1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/system_misc.h> 22 #include <asm/system_info.h> 23 #include <asm/tlbflush.h> 24 25 #include "fault.h" 26 27 #ifdef CONFIG_MMU 28 29 /* 30 * This is useful to dump out the page tables associated with 31 * 'addr' in mm 'mm'. 32 */ 33 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 34 { 35 pgd_t *pgd; 36 37 if (!mm) 38 mm = &init_mm; 39 40 pgd = pgd_offset(mm, addr); 41 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 42 43 do { 44 p4d_t *p4d; 45 pud_t *pud; 46 pmd_t *pmd; 47 pte_t *pte; 48 49 p4d = p4d_offset(pgd, addr); 50 if (p4d_none(*p4d)) 51 break; 52 53 if (p4d_bad(*p4d)) { 54 pr_cont("(bad)"); 55 break; 56 } 57 58 pud = pud_offset(p4d, addr); 59 if (PTRS_PER_PUD != 1) 60 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 61 62 if (pud_none(*pud)) 63 break; 64 65 if (pud_bad(*pud)) { 66 pr_cont("(bad)"); 67 break; 68 } 69 70 pmd = pmd_offset(pud, addr); 71 if (PTRS_PER_PMD != 1) 72 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 73 74 if (pmd_none(*pmd)) 75 break; 76 77 if (pmd_bad(*pmd)) { 78 pr_cont("(bad)"); 79 break; 80 } 81 82 /* We must not map this if we have highmem enabled */ 83 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 84 break; 85 86 pte = pte_offset_map(pmd, addr); 87 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 88 #ifndef CONFIG_ARM_LPAE 89 pr_cont(", *ppte=%08llx", 90 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 91 #endif 92 pte_unmap(pte); 93 } while(0); 94 95 pr_cont("\n"); 96 } 97 #else /* CONFIG_MMU */ 98 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 99 { } 100 #endif /* CONFIG_MMU */ 101 102 static void die_kernel_fault(const char *msg, struct mm_struct *mm, 103 unsigned long addr, unsigned int fsr, 104 struct pt_regs *regs) 105 { 106 bust_spinlocks(1); 107 pr_alert("8<--- cut here ---\n"); 108 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 109 msg, addr); 110 111 show_pte(KERN_ALERT, mm, addr); 112 die("Oops", regs, fsr); 113 bust_spinlocks(0); 114 do_exit(SIGKILL); 115 } 116 117 /* 118 * Oops. The kernel tried to access some page that wasn't present. 119 */ 120 static void 121 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 122 struct pt_regs *regs) 123 { 124 const char *msg; 125 /* 126 * Are we prepared to handle this kernel fault? 127 */ 128 if (fixup_exception(regs)) 129 return; 130 131 /* 132 * No handler, we'll have to terminate things with extreme prejudice. 133 */ 134 if (addr < PAGE_SIZE) 135 msg = "NULL pointer dereference"; 136 else 137 msg = "paging request"; 138 139 die_kernel_fault(msg, mm, addr, fsr, regs); 140 } 141 142 /* 143 * Something tried to access memory that isn't in our memory map.. 144 * User mode accesses just cause a SIGSEGV 145 */ 146 static void 147 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 148 int code, struct pt_regs *regs) 149 { 150 struct task_struct *tsk = current; 151 152 if (addr > TASK_SIZE) 153 harden_branch_predictor(); 154 155 #ifdef CONFIG_DEBUG_USER 156 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 157 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 158 pr_err("8<--- cut here ---\n"); 159 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 160 tsk->comm, sig, addr, fsr); 161 show_pte(KERN_ERR, tsk->mm, addr); 162 show_regs(regs); 163 } 164 #endif 165 #ifndef CONFIG_KUSER_HELPERS 166 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 167 printk_ratelimited(KERN_DEBUG 168 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 169 tsk->comm, addr); 170 #endif 171 172 tsk->thread.address = addr; 173 tsk->thread.error_code = fsr; 174 tsk->thread.trap_no = 14; 175 force_sig_fault(sig, code, (void __user *)addr); 176 } 177 178 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 179 { 180 struct task_struct *tsk = current; 181 struct mm_struct *mm = tsk->active_mm; 182 183 /* 184 * If we are in kernel mode at this point, we 185 * have no context to handle this fault with. 186 */ 187 if (user_mode(regs)) 188 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 189 else 190 __do_kernel_fault(mm, addr, fsr, regs); 191 } 192 193 #ifdef CONFIG_MMU 194 #define VM_FAULT_BADMAP 0x010000 195 #define VM_FAULT_BADACCESS 0x020000 196 197 static inline bool is_permission_fault(unsigned int fsr) 198 { 199 int fs = fsr_fs(fsr); 200 #ifdef CONFIG_ARM_LPAE 201 if ((fs & FS_PERM_NOLL_MASK) == FS_PERM_NOLL) 202 return true; 203 #else 204 if (fs == FS_L1_PERM || fs == FS_L2_PERM) 205 return true; 206 #endif 207 return false; 208 } 209 210 static vm_fault_t __kprobes 211 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags, 212 unsigned long vma_flags, struct pt_regs *regs) 213 { 214 struct vm_area_struct *vma = find_vma(mm, addr); 215 if (unlikely(!vma)) 216 return VM_FAULT_BADMAP; 217 218 if (unlikely(vma->vm_start > addr)) { 219 if (!(vma->vm_flags & VM_GROWSDOWN)) 220 return VM_FAULT_BADMAP; 221 if (addr < FIRST_USER_ADDRESS) 222 return VM_FAULT_BADMAP; 223 if (expand_stack(vma, addr)) 224 return VM_FAULT_BADMAP; 225 } 226 227 /* 228 * ok, we have a good vm_area for this memory access, check the 229 * permissions on the VMA allow for the fault which occurred. 230 */ 231 if (!(vma->vm_flags & vma_flags)) 232 return VM_FAULT_BADACCESS; 233 234 return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); 235 } 236 237 static int __kprobes 238 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 239 { 240 struct mm_struct *mm = current->mm; 241 int sig, code; 242 vm_fault_t fault; 243 unsigned int flags = FAULT_FLAG_DEFAULT; 244 unsigned long vm_flags = VM_ACCESS_FLAGS; 245 246 if (kprobe_page_fault(regs, fsr)) 247 return 0; 248 249 250 /* Enable interrupts if they were enabled in the parent context. */ 251 if (interrupts_enabled(regs)) 252 local_irq_enable(); 253 254 /* 255 * If we're in an interrupt or have no user 256 * context, we must not take the fault.. 257 */ 258 if (faulthandler_disabled() || !mm) 259 goto no_context; 260 261 if (user_mode(regs)) 262 flags |= FAULT_FLAG_USER; 263 264 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) { 265 flags |= FAULT_FLAG_WRITE; 266 vm_flags = VM_WRITE; 267 } 268 269 if (fsr & FSR_LNX_PF) { 270 vm_flags = VM_EXEC; 271 272 if (is_permission_fault(fsr) && !user_mode(regs)) 273 die_kernel_fault("execution of memory", 274 mm, addr, fsr, regs); 275 } 276 277 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 278 279 /* 280 * As per x86, we may deadlock here. However, since the kernel only 281 * validly references user space from well defined areas of the code, 282 * we can bug out early if this is from code which shouldn't. 283 */ 284 if (!mmap_read_trylock(mm)) { 285 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 286 goto no_context; 287 retry: 288 mmap_read_lock(mm); 289 } else { 290 /* 291 * The above down_read_trylock() might have succeeded in 292 * which case, we'll have missed the might_sleep() from 293 * down_read() 294 */ 295 might_sleep(); 296 #ifdef CONFIG_DEBUG_VM 297 if (!user_mode(regs) && 298 !search_exception_tables(regs->ARM_pc)) 299 goto no_context; 300 #endif 301 } 302 303 fault = __do_page_fault(mm, addr, flags, vm_flags, regs); 304 305 /* If we need to retry but a fatal signal is pending, handle the 306 * signal first. We do not need to release the mmap_lock because 307 * it would already be released in __lock_page_or_retry in 308 * mm/filemap.c. */ 309 if (fault_signal_pending(fault, regs)) { 310 if (!user_mode(regs)) 311 goto no_context; 312 return 0; 313 } 314 315 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 316 if (fault & VM_FAULT_RETRY) { 317 flags |= FAULT_FLAG_TRIED; 318 goto retry; 319 } 320 } 321 322 mmap_read_unlock(mm); 323 324 /* 325 * Handle the "normal" case first - VM_FAULT_MAJOR 326 */ 327 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 328 return 0; 329 330 /* 331 * If we are in kernel mode at this point, we 332 * have no context to handle this fault with. 333 */ 334 if (!user_mode(regs)) 335 goto no_context; 336 337 if (fault & VM_FAULT_OOM) { 338 /* 339 * We ran out of memory, call the OOM killer, and return to 340 * userspace (which will retry the fault, or kill us if we 341 * got oom-killed) 342 */ 343 pagefault_out_of_memory(); 344 return 0; 345 } 346 347 if (fault & VM_FAULT_SIGBUS) { 348 /* 349 * We had some memory, but were unable to 350 * successfully fix up this page fault. 351 */ 352 sig = SIGBUS; 353 code = BUS_ADRERR; 354 } else { 355 /* 356 * Something tried to access memory that 357 * isn't in our memory map.. 358 */ 359 sig = SIGSEGV; 360 code = fault == VM_FAULT_BADACCESS ? 361 SEGV_ACCERR : SEGV_MAPERR; 362 } 363 364 __do_user_fault(addr, fsr, sig, code, regs); 365 return 0; 366 367 no_context: 368 __do_kernel_fault(mm, addr, fsr, regs); 369 return 0; 370 } 371 #else /* CONFIG_MMU */ 372 static int 373 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 374 { 375 return 0; 376 } 377 #endif /* CONFIG_MMU */ 378 379 /* 380 * First Level Translation Fault Handler 381 * 382 * We enter here because the first level page table doesn't contain 383 * a valid entry for the address. 384 * 385 * If the address is in kernel space (>= TASK_SIZE), then we are 386 * probably faulting in the vmalloc() area. 387 * 388 * If the init_task's first level page tables contains the relevant 389 * entry, we copy the it to this task. If not, we send the process 390 * a signal, fixup the exception, or oops the kernel. 391 * 392 * NOTE! We MUST NOT take any locks for this case. We may be in an 393 * interrupt or a critical region, and should only copy the information 394 * from the master page table, nothing more. 395 */ 396 #ifdef CONFIG_MMU 397 static int __kprobes 398 do_translation_fault(unsigned long addr, unsigned int fsr, 399 struct pt_regs *regs) 400 { 401 unsigned int index; 402 pgd_t *pgd, *pgd_k; 403 p4d_t *p4d, *p4d_k; 404 pud_t *pud, *pud_k; 405 pmd_t *pmd, *pmd_k; 406 407 if (addr < TASK_SIZE) 408 return do_page_fault(addr, fsr, regs); 409 410 if (user_mode(regs)) 411 goto bad_area; 412 413 index = pgd_index(addr); 414 415 pgd = cpu_get_pgd() + index; 416 pgd_k = init_mm.pgd + index; 417 418 p4d = p4d_offset(pgd, addr); 419 p4d_k = p4d_offset(pgd_k, addr); 420 421 if (p4d_none(*p4d_k)) 422 goto bad_area; 423 if (!p4d_present(*p4d)) 424 set_p4d(p4d, *p4d_k); 425 426 pud = pud_offset(p4d, addr); 427 pud_k = pud_offset(p4d_k, addr); 428 429 if (pud_none(*pud_k)) 430 goto bad_area; 431 if (!pud_present(*pud)) 432 set_pud(pud, *pud_k); 433 434 pmd = pmd_offset(pud, addr); 435 pmd_k = pmd_offset(pud_k, addr); 436 437 #ifdef CONFIG_ARM_LPAE 438 /* 439 * Only one hardware entry per PMD with LPAE. 440 */ 441 index = 0; 442 #else 443 /* 444 * On ARM one Linux PGD entry contains two hardware entries (see page 445 * tables layout in pgtable.h). We normally guarantee that we always 446 * fill both L1 entries. But create_mapping() doesn't follow the rule. 447 * It can create inidividual L1 entries, so here we have to call 448 * pmd_none() check for the entry really corresponded to address, not 449 * for the first of pair. 450 */ 451 index = (addr >> SECTION_SHIFT) & 1; 452 #endif 453 if (pmd_none(pmd_k[index])) 454 goto bad_area; 455 456 copy_pmd(pmd, pmd_k); 457 return 0; 458 459 bad_area: 460 do_bad_area(addr, fsr, regs); 461 return 0; 462 } 463 #else /* CONFIG_MMU */ 464 static int 465 do_translation_fault(unsigned long addr, unsigned int fsr, 466 struct pt_regs *regs) 467 { 468 return 0; 469 } 470 #endif /* CONFIG_MMU */ 471 472 /* 473 * Some section permission faults need to be handled gracefully. 