1 /* 2 * linux/arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Modifications for ARM processor (c) 1995-2004 Russell King 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/extable.h> 12 #include <linux/signal.h> 13 #include <linux/mm.h> 14 #include <linux/hardirq.h> 15 #include <linux/init.h> 16 #include <linux/kprobes.h> 17 #include <linux/uaccess.h> 18 #include <linux/page-flags.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/highmem.h> 22 #include <linux/perf_event.h> 23 24 #include <asm/exception.h> 25 #include <asm/pgtable.h> 26 #include <asm/system_misc.h> 27 #include <asm/system_info.h> 28 #include <asm/tlbflush.h> 29 30 #include "fault.h" 31 32 #ifdef CONFIG_MMU 33 34 #ifdef CONFIG_KPROBES 35 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 36 { 37 int ret = 0; 38 39 if (!user_mode(regs)) { 40 /* kprobe_running() needs smp_processor_id() */ 41 preempt_disable(); 42 if (kprobe_running() && kprobe_fault_handler(regs, fsr)) 43 ret = 1; 44 preempt_enable(); 45 } 46 47 return ret; 48 } 49 #else 50 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 51 { 52 return 0; 53 } 54 #endif 55 56 /* 57 * This is useful to dump out the page tables associated with 58 * 'addr' in mm 'mm'. 59 */ 60 void show_pte(struct mm_struct *mm, unsigned long addr) 61 { 62 pgd_t *pgd; 63 64 if (!mm) 65 mm = &init_mm; 66 67 pr_alert("pgd = %p\n", mm->pgd); 68 pgd = pgd_offset(mm, addr); 69 pr_alert("[%08lx] *pgd=%08llx", 70 addr, (long long)pgd_val(*pgd)); 71 72 do { 73 pud_t *pud; 74 pmd_t *pmd; 75 pte_t *pte; 76 77 if (pgd_none(*pgd)) 78 break; 79 80 if (pgd_bad(*pgd)) { 81 pr_cont("(bad)"); 82 break; 83 } 84 85 pud = pud_offset(pgd, addr); 86 if (PTRS_PER_PUD != 1) 87 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 88 89 if (pud_none(*pud)) 90 break; 91 92 if (pud_bad(*pud)) { 93 pr_cont("(bad)"); 94 break; 95 } 96 97 pmd = pmd_offset(pud, addr); 98 if (PTRS_PER_PMD != 1) 99 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 100 101 if (pmd_none(*pmd)) 102 break; 103 104 if (pmd_bad(*pmd)) { 105 pr_cont("(bad)"); 106 break; 107 } 108 109 /* We must not map this if we have highmem enabled */ 110 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 111 break; 112 113 pte = pte_offset_map(pmd, addr); 114 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 115 #ifndef CONFIG_ARM_LPAE 116 pr_cont(", *ppte=%08llx", 117 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 118 #endif 119 pte_unmap(pte); 120 } while(0); 121 122 pr_cont("\n"); 123 } 124 #else /* CONFIG_MMU */ 125 void show_pte(struct mm_struct *mm, unsigned long addr) 126 { } 127 #endif /* CONFIG_MMU */ 128 129 /* 130 * Oops. The kernel tried to access some page that wasn't present. 131 */ 132 static void 133 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 134 struct pt_regs *regs) 135 { 136 /* 137 * Are we prepared to handle this kernel fault? 138 */ 139 if (fixup_exception(regs)) 140 return; 141 142 /* 143 * No handler, we'll have to terminate things with extreme prejudice. 144 */ 145 bust_spinlocks(1); 146 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 147 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 148 "paging request", addr); 149 150 show_pte(mm, addr); 151 die("Oops", regs, fsr); 152 bust_spinlocks(0); 153 do_exit(SIGKILL); 154 } 155 156 /* 157 * Something tried to access memory that isn't in our memory map.. 158 * User mode accesses just cause a SIGSEGV 159 */ 160 static void 161 __do_user_fault(struct task_struct *tsk, unsigned long addr, 162 unsigned int fsr, unsigned int sig, int code, 163 struct pt_regs *regs) 164 { 165 struct siginfo si; 166 167 #ifdef CONFIG_DEBUG_USER 168 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 169 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 170 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 171 tsk->comm, sig, addr, fsr); 172 show_pte(tsk->mm, addr); 173 show_regs(regs); 174 } 175 #endif 176 177 tsk->thread.address = addr; 178 tsk->thread.error_code = fsr; 179 tsk->thread.trap_no = 14; 180 si.si_signo = sig; 181 si.si_errno = 0; 182 si.si_code = code; 