 255 if (vma->vm_flags & VM_GROWSDOWN && 256 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 257 goto good_area; 258 out: 259 return fault; 260 } 261 262 static int __kprobes 263 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 264 { 265 struct task_struct *tsk; 266 struct mm_struct *mm; 267 int fault, sig, code; 268 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 269 270 if (notify_page_fault(regs, fsr)) 271 return 0; 272 273 tsk = current; 274 mm = tsk->mm; 275 276 /* Enable interrupts if they were enabled in the parent context. */ 277 if (interrupts_enabled(regs)) 278 local_irq_enable(); 279 280 /* 281 * If we're in an interrupt or have no user 282 * context, we must not take the fault.. 283 */ 284 if (faulthandler_disabled() || !mm) 285 goto no_context; 286 287 if (user_mode(regs)) 288 flags |= FAULT_FLAG_USER; 289 if (fsr & FSR_WRITE) 290 flags |= FAULT_FLAG_WRITE; 291 292 /* 293 * As per x86, we may deadlock here. However, since the kernel only 294 * validly references user space from well defined areas of the code, 295 * we can bug out early if this is from code which shouldn't. 296 */ 297 if (!down_read_trylock(&mm->mmap_sem)) { 298 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 299 goto no_context; 300 retry: 301 down_read(&mm->mmap_sem); 302 } else { 303 /* 304 * The above down_read_trylock() might have succeeded in 305 * which case, we'll have missed the might_sleep() from 306 * down_read() 307 */ 308 might_sleep(); 309 #ifdef CONFIG_DEBUG_VM 310 if (!user_mode(regs) && 311 !search_exception_tables(regs->ARM_pc)) 312 goto no_context; 313 #endif 314 } 315 316 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 317 318 /* If we need to retry but a fatal signal is pending, handle the 319 * signal first. We do not need to release the mmap_sem because 320 * it would already be released in __lock_page_or_retry in 321 * mm/filemap.c. */ 322 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) { 323 if (!user_mode(regs)) 324 goto no_context; 325 return 0; 326 } 327 328 /* 329 * Major/minor page fault accounting is only done on the 330 * initial attempt. If we go through a retry, it is extremely 331 * likely that the page will be found in page cache at that point. 332 */ 333 334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 335 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 336 if (fault & VM_FAULT_MAJOR) { 337 tsk->maj_flt++; 338 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 339 regs, addr); 340 } else { 341 tsk->min_flt++; 342 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 343 regs, addr); 344 } 345 if (fault & VM_FAULT_RETRY) { 346 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 347 * of starvation. */ 348 flags &= ~FAULT_FLAG_ALLOW_RETRY; 349 flags |= FAULT_FLAG_TRIED; 350 goto retry; 351 } 352 } 353 354 up_read(&mm->mmap_sem); 355 356 /* 357 * Handle the "normal" case first - VM_FAULT_MAJOR 358 */ 359 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 360 return 0; 361 362 /* 363 * If we are in kernel mode at this point, we 364 * have no context to handle this fault with. 365 */ 366 if (!user_mode(regs)) 367 goto no_context; 368 369 if (fault & VM_FAULT_OOM) { 370 /* 371 * We ran out of memory, call the OOM killer, and return to 372 * userspace (which will retry the fault, or kill us if we 373 * got oom-killed) 374 */ 375 pagefault_out_of_memory(); 376 return 0; 377 } 378 379 if (fault & VM_FAULT_SIGBUS) { 380 /* 381 * We had some memory, but were unable to 382 * successfully fix up this page fault. 383 */ 384 sig = SIGBUS; 385 code = BUS_ADRERR; 386 } else { 387 /* 388 * Something tried to access memory that 389 * isn't in our memory map.. 390 */ 391 sig = SIGSEGV; 392 code = fault == VM_FAULT_BADACCESS ? 393 SEGV_ACCERR : SEGV_MAPERR; 394 } 395 396 __do_user_fault(tsk, addr, fsr, sig, code, regs); 397 return 0; 398 399 no_context: 400 __do_kernel_fault(mm, addr, fsr, regs); 401 return 0; 402 } 403 #else /* CONFIG_MMU */ 404 static int 405 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 406 { 407 return 0; 408 } 409 #endif /* CONFIG_MMU */ 410 411 /* 412 * First Level Translation Fault Handler 413 * 414 * We enter here because the first level page table doesn't contain 415 * a valid entry for the address. 416 * 417 * If the address is in kernel space (>= TASK_SIZE), then we are 418 * probably faulting in the vmalloc() area. 419 * 420 * If the init_task's first level page tables contains the relevant 421 * entry, we copy the it to this task. If not, we send the process 422 * a signal, fixup the exception, or oops the kernel. 