474 * They can happen due to a __{get,put}_user during an oops. 475 */ 476 #ifndef CONFIG_ARM_LPAE 477 static int 478 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 479 { 480 do_bad_area(addr, fsr, regs); 481 return 0; 482 } 483 #endif /* CONFIG_ARM_LPAE */ 484 485 /* 486 * This abort handler always returns "fault". 487 */ 488 static int 489 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 490 { 491 return 1; 492 } 493 494 struct fsr_info { 495 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 496 int sig; 497 int code; 498 const char *name; 499 }; 500 501 /* FSR definition */ 502 #ifdef CONFIG_ARM_LPAE 503 #include "fsr-3level.c" 504 #else 505 #include "fsr-2level.c" 506 #endif 507 508 void __init 509 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 510 int sig, int code, const char *name) 511 { 512 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 513 BUG(); 514 515 fsr_info[nr].fn = fn; 516 fsr_info[nr].sig = sig; 517 fsr_info[nr].code = code; 518 fsr_info[nr].name = name; 519 } 520 521 /* 522 * Dispatch a data abort to the relevant handler. 523 */ 524 asmlinkage void 525 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 526 { 527 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 528 529 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 530 return; 531 532 pr_alert("8<--- cut here ---\n"); 533 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 534 inf->name, fsr, addr); 535 show_pte(KERN_ALERT, current->mm, addr); 536 537 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 538 fsr, 0); 539 } 540 541 void __init 542 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 543 int sig, int code, const char *name) 544 { 545 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 546 BUG(); 547 548 ifsr_info[nr].fn = fn; 549 ifsr_info[nr].sig = sig; 550 ifsr_info[nr].code = code; 551 ifsr_info[nr].name = name; 552 } 553 554 asmlinkage void 555 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 556 { 557 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 558 559 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 560 return; 561 562 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 563 inf->name, ifsr, addr); 564 565 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 566 ifsr, 0); 567 } 568 569 /* 570 * Abort handler to be used only during first unmasking of asynchronous aborts 571 * on the boot CPU. This makes sure that the machine will not die if the 572 * firmware/bootloader left an imprecise abort pending for us to trip over. 573 */ 574 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 575 struct pt_regs *regs) 576 { 577 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 578 "first unmask, this is most likely caused by a " 579 "firmware/bootloader bug.\n", fsr); 580 581 return 0; 582 } 583 584 void __init early_abt_enable(void) 585 { 586 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 587 local_abt_enable(); 588 fsr_info[FSR_FS_AEA].fn = do_bad; 589 } 590 591 #ifndef CONFIG_ARM_LPAE 592 static int __init exceptions_init(void) 593 { 594 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 595 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 596 "I-cache maintenance fault"); 597 } 598 599 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 600 /* 601 * TODO: Access flag faults introduced in ARMv6K. 602 * Runtime check for 'K' extension is needed 603 */ 604 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 605 "section access flag fault"); 606 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 607 "section access flag fault"); 608 } 609 610 return 0; 611 } 612 613 arch_initcall(exceptions_init); 614 #endif 615