183 si.si_addr = (void __user *)addr; 184 force_sig_info(sig, &si, tsk); 185 } 186 187 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 188 { 189 struct task_struct *tsk = current; 190 struct mm_struct *mm = tsk->active_mm; 191 192 /* 193 * If we are in kernel mode at this point, we 194 * have no context to handle this fault with. 195 */ 196 if (user_mode(regs)) 197 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 198 else 199 __do_kernel_fault(mm, addr, fsr, regs); 200 } 201 202 #ifdef CONFIG_MMU 203 #define VM_FAULT_BADMAP 0x010000 204 #define VM_FAULT_BADACCESS 0x020000 205 206 /* 207 * Check that the permissions on the VMA allow for the fault which occurred. 208 * If we encountered a write fault, we must have write permission, otherwise 209 * we allow any permission. 210 */ 211 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 212 { 213 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; 214 215 if (fsr & FSR_WRITE) 216 mask = VM_WRITE; 217 if (fsr & FSR_LNX_PF) 218 mask = VM_EXEC; 219 220 return vma->vm_flags & mask ? false : true; 221 } 222 223 static int __kprobes 224 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 225 unsigned int flags, struct task_struct *tsk) 226 { 227 struct vm_area_struct *vma; 228 int fault; 229 230 vma = find_vma(mm, addr); 231 fault = VM_FAULT_BADMAP; 232 if (unlikely(!vma)) 233 goto out; 234 if (unlikely(vma->vm_start > addr)) 235 goto check_stack; 236 237 /* 238 * Ok, we have a good vm_area for this 239 * memory access, so we can handle it. 240 */ 241 good_area: 242 if (access_error(fsr, vma)) { 243 fault = VM_FAULT_BADACCESS; 244 goto out; 245 } 246 247 return handle_mm_fault(vma, addr & PAGE_MASK, flags); 248 249 check_stack: 250 /* Don't allow expansion below FIRST_USER_ADDRESS */ 251 if (vma->vm_flags & VM_GROWSDOWN && 252 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 253 goto good_area; 254 out: 255 return fault; 256 } 257 258 static int __kprobes 259 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 260 { 261 struct task_struct *tsk; 262 struct mm_struct *mm; 263 int fault, sig, code; 264 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 265 266 if (notify_page_fault(regs, fsr)) 267 return 0; 268 269 tsk = current; 270 mm = tsk->mm; 271 272 /* Enable interrupts if they were enabled in the parent context. */ 273 if (interrupts_enabled(regs)) 274 local_irq_enable(); 275 276 /* 277 * If we're in an interrupt or have no user 278 * context, we must not take the fault.. 279 */ 280 if (faulthandler_disabled() || !mm) 281 goto no_context; 282 283 if (user_mode(regs)) 284 flags |= FAULT_FLAG_USER; 285 if (fsr & FSR_WRITE) 286 flags |= FAULT_FLAG_WRITE; 287 288 /* 289 * As per x86, we may deadlock here. However, since the kernel only 290 * validly references user space from well defined areas of the code, 291 * we can bug out early if this is from code which shouldn't. 292 */ 293 if (!down_read_trylock(&mm->mmap_sem)) { 294 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 295 goto no_context; 296 retry: 297 down_read(&mm->mmap_sem); 298 } else { 299 /* 300 * The above down_read_trylock() might have succeeded in 301 * which case, we'll have missed the might_sleep() from 302 * down_read() 303 */ 304 might_sleep(); 305 #ifdef CONFIG_DEBUG_VM 306 if (!user_mode(regs) && 307 !search_exception_tables(regs->ARM_pc)) 308 goto no_context; 309 #endif 310 } 311 312 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 313 314 /* If we need to retry but a fatal signal is pending, handle the 315 * signal first. We do not need to release the mmap_sem because 316 * it would already be released in __lock_page_or_retry in 317 * mm/filemap.c. */ 318 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) { 319 if (!user_mode(regs)) 320 goto no_context; 321 return 0; 322 } 323 324 /* 325 * Major/minor page fault accounting is only done on the 326 * initial attempt. If we go through a retry, it is extremely 327 * likely that the page will be found in page cache at that point. 