423 * 424 * NOTE! We MUST NOT take any locks for this case. We may be in an 425 * interrupt or a critical region, and should only copy the information 426 * from the master page table, nothing more. 427 */ 428 #ifdef CONFIG_MMU 429 static int __kprobes 430 do_translation_fault(unsigned long addr, unsigned int fsr, 431 struct pt_regs *regs) 432 { 433 unsigned int index; 434 pgd_t *pgd, *pgd_k; 435 pud_t *pud, *pud_k; 436 pmd_t *pmd, *pmd_k; 437 438 if (addr < TASK_SIZE) 439 return do_page_fault(addr, fsr, regs); 440 441 if (user_mode(regs)) 442 goto bad_area; 443 444 index = pgd_index(addr); 445 446 pgd = cpu_get_pgd() + index; 447 pgd_k = init_mm.pgd + index; 448 449 if (pgd_none(*pgd_k)) 450 goto bad_area; 451 if (!pgd_present(*pgd)) 452 set_pgd(pgd, *pgd_k); 453 454 pud = pud_offset(pgd, addr); 455 pud_k = pud_offset(pgd_k, addr); 456 457 if (pud_none(*pud_k)) 458 goto bad_area; 459 if (!pud_present(*pud)) 460 set_pud(pud, *pud_k); 461 462 pmd = pmd_offset(pud, addr); 463 pmd_k = pmd_offset(pud_k, addr); 464 465 #ifdef CONFIG_ARM_LPAE 466 /* 467 * Only one hardware entry per PMD with LPAE. 468 */ 469 index = 0; 470 #else 471 /* 472 * On ARM one Linux PGD entry contains two hardware entries (see page 473 * tables layout in pgtable.h). We normally guarantee that we always 474 * fill both L1 entries. But create_mapping() doesn't follow the rule. 475 * It can create inidividual L1 entries, so here we have to call 476 * pmd_none() check for the entry really corresponded to address, not 477 * for the first of pair. 478 */ 479 index = (addr >> SECTION_SHIFT) & 1; 480 #endif 481 if (pmd_none(pmd_k[index])) 482 goto bad_area; 483 484 copy_pmd(pmd, pmd_k); 485 return 0; 486 487 bad_area: 488 do_bad_area(addr, fsr, regs); 489 return 0; 490 } 491 #else /* CONFIG_MMU */ 492 static int 493 do_translation_fault(unsigned long addr, unsigned int fsr, 494 struct pt_regs *regs) 495 { 496 return 0; 497 } 498 #endif /* CONFIG_MMU */ 499 500 /* 501 * Some section permission faults need to be handled gracefully. 502 * They can happen due to a __{get,put}_user during an oops. 503 */ 504 #ifndef CONFIG_ARM_LPAE 505 static int 506 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 507 { 508 do_bad_area(addr, fsr, regs); 509 return 0; 510 } 511 #endif /* CONFIG_ARM_LPAE */ 512 513 /* 514 * This abort handler always returns "fault". 515 */ 516 static int 517 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 518 { 519 return 1; 520 } 521 522 struct fsr_info { 523 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 524 int sig; 525 int code; 526 const char *name; 527 }; 528 529 /* FSR definition */ 530 #ifdef CONFIG_ARM_LPAE 531 #include "fsr-3level.c" 532 #else 533 #include "fsr-2level.c" 534 #endif 535 536 void __init 537 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 538 int sig, int code, const char *name) 539 { 540 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 541 BUG(); 542 543 fsr_info[nr].fn = fn; 544 fsr_info[nr].sig = sig; 545 fsr_info[nr].code = code; 546 fsr_info[nr].name = name; 547 } 548 549 /* 550 * Dispatch a data abort to the relevant handler. 551 */ 552 asmlinkage void 553 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 554 { 555 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 556 struct siginfo info; 557 558 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 559 return; 560 561 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 562 inf->name, fsr, addr); 563 show_pte(current->mm, addr); 564 565 clear_siginfo(&info); 566 info.si_signo = inf->sig; 567 info.si_errno = 0; 568 info.si_code = inf->code; 569 info.si_addr = (void __user *)addr; 570 arm_notify_die("", regs, &info, fsr, 0); 571 } 572 573 void __init 574 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 575 int sig, int code, const char *name) 576 { 577 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 578 BUG(); 579 580 ifsr_info[nr].fn = fn; 581 ifsr_info[nr].sig = sig; 582 ifsr_info[nr].code = code; 583 ifsr_info[nr].name = name; 584 } 585 586 asmlinkage void 587 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 588 { 589 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 590 struct siginfo info; 591 592 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 593 return; 594 595 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 596 inf->name, ifsr, addr); 597 598 clear_siginfo(&info); 599 info.si_signo = inf->sig; 600 info.si_errno = 0; 601 info.si_code = inf->code; 602 info.si_addr = (void __user *)addr; 603 arm_notify_die("", regs, &info, ifsr, 0); 604 } 605 606 /* 607 * Abort handler to be used only during first unmasking of asynchronous aborts 608 * on the boot CPU. This makes sure that the machine will not die if the 609 * firmware/bootloader left an imprecise abort pending for us to trip over. 610 */ 611 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 612 struct pt_regs *regs) 613 { 614 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 615 "first unmask, this is most likely caused by a " 616 "firmware/bootloader bug.\n", fsr); 617 618 return 0; 619 } 620 621 void __init early_abt_enable(void) 622 { 623 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 624 local_abt_enable(); 625 fsr_info[FSR_FS_AEA].fn = do_bad; 626 } 627 628 #ifndef CONFIG_ARM_LPAE 629 static int __init exceptions_init(void) 630 { 631 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 632 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 633 "I-cache maintenance fault"); 634 } 635 636 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 637 /* 638 * TODO: Access flag faults introduced in ARMv6K. 639 * Runtime check for 'K' extension is needed 640 */ 641 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 642 "section access flag fault"); 643 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 644 "section access flag fault"); 645 } 646 647 return 0; 648 } 649 650 arch_initcall(exceptions_init); 651 #endif 652