328 */ 329 330 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 331 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 332 if (fault & VM_FAULT_MAJOR) { 333 tsk->maj_flt++; 334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 335 regs, addr); 336 } else { 337 tsk->min_flt++; 338 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 339 regs, addr); 340 } 341 if (fault & VM_FAULT_RETRY) { 342 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 343 * of starvation. */ 344 flags &= ~FAULT_FLAG_ALLOW_RETRY; 345 flags |= FAULT_FLAG_TRIED; 346 goto retry; 347 } 348 } 349 350 up_read(&mm->mmap_sem); 351 352 /* 353 * Handle the "normal" case first - VM_FAULT_MAJOR 354 */ 355 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 356 return 0; 357 358 /* 359 * If we are in kernel mode at this point, we 360 * have no context to handle this fault with. 361 */ 362 if (!user_mode(regs)) 363 goto no_context; 364 365 if (fault & VM_FAULT_OOM) { 366 /* 367 * We ran out of memory, call the OOM killer, and return to 368 * userspace (which will retry the fault, or kill us if we 369 * got oom-killed) 370 */ 371 pagefault_out_of_memory(); 372 return 0; 373 } 374 375 if (fault & VM_FAULT_SIGBUS) { 376 /* 377 * We had some memory, but were unable to 378 * successfully fix up this page fault. 379 */ 380 sig = SIGBUS; 381 code = BUS_ADRERR; 382 } else { 383 /* 384 * Something tried to access memory that 385 * isn't in our memory map.. 386 */ 387 sig = SIGSEGV; 388 code = fault == VM_FAULT_BADACCESS ? 389 SEGV_ACCERR : SEGV_MAPERR; 390 } 391 392 __do_user_fault(tsk, addr, fsr, sig, code, regs); 393 return 0; 394 395 no_context: 396 __do_kernel_fault(mm, addr, fsr, regs); 397 return 0; 398 } 399 #else /* CONFIG_MMU */ 400 static int 401 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 402 { 403 return 0; 404 } 405 #endif /* CONFIG_MMU */ 406 407 /* 408 * First Level Translation Fault Handler 409 * 410 * We enter here because the first level page table doesn't contain 411 * a valid entry for the address. 412 * 413 * If the address is in kernel space (>= TASK_SIZE), then we are 414 * probably faulting in the vmalloc() area. 415 * 416 * If the init_task's first level page tables contains the relevant 417 * entry, we copy the it to this task. If not, we send the process 418 * a signal, fixup the exception, or oops the kernel. 419 * 420 * NOTE! We MUST NOT take any locks for this case. We may be in an 421 * interrupt or a critical region, and should only copy the information 422 * from the master page table, nothing more. 423 */ 424 #ifdef CONFIG_MMU 425 static int __kprobes 426 do_translation_fault(unsigned long addr, unsigned int fsr, 427 struct pt_regs *regs) 428 { 429 unsigned int index; 430 pgd_t *pgd, *pgd_k; 431 pud_t *pud, *pud_k; 432 pmd_t *pmd, *pmd_k; 433 434 if (addr < TASK_SIZE) 435 return do_page_fault(addr, fsr, regs); 436 437 if (user_mode(regs)) 438 goto bad_area; 439 440 index = pgd_index(addr); 441 442 pgd = cpu_get_pgd() + index; 443 pgd_k = init_mm.pgd + index; 444 445 if (pgd_none(*pgd_k)) 446 goto bad_area; 447 if (!pgd_present(*pgd)) 448 set_pgd(pgd, *pgd_k); 449 450 pud = pud_offset(pgd, addr); 451 pud_k = pud_offset(pgd_k, addr); 452 453 if (pud_none(*pud_k)) 454 goto bad_area; 455 if (!pud_present(*pud)) 456 set_pud(pud, *pud_k); 457 458 pmd = pmd_offset(pud, addr); 459 pmd_k = pmd_offset(pud_k, addr); 460 461 #ifdef CONFIG_ARM_LPAE 462 /* 463 * Only one hardware entry per PMD with LPAE. 464 */ 465 index = 0; 466 #else 467 /* 468 * On ARM one Linux PGD entry contains two hardware entries (see page 469 * tables layout in pgtable.h). We normally guarantee that we always 470 * fill both L1 entries. But create_mapping() doesn't follow the rule. 471 * It can create inidividual L1 entries, so here we have to call 472 * pmd_none() check for the entry really corresponded to address, not 473 * for the first of pair. 474 */ 475 index = (addr >> SECTION_SHIFT) & 1; 476 #endif 477 if (pmd_none(pmd_k[index])) 478 goto bad_area; 479 480 copy_pmd(pmd, pmd_k); 481 return 0; 482 483 bad_area: 484 do_bad_area(addr, fsr, regs); 485 return 0; 486 } 487 #else /* CONFIG_MMU */ 488 static int 489 do_translation_fault(unsigned long addr, unsigned int fsr, 490 struct pt_regs *regs) 491 { 492 return 0; 493 } 494 #endif /* CONFIG_MMU */ 495 496 /* 497 * Some section permission faults need to be handled gracefully. 498 * They can happen due to a __{get,put}_user during an oops. 499 */ 500 #ifndef CONFIG_ARM_LPAE 501 static int 502 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 503 { 504 do_bad_area(addr, fsr, regs); 505 return 0; 506 } 507 #endif /* CONFIG_ARM_LPAE */ 508 509 /* 510 * This abort handler always returns "fault". 511 */ 512 static int 513 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 514 { 515 return 1; 516 } 517 518 struct fsr_info { 519 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 520 int sig; 521 int code; 522 const char *name; 523 }; 524 525 /* FSR definition */ 526 #ifdef CONFIG_ARM_LPAE 527 #include "fsr-3level.c" 528 #else 529 #include "fsr-2level.c" 530 #endif 531 532 void __init 533 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 534 int sig, int code, const char *name) 535 { 536 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 537 BUG(); 538 539 fsr_info[nr].fn = fn; 540 fsr_info[nr].sig = sig; 541 fsr_info[nr].code = code; 542 fsr_info[nr].name = name; 543 } 544 545 /* 546 * Dispatch a data abort to the relevant handler. 547 */ 548 asmlinkage void __exception 549 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 550 { 551 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 552 struct siginfo info; 553 554 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 555 return; 556 557 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 558 inf->name, fsr, addr); 559 show_pte(current->mm, addr); 560 561 info.si_signo = inf->sig; 562 info.si_errno = 0; 563 info.si_code = inf->code; 564 info.si_addr = (void __user *)addr; 565 arm_notify_die("", regs, &info, fsr, 0); 566 } 567 568 void __init 569 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 570 int sig, int code, const char *name) 571 { 572 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 573 BUG(); 574 575 ifsr_info[nr].fn = fn; 576 ifsr_info[nr].sig = sig; 577 ifsr_info[nr].code = code; 578 ifsr_info[nr].name = name; 579 } 580 581 asmlinkage void __exception 582 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 583 { 584 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 585 struct siginfo info; 586 587 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 588 return; 589 590 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 591 inf->name, ifsr, addr); 592 593 info.si_signo = inf->sig; 594 info.si_errno = 0; 595 info.si_code = inf->code; 596 info.si_addr = (void __user *)addr; 597 arm_notify_die("", regs, &info, ifsr, 0); 598 } 599 600 /* 601 * Abort handler to be used only during first unmasking of asynchronous aborts 602 * on the boot CPU. This makes sure that the machine will not die if the 603 * firmware/bootloader left an imprecise abort pending for us to trip over. 604 */ 605 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 606 struct pt_regs *regs) 607 { 608 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 609 "first unmask, this is most likely caused by a " 610 "firmware/bootloader bug.\n", fsr); 611 612 return 0; 613 } 614 615 void __init early_abt_enable(void) 616 { 617 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 618 local_abt_enable(); 619 fsr_info[FSR_FS_AEA].fn = do_bad; 620 } 621 622 #ifndef CONFIG_ARM_LPAE 623 static int __init exceptions_init(void) 624 { 625 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 626 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 627 "I-cache maintenance fault"); 628 } 629 630 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 631 /* 632 * TODO: Access flag faults introduced in ARMv6K. 633 * Runtime check for 'K' extension is needed 634 */ 635 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 636 "section access flag fault"); 637 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 638 "section access flag fault"); 639 } 640 641 return 0; 642 } 643 644 arch_initcall(exceptions_init); 645 #